
Performance assessment of the integration between
industrial agents and low-level automation functions

Luis Ribeiro∗, Stamatis Karnouskos†, Paulo Leitão‡, José Barbosa‡, Martin Hochwallner∗

∗Linköping University, SE-58 183 Linköping, Sweden, email: {luis.ribeiro, martin.hochwallner}@liu.se
†SAP, Walldorf, Germany, email: stamatis.karnouskos@sