A Cloud-based Development Environment using HLLA and Kubernetes
for the Co-simulation of a Corporate Electric Vehicle Fleet

Kasim Rehman, Orthodoxos Kipouridis, Stamatis Karnouskos,
Oliver Frendo, Helge Dickel, Jonas Lipps, and Nemrude Verzano

Abstract— Decision makers in modern enterprises need to
assess so-called ''what-if"' scenarios and select the best of
breed among the available alternatives. Although simulation
plays a pivotal role in niche cases, it is an undervalued tool
in the broader enterprise context. Its proliferation has not
kept up with recent technological advances such as big data,
cloud computing, graphics processing units clusters, and cross-
layer enterprise integration. Based on such new developments,
new capabilities can be realized that go beyond single-purpose
simulations, and are an excellent fit for studying heteroge-
neous, independently developed System-of-Systems (SoS), in
a multitude of scenarios in complex and dynamic enterprise
environments. Co-simulation efforts can provide new insights
on the enterprise operations including compelling visualizations
of possible simulated alternatives, thereby assisting decision
makers in their strategy selection. To move beyond niche
applications, however, simulated systems need to integrate in
real-time, a continually increasing amount of data (both real
and simulated), stemming from various domains and their
systems. This work presents a way to achieve such distributed
simulations in modern enterprise environments, based on High-
Level Architecture (HLA), as well as their coordination via
the Run-Time Infrastructure (RTI). In an example scenario
featuring a co-simulation of a corporate electric vehicle fleet,
it is shown how various software subsystems interact to enable
business users to visually investigate scenarios, as well as how
such a system can be deployed and operated within a modern
enterprise IT landscape.

I. INTRODUCTION

Modern companies operate in highly dynamic and com-
petitive environments, in which they strive for high per-
formance. However, to be able to capitalize on market
opportunities and achieve superior performance, companies
need to be able to have fine-grained visibility of assets
and processes, timely integration of real-time data, as well
as overall resource utilization, in the best possible way to
achieve the firm’s strategic objectives [1]. For this to be
realized, C-level decision makers need to be able to anticipate
and act on emerging trends quickly.

Visualization of hypothetical future situations (so-called
“what-if scenarios”) can contribute to this goal, by making
their impact more tangible and comprehensible without the
necessity of in-depth technical knowledge. Moreover, key
situations can be exemplified which in turn may help C-
level executives to make decisions that guide the enterprise
effectively. The backbone of such capabilities lies with
simulations that can enable experimentation with reality-
near hypothetical situations, that can eventually help the

All authors are with SAP, Dietmar Hopp Allee 16, D-69190, Walldorf,
Germany {name.surname}@sap.com

management to take better decisions. Furthermore, coupling
simulation and modern 3D or even augmented/virtual reality
visualizations can more effectively bring across key points
and empower decisions makers.

While the importance of simulation for the enterprise
is evident, it is also becoming increasingly challenging
to realize. Enterprise systems in many cases constitute of
heterogeneous, large-scale systems that are independently
developed and deployed, and are expected to seamlessly
interact with each other, which can be perceived as a
Systems-of-Systems (SoS) [2]. Modeling the behavior of
such a SoS is a complex task, and requires deep expertise,
which becomes even more challenging if several of them
need to be simulated and capture their interactions. Hence, a
more realistic approach is to bring together their simulators
into a common landscape and couple them over a common
communication-driven infrastructure, eventually creating a
co-simulation [3]. Therefore, a way to integrate multiple
available simulators and interact with them in a coordinated
fashion over a common infrastructure is highly desired. For
enabling co-simulation, the High-Level Architecture (HLA)
[4], an IEEE standard for distributed simulation, can be
utilized.

This work presents efforts towards bringing together sev-
eral simulated entities, i.e., in a co-simulation [3], over
a framework based on HLA, as well as their coordina-
tion via the Run-Time Infrastructure (RTI), the middleware
implementing the HLA. Specifically, the approach focuses
on enabling the execution and deployment of containerized
HLA federations (based on the RTI-infrastructure), as well
as simulation-supporting software components, in form of
microservices, for instance for model provision and prepro-
cessing. The goal is to shed some light on how modern
technologies can be used to (i) enhance visibility on company
assets via visualization, and (ii) enable co-simulation, over a
common infrastructure utilizing modern cloud technologies.

To exemplify the proposed approach, the case of Electric
Vehicle (EV) fleet behavior is investigated. Company car
fleets are becoming increasingly electrified, and as such
opportunities are sought to capitalize on these assets [5].
However, corporate EV fleet behaviors are still not well
understood, and decisions pertaining to infrastructure, cost,
business process impact, company policies etc. need to be
better supported [5], [6]. Therefore, not only existing behav-
iors need to be visualized, but also future scenarios need to be
studied in order to assess the impact of various parameters.
A corporate EV fleet scenario is implemented with the

utilization of multiple simulators and on the development
infrastructure proposed.

The rest of the paper is structured as follows: First, the
motivation scenario and technologies are shortly described in
section II. The overall integration architecture is discussed in
section III, while the specific extension and realization of it
is exemplified for the EV use case in section IV. Finally, an
overall discussion of conceptual and technical experiences
is realized in section V, while section VI presents the
conclusions or this work.

II. TECHNOLOGIES

A. Co-Simulation: HLA and RTI

Co-simulation provides the theoretical basis as well as a
set of techniques and tools that enable a global simulation
of a coupled system via the composition of various simula-
tion units [3]. A comprehensive simulation and subsequent
presentation of the outcomes is key to achieve a better
understanding of potential future situations. For realizing
inter-operable co-simulations, the HLA has been proposed
and standardized, with the latest version published in 2010
and called HLA Evolved [4]. HLA is a simulation systems
architecture framework with an emphasis on re-usability and
interoperability of simulations, driven by the need for cost-
effectiveness, quality and timeliness [7]. In this context, HLA
has already been utilized in several industrial efforts [§].

In distributed environments, mediators are used to enable
indirect communication among the participants, and in HLA
this role is carried out by the RunTime Infrastructure (RTI),
which provides common interface services for synchro-
nization and data exchange. Each executed simulation that
adheres to the HLA interface to RTI is called federate appli-
cation and shares a commonly specified data communication,
i.e., the federation object model (FOM) Document Data
(FDD). The federate applications and the FOM that are used
to achieve some specific objective, are called federations.
It should be noted that the RTI itself does not provide
any storage but only mediates the data routing (i.e., the
exchange of HLA objects) among the federates, using a
publish/subscribe pattern. Each federation also includes a
Federation Manager component that assumes the coordinator
role and among other tasks, it creates the federation, manages
synchronization points, etc.

To enable the interfacing of the federate with the RTI,
a Local RTI Component (LRC) provides the ability to the
federate, to make calls and get callbacks from the LRC. In
some cases, a Central RTI Component (CRC) that coordi-
nates the runtime components, is also part of the deployment.
However, not all RTT implementations include a CRC [9].
While the HLA defines an interface which federates use
for their data exchange, the exact implementation, is RTI
dependent. Therefore, the current common practice is for all
federates use the same RTI implementation, and in our case,
it was decided to use the Portico RTI [10].

2

B. Deployment: Container Orchestration with Kubernetes

Modern enterprise IT environments are shifting towards
containerized applications (e.g., in Docker), leveraging a
lightweight approach to encapsulate an application’s depen-
dencies and operating environment. The resulting container
image is portable, and can easily be distributed and de-
ployed on existing IT infrastructure and across arbitrary
IaaS providers. The increasing complexity and networking
of large-scale containerized applications, calls for effective
management and deployment tools. Kubernetes is an open-
source system that adds container orchestration capabilities
and enables operators to easily automate their deployment,
scaling and management within a cluster of physical or
virtual machines [11]. Furthermore, Kubernetes allows devel-
opers to declare what their application needs to be success-
fully deployed and operated, by providing information about
required resources (e.g., CPU, GPU, and memory), exposed
ports, image versions and more. The engine interprets these
deployment descriptions and creates Pods that feature one
or more containers including the prepared application and
provide access to other resources such as disk storage or
network. This approach enables automated lifecycle manage-
ment and deployment of applications, while it also adheres
to modern enterprise IT needs for monitoring and scalability.

C. Visualization: AR/VR

To allow for powerful 3D visualizations of virtual worlds,
game engines such as Unity 3D [12] can be a great candidate.
Unity 3D is a cross-platform game engine which can be used
to create 2D and 3D graphics via its scripting APIL. Unity 3D
has already been utilized as a visualization tool in different
areas [13] and is used thanks to its support of various AR and
VR platforms for several industry-specific use cases [14].

III. INTEGRATION ARCHITECTURE

In order to address the challenges regarding large-scale
integration and scalability of heterogeneous co-simulation,
Figure 1 presents a high-level architecture of a distributed
simulation system, based on HLA, that can be deployed and
scaled using cloud technologies. The Fundamental Modeling
Concepts (FMC) notation [15] is used to visualize the main
architecture parts and their interactions.

Each independent simulation unit (simulator) is imple-
mented as a federate (shown as “Simulator Federate” in
Figure 1) and consists of two main software components that
are containerized. The first container includes the simulation
program itself, and the second acts as a connector to the
RTI infrastructure. This RTI-connector container includes
the required from HLA components, such as a federate
ambassador, a controller, as well as the local RTI component
(LRC). The federate controller does the bulk of the work,
performing common HLA actions, and also communicates
with the simulation controller (depending on the interfaces
that are exposed on the simulator side). As shown in Fig-
ure 1, a controller in each federate takes care of registering
with the RTI. The controller is responsible for sending
and processing of information so that the actual simulator

Preprint version

Fm T T T T T T T T ——— A

| Visualization Federate

| Optimization Federate

:Manager/ Mediator Federate

Container Container

Container

|

I 1! :
I oy |
I I : I |
1 : ;! |
! <R ! <R I

1 [
| Federate O Federate [g edfra"te ———O— 4 Fc;deratg :
| A Controller Ambassador | : | ontroller mbassador !

I ! I
R 1! R)>> '
’ o Of IR R S |
1 Y : : | |

Simulator
: e Local RTI Component 1! : Local RTI Component Message !
| (LRC) 11 | (LRC) Broker Client |
| - |
| | T |
L_____%. ___________ =~ <_____________________/___I e e e
Y =~ ~ 1 A
Model Provision Container ~~ _Kubernetes Cluster I " R
~_ / Container \ .
S~ T Broker Client
Pod ~Pod /
Model =
Models Provider Container Container A <R)
Gr| g O
Message M_O_
I I Broker
. | 3D Graphics Business User
:: (RTI Communication Channel) IP Multicast Engine
Ul App

<R>»

Modelling / Simulation Expert

Fig. 1.

can remain oblivious of the RTI. This architecture ensures
that all simulators whose corresponding federates participate
in the same federation move in lockstep throughout the
simulation. For the simulators to move in lockstep each needs
to provide a do_next_timestep method. Furthermore,
it is the controller who controls the respective simulators
(or simulation client) via their API, with commands and
parameters in response to the messages received from the
RTI via the federate ambassador. The RTI expects each
federate to provide a federate ambassador component for
callbacks to the synchronized data and interactions.

The RTI is designed to be decentralized with each federate
communicating via IP multicast to other federates. RTI
providers such as Portico encapsulate all this functionality
in libraries with a well-defined interface that each client
can use to access it [16]. Behind this interface lies a local
RTT component (LRC), that is responsible for the message
exchange among the federates.

Next to simulators, other components can be also coupled
using the RTI-connector (containing the Federate Controller
and Ambassador, as well as LRC) to get access to the
simulation data available on the RTI channel. Examples
can be optimization and visualization tools. The proposed
approach enables the deployment of optimization algorithms
that work with the simulation data, and provide feedback
during runtime to the simulators. An example of such an
application is given in section IV.

Communicating with each federate but in a separate con-
tainer, resides a repository that stores and serves the system
models used for each simulator. This provides a separation
of concerns to the co-simulation system. Stakeholders with
the domain knowledge to design accurate models of the

3

Overall Architecture of the cloud-based co-simulation environment.

simulated systems can create and upload them into the
repository, without the need for expert knowledge for the
overall co-simulation system.

A prerequisite for enhancing the decision making in the
enterprise through co-simulation, is the ability to expose
simulation data and results, to external systems and users,
so that useful conclusions can be extracted. Examples of
such systems can be visualization, data analytics or ma-
chine learning tools. Although the RTI is designed to be
decentralized, it is not unlikely that some orchestration of
the various federates is required in the case of complex
scenarios. In order to perform these two tasks, namely
exposing data to non-RTI systems and federate orchestration,
an additional federate is needed. In the context of an RTI-
based architecture, such a federate is often presented as
Manager/Mediator Federate, which channels data from the
RTI to a message broker and vice versa [13].

In this approach, inside the Manager/Mediator Federate
resides an additional message broker component. Using a
message broker enables this federate to act as a bridge
between RTI and the messaging channel receiving messages
from one side (HLA federation) and sending them on to the
other (external non-RTI-connected systems). The message
broker offers, therefore, the required flexibility and scalabil-
ity that a co-simulation requires to expose simulation data to
clients that have not been adapted to integrate with the RTI.
The clients connected on the other side of the messaging
channel are not part of the federation (as defined by the
HLA), and therefore do not share the same functionality,
especially with respect to timing as compared to a federate.
The protocol translation can be programmed to minimize
marshaling/unmarshaling efforts. There are a number of

Preprint version

technologies that can be used to implement such a messaging
service, most commonly through publish/subscribe frame-
works such as MQTT.

An effective presentation of the simulation results to
the stakeholders is of prime importance for the decision
making process. Enabling concurrent visualization schemes
and user interfaces that can adequately present information
from different simulators requires a global overview of the
co-simulation system. RTI can support this by implementing
visualization functionalities encapsulated as a federate. In
this way, visualization tools get access directly to the syn-
chronized data objects, making sure that the presentation in
sync with the simulation. In the case that there is no hard
requirement for visualization, meaning that simulation can
move on without having to hold for visualization that updates
its state, the message broker component can be used. As
shown on the architecture in Figure 1, a 3D Graphics Engine
(e.g., Unity 3D) can use a broker client to get access to the
shared data objects that are to be updated in a scene.

Overall the flow of actions to execute a co-simulation
based on this approach would include the following steps.
In a preliminary step, domain experts create a scenario
and upload simulation models to the repository. The FOM
file containing information about the objects that need to
be shared among simulations gets updated. Subsequently,
through a UI connected to a broker client, the user sends
a command to the manager federate to start the simulation.
The various simulators start executing their code in a syn-
chronous way (guaranteed by the RTI). The synchronized
simulation objects that are used as input for the simulation
can be sourced from real enterprise information systems and
IoT components (e.g., sensors and measurement devices).
During execution time, the manager federate abstracts some
parameters and publishes their data to the broker, making
them available to be visualized by suitable tools, such as 3D
graphics engines.

The modular design of the proposed architecture tries to
enable the coupling of the different systems over RTI and
in parallel to take advantage of modern cloud technologies,
tools, and services, for development, deployment, and oper-
ation. To this end, all components are containerized using
Docker. Containers provide an isolated process execution
environment, that is well optimized for execution on cloud-
based infrastructure. This capability is harnessed by introduc-
ing Kubernetes as container orchestrator. It allows uniting
several virtual machines to form a distributed container
environment, thus leveraging the advantages of a cluster. All
of the parts of the architecture shown in Figure 1 can be
deployed to Kubernetes clusters.

In order to ensure continuous delivery in smooth develop-
ment cycles this process is automated using a Continuous
Integration (CI) pipeline that, upon detected changes in
the code base, automatically performs several steps i.e. (i)
compilation of local and remote sources, (ii) installation of
packages to the local repository, (iii) building and tagging
of Docker images, (iv) uploading of images to the container
registry, and (v) updating of deployments within the Kuber-

4

netes cluster to latest version of image available.

IV. USE CASE: CORPORATE ELECTRIC VEHICLE FLEET
A. Scenario

A corporate EV fleet scenario dealing with simulation
and visualization pertaining to EV charging is an excellent
candidate for exemplifying the approach taken in this work.
Co-simulation can improve planning and operation decisions
by enabling a low-cost what-if analysis, in the early stages
e.g. of planning the corporate EV fleet operations. An EV
fleet has significant implications for various aspects of an
enterprise. There is an interplay between the EV and its
usage, the power flow, the charging infrastructure and the
need to visualize the system status, e.g., state of charge,
entrance on campus premises and charging management, etc.
These and more related aspects should be taken into account
by the fleet manager for timely planning, resource allocation,
and infrastructure expansion.

The incentive to apply co-simulation stems from the need
to simulate scenarios that imply the interplay of several
simulators and enterprise services, under a common archi-
tecture, i.e., enabling their co-simulation. Specifically, we
want to investigate how a company can increase its resource
utilization in the existing electrical infrastructure. To achieve
this, one should be able to simulate the behavior of the
corporate EV fleet, during a daily cycle, and take into account
the normal energy-related consumption of the enterprise (to
avoid overloading). The assumption made in this scenario is
that EVs used by employees can be charged both at home,
as well as at company premises. For the fleet manager, in
order to accurately study the effects of the fleet, and decide
on a proper course of action, various metrics are important.

Firstly, the State of Charge (SoC) of each EV at the time
of arrival on company premises is important, in order to be
able to optimize their assignment to charging stations and
the power allocated to them. In order to calculate the SoC,
the routes of an employee driving his/her car during the
day (especially going from home to the company campus
and vice versa) need to be taken into account. Additional
parameters to be considered are the EV battery discharging
rate, and the minimum required state of charge (for a car to
reach its destination when leaving company premises). Once
the vehicle arrives at the corporate campus, it is assigned to
a charging station and recharges. Further conditions apply
to the overall load that can be supported by the corporate
campus charging infrastructure and need to be taken into
consideration.

In this scenario, the goal is to simulate the EVs, with
respect to their energy consumption, starting from various
locations entering the company premises at the beginning of
a workday and their charging process. The charging infras-
tructure is managed by a charging optimization component
that allows regulating the power delivered at each charging
station over time; simply said favoring the use of "cheaper"
over more "expensive" electricity. For the utilized charging
optimization realized [6], electricity prices can be acquired
via a service that reflects the current contracts or acquires

Preprint version

B q 5 <R S 5 S
Simulation Services Model Simulation Households Power Grid
(Container) Provider A gggter:\‘:r Client Load A gg:ﬁroa”‘:r Federate
Service REST R (Container) Simulator R (Container)
v A A v A
R R R
O+— R R
<R)» SUMO Client \ Federate Graph O Power Flow v Federate
SUMO! en Ambassador Visualizer Simulator Ambassador
Modelling Expert R»
A A
TCP/IP R R
RTI (Runtime Infrastructure) RTI (Runtime Infrastructure)
’J "
SUMO Federate
Local RTI Component (LRC) Local RTI Component (LRC)
1 \—1 1—‘ 1
: C IP Multicast) 1
I_I I—l ;
MQTT Client |— Local RTI Component (LRC) Local RTI Component (LRC)
. I
% RTI (Runtime Infrastructure) RTI (Runtime Infrastructure) RTI (Runtime Infrastructure)
vy | P
R R
<R) MQTT <R)> v v
% ‘ Controller Brok
roker
MQTT | (Container) | MQTT L] MQTT Client Federate Charging Federate
A Ambassador Optimizer A Ambassador
Business User R R
<R <R)
Scene Graph -
read";gf; Federate R g:;g::zr Federate R
Controll Controll
Ul App (Container) ontrofler \ (Container) ontrofler v
Fig. 2. Implemented scenario architecture

them in real-time from the energy provider. Each time a car
connects to a charging station the load on the electrical grid
may need to increase according to its optimized charging
schedule. We also want to be able to analyze and compare the
total charging power over time with and without intelligent
charging [6].

B. Co-simulation components

To realize the use case scenario, several simulators and
services need to be brought together and integrated as
federates in the architecture, in order to cover the posed
requirements. The resulting implementation architecture is
shown Figure 2. The main components are:

1) EV Traffic Simulation with SUMO: The scenario deals
with EVs, their routes, and battery utilization. To have
realistic behaviors, traffic simulation tools can be utilized to
create data about EV behaviors. The Simulation for Urban
MObility (SUMO) [17] enables modeling and simulation of
intermodal traffic systems that can include road vehicles,
public transport, and pedestrians. Its extensive functionality
covers creating models, setting of street network parameters,
calculation of routes, and a basic visualization. In addition, it
offers several plug-ins targeting e-mobility such as vehicle,
driver, and battery consumption models, as well as charging
stations capabilities. [18]. The traffic simulation is based
on a static graph with nodes (junctions) and edges (streets
& lanes). EV-types are modeled using (custom) models
with specific characteristics specifying physical, dynamic
and electrical characteristics. The data generated by SUMO
include arrival and departure times, battery SoC and waiting
times (at charging stations). Simulation data can be commu-
nicated to other components and be used as a data generator
for a multitude of scenarios (for instance for testing charging

5

optimization algorithms as discussed see below).

2) EV Fleet Charging optimization: Another component
that is added as a federate, is that of an EV fleet charging
optimization. This features the implementation of an intel-
ligent charging optimization functionality in Java [6], that
is responsible for creating charging schedules per car. The
main provided functionality is setting the available power for
each 15-minute time-slot per charging station.

3) Power Flow: A load flow study is valuable for the
study of an enterprise electrical grid with multiple load
centers, such as large data-centers, HVAC, and sanitary
facilities. The addition of EVs charging loads can lead
to overloading. Therefore, home-grown simple power flow
simulator implemented in Java is used, encapsulated as a
federate. The simulator can accept as input power loads
from various (real and simulated) sources, including the EVs
charging loads from SUMO, and provide analysis of the
system’s capability to adequately supply the connected load.
Such a component could be expanded to provide information
about total system and individual line losses, as well as the
real and reactive power flowing in each power line. For now,
it is limited to calculate the magnitude of the voltage at each
bus. The study of household loads, when the EVs charge at
home, is also enabled.

C. Implementing the Integration Architecture

The architecture in Figure 2 shows how the above-
described components are integrated using HLA/RTI. It
fills the abstract skeleton architecture from Figure 1 with
domain-relevant components. One difference is that our
model provider in this implementation is tightly-coupled with
SUMO simulator at this point, as it made little sense to offer
it to other components as a service in a container. As can be

Preprint version

_— Y

—]
—54% _ 4781Wh
4803w

" aEsEWh

1128Wh

6918Wh

1%

Fig. 3.

seen, there are four distinctive parts: (i) SUMO, (ii) the power
grid, (iii) a charging optimizer, and (iv) a manager/bridge to
an MQTT channel, all of which are connected over the RTI.
A UI for business users is also integrated over an MQTT
publisher/subscribe pattern.

From an operational perspective, two main workflows are
supported. The first one involves a modeling expert preparing
SUMO models and uploading them to a model provider,
while the second one involves the business user executing
multiple simulations with different parameters, in order to
gain insights on the achieved impacts. Each user interacts
the system through their bespoke Ul

The RTI allows federates to be time regulating and/or
constrained, or neither. The former indicates that it can
request all other federates move to next time steps. The latter
indicates it moves to the next time step together with all
other federates. We have chosen all federates to be both
constrained as well as regulating, allowing for very tight
synchronous integration. A use case for a non-regulating
federate would be a viewer that is not interested in any
control of the simulation.

In Figure 3 the current outcome and status of the co-
simulation execution are visualized using Unity 3D. Visu-
alization is done at run-time based on the of the generated
simulation data (simulation time). The company employees
come with their cars to the company premises, along the road
shown on the left side of Figure 3. Subsequently, they enter
the corporate parking area (shown on the right side of the
figure), and if they have an EV, they park on the dedicated
spots featuring a charging station. EVs can be clearly seen
as they are over-imposed with information about the battery
capacity as well as the respective state of charge (which is
also graphically visualized as a battery on top of each EV).

The UI operated by the business user, as shown in Fig-
ure 3, provides some configuration options in order to set
up and control the overall co-simulation. Note that these are

100%

6

G BT

BT00WhH

830BWh

' 60Wh 2449Wh

Visualization in Unity 3D of incoming EVs and their allocation to the parking charging stations

limited to the EV aspects, as this Ul is customized for the
specific business need. On the top-left side of Figure 3, it
is seen that the high-level aspects that can be configured
are the overall number of cars (the corporate fleet size)
as well as the percentage of these cars that are EVs (the
others are considered to be conventional cars). In addition,
the number of charging points can be adjusted, which has
an impact on the simulation, since it is linked with the
charging optimization strategies. Indicatively other info may
be displayed e.g. the CO, emissions as shown on the top-
right of Figure 3. Different areas can be selected, based on
open maps, and for the specific screenshot in Figure 3 the
corporate premises of SAP in Walldorf, Germany are selected
(indicated as "WDF_Area" on the top-left of the figure.
Traffic patterns and car trajectories for the specific maps are
automatically done via SUMO. Finally, the start/stop of the
simulation can also be controlled, via a command that is
appropriately propagated to all of the components of the co-
simulation.

To be able to visualize in real time the running simulation,
the information about each EV such as its current speed,
CO; emission, current battery capacity and engine type is
transferred from the SUMO Federate to the Unity 3D with
a message broker in a synchronous way through the RTI.
Updates of all objects are handled directly in the frame when
the messages are received by the Unity application. In this
way, it is possible to have the best breed of two worlds, i.e.,
the co-simulation running on the backbone of the HLA/RTI,
as well as a timely visualization of the ongoing co-simulation
via non-RTT applications such as the one implemented in
Unity and shown in Figure 3.

V. DISCUSSION

The overall coupling of different independently developed
software components via an HLA-empowered architecture
has provided promising results. One of the main reasons

Preprint version

is the interoperability among the heterogeneous simulation
systems that was achieved, as well as the common commu-
nication over the RTI. Although the simulations were simple,
it was possible to bring everything to the cloud, utilizing the
modern container-driven approach for development, testing,
deployment, and operation of the simulation. The end-result
enabled a timely development of the planned co-simulation
and demonstration of the proposed scenario. However, during
this process, several challenges also emerged, which ought
to be considered for future endeavors and are discussed in
this section.

Having implemented a multi-federate system for our use
case we can now evaluate how well this architecture supports
additional simulators increasing the utility of the system.
Our experience showed that it is easy to integrate more
simulators (or other producers and consumers of simulation
data) as long as there is a good architecture blueprint that
provides a reusable separation of concerns, applicable to all
federates, which was the motivation behind the generalized
architecture shown in Figure 1. The scenario presented in the
previous section included only some aspects of studying an
EV fleet of company cars. To enable the more detailed study
of complex, heterogeneous systems, additional coupling to
the grid infrastructure simulation needs to be present. As
future work, one could expand it to include not only several
instances of SUMO, but also a simulation of other aspects
e.g. of the smart grid infrastructure via frameworks such as
Mosaik [19].

The RTI provides two mechanisms to share data: data
objects can be either shared between federates with updates
in one being reflected in proxies held in all others, or
alternatively, predefined event types called interactions, that
can be used to send events with or without data to all
other federates. Attempting to maintain a single unified
data model across different contexts has been shown to
often lead to wasted effort [20]. Less coupled, event-like
interaction between federates can be achieved by the use
of interactions. By large, however, the communication via
reflected simulation objects does have great benefits as the
RTT automatically takes care of assigning updates to the
correct local object via unique handles. By allowing the
sharing of simulation objects the RTI provides a powerful
mechanism for different simulators to operate on, and even
hand over any simulation object to a subsequent simulator.

For the various what-if scenarios using co-simulation
approaches, the different simulation units for each of the indi-
vidual system aspects, can be perceived as black boxes, and
thus executed in different environments. Taking advantage
of this property, modern microservice and container-based
architectures prove rather suitable approaches for developing
and deploying co-simulation concepts, e.g., as shown by the
use case utilized in this work. In addition, as enterprise IT
infrastructures expect any application to be easily deployed
and monitored, the containerization and cloud-deployment
approach is a good fit. The containerization of existing tools
such as SUMO is proof for the rapid deployment and easy
integration of the solutions. Alternatively, the user would

7

have to spend a significant amount of time to configure and
run the simulator in his/her environment, while now this
complexity is hidden within the container itself. Additionally,
a benefit of using scalable deployments in the cloud is
the potential of executing multiple co-simulation instances,
implementing different scenarios in parallel and comparing
the results. As future work, a dispatcher component will
be deployed to spawn new instances and distribute the
simulation tasks accordingly.

Given the numerous middleware options available in the
context of the enterprise IT, one question is to what ex-
tent does it make sense to use in conjunction with the
RTI message brokers, REST calls, microservices, etc. for
communication. In our system we try to channel as much
communication as possible through the RTI, avoiding feder-
ates talking to each other through some alternative channel.
This provides more flexibility for accommodating interac-
tion patterns in the future and a simpler communication
model. One improvement of this architecture, for example,
could involve promoting the microservices to the status of
a federate. Pursuing such an approach should result in an
architecture in which the only communication channel within
the federation is the RTI while other communication channels
may lead out from the federation for purposes of integration
into an existing landscape. We intend to investigate such
issues in the next iteration where we hope to make progress
on integrating with existing enterprise services to access real-
time and master data.

Implementing an RTI-based architecture comes at a cost.
Subscribing, publishing, and sending messages, unlike mod-
ern message brokers, involves a lot of manual work leading
to an increase of accidental [21] complexity of an already
essentially complex system. On the positive side, the RTI
takes care of the highly challenging problem of time syn-
chronizing distributed software components. A hypothetical
custom implementation of co-simulation using an off-the-
shelf modern message broker would potentially run into
issues of out-of-sync messages (e.g., arriving too late or too
early), leading to non-deterministic transient states.

Federates are distributed peer-to-peer components, which
in itself results in complexity when trying to get them to
synchronize, say at the start of a simulation. The RTI does
offer synchronization mechanisms for this purpose, but some
complexity remains since, for example, the actions to be
performed by each federate are temporally coupled. In our
system, we have chosen to implement a manager federate
that takes on coordination responsibilities.

When designing an HLA-based co-simulation, a decision
that needs to be made for most components is whether to
have components acting within the boundary of one federate
or to promote them to a federate in their own right. Although
distribution always comes at the cost of more complexity,
synergy effects are achieved by components producing and
consuming simulation data without knowing about down-
stream consumers or upstream producers, and with data
being manipulated more than once throughout the process
by different federates. In our use case, we chose to include

Preprint version

several components of the power flow simulator within the
Power Grid Federate to remain within the boundary of
that federate but in other use cases, they could also be
implemented as federates.

With regards to visualization, for the use case of EV
fleets, the visualization of the system state at any given
time during the simulation is of prime importance, as it
provides valuable insights to the stakeholders, by revealing
possible hidden interrelations and dependencies between the
systems. The possibility of providing rich, easily deployed
visualization tools that can combine outputs from multiple
simulators and can be also be used to control additional data
manipulation functions such as optimization functionalities
is rather valuable.

Finally, as enterprises typically collect and store a huge
amount of business data, its combination and correlation
with simulations can result in more realistic what-if scenario
assessments which reduce the risk. For instance, in our use
case, the combination of business data pertaining to the
characteristics of the EV fleet (vehicles, batteries, charging
sessions etc.), enabled us to integrate in a more realistic
manner the routes calculated by SUMO as well as the
intelligent charging on the corporate premises. Further fine-
grained integration of business data into the virtual models,
as well as potentially customization of them to match the
goals of the what-if scenario, is expected to significantly
enhance the quality of simulation results.

VI. CONCLUSION

A simulation may pose a compelling tool for the in-
vestigation of what-if scenarios, especially if coupled with
modern AR/VR visualization capabilities, and can help de-
cision makers to better anticipate situations and assess the
impact of potential decisions. Through modeling of the
respective system characteristics and functions, the operation
of a system over time can be simulated, thus allowing
the study of individual systems. However, especially due
to the complexity and heterogeneity involved in a system
of systems scenarios, their development needs to based on
modern principles of reusability, interoperability as well as
rapid development and deployment.

A co-simulation scenario based on corporate EV fleet is
used as motivation and a co-simulation environment where
multiple simulation units interacting with each other using
HLA/RTI is presented. The development and deployment
are done in a modern cloud-based environment utilizing
container technology managed by Kubernetes, while the
simulation results can be visualized in 3D via Unity. The
benefits of our architecture are as follows:

While the approach is promising and can enhance the
system-wide simulation scenarios in enterprises, there are
still several issues that need to be handled, in order to
simplify the integration of new simulators.

It would be interesting to evaluate the performance of
this architecture for large simulations, and, in particular,
how computing resources are consumed by the individual
sub-components. We have started optimizing performance at

8

various points of the system and hope to continue to do so
before making qualified performance measurements.

An additional challenge to be addressed as future work
concerns the linking of the data and results produced from
such co-simulations, with other enterprise systems for real-
time analytics and management, as well as the combination
of business data and services.

REFERENCES
[1]

S. Karnouskos, “Efficient sensor data inclusion in enterprise services,”
Datenbank-Spektrum, vol. 9, no. 28, pp. 5-10, Feb. 2009.

BKCASE Editorial Board, The Guide to the Systems Engineering
Body of Knowledge (SEBoK) v1.8, R. D. Adcock, Ed. The Trustees
of the Stevens Institute of Technology, Hoboken, NJ, Mar. 2017.
[Online]. Available: https://www.sebokwiki.org

C. Goncalves Gomez, C. Thule, D. Broman, P. Larsen, and
H. Vangheluwe, Co-simulation: State of the art: Technical Report.
arXiv.org, Feb. 2017, 1702.00686. [Online]. Available: https:
/farxiv.org/abs/1702.00686

“IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) — Framework and Rules,” pp. 1-38, Aug. 2010.
S. Detzler, D. Ili¢, S. Karnouskos, and C. Kindermann, “Investigating
electric vehicles as a promising alternative to static storage solutions,”
in 2014 IEEE International Electric Vehicle Conference (IEVC).
IEEE, 17-19 Dec. 2014.

O. Frendo, S. Karnouskos, N. Gaertner, O. Kipouridis, K. Rehman,
and N. Verzano, “Charging strategies and implications for corporate
electric vehicle fleets,” in IEEE International Conference on Industrial
Informatics (INDIN), Porto, Portugal, Jul. 2018.

O. Topgu and H. Oguztiiziin, Guide to Distributed Simulation with
HLA. Springer International Publishing, 2017.

C. A. Boer, A. de Bruin, and A. Verbraeck, “A survey on distributed
simulation in industry,” Journal of Simulation, vol. 3, no. 1, pp. 316,
Mar. 2009.

P. Ross, “Comparison of high level architecture run-time infrastructure
wire protocols — part one,” in Simulation Technology and Training
Conference (SimTecT), Adelaide, Australia, 2012.

“Portico.” [Online]. Available: https://github.com/openlvc/portico

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” ACM Queue, vol. 14, pp. 70-93, 2016.
“Unity engine.” [Online]. Available: https://unity3d.com/

E. Kucera, O. Haffner, and R. Leskovsky, “Interactive and vir-
tual/mixed reality applications for mechatronics education developed
in unity engine,” in 2018 Cybernetics & Informatics (K&I). 1EEE,
Jan. 2018.

D. Ma, X. Fan, J. Gausemeier, and M. Grafe, Eds., Virtual Reality &
Augmented Reality in Industry. Springer, 2011.
“Fundamental Modeling Concepts (FMC) notation.”
Available: http://www.fmc-modeling.org

C. Steinbrink, A. A. van der Meer, M. Cvetkovic, D. Babazadeh,
S. Rohjans, P. Palensky, and S. Lehnhoff, “Smart grid co-simulation
with MOSAIK and HLA: a comparison study,” Computer Science -
Research and Development, vol. 33, no. 1-2, pp. 135-143, Sep. 2017.
D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128-138, Dec. 2012.

T. Kurczveil, P. A. Lépez, and E. Schnieder, “Implementation of an
energy model and a charging infrastructure in SUMO,” in Simulation
of Urban Mobility. Springer Berlin Heidelberg, 2014, pp. 33-43.

S. Rohjans, S. Lehnhoff, S. Schutte, S. Scherfke, and S. Hussain,
“mosaik — a modular platform for the evaluation of agent-based smart
grid control,” in IEEE PES ISGT Europe 2013. 1EEE, Oct. 2013.
E. Evans, Domain-Driven Design: Tackling Complexity in the Heart
of Software. Addison-Wesley, 2004.

F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, pp. 10-19, Apr. 1987.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15] [Online].

[16]

[17]

(18]

[19]

[20]

[21]

Preprint version

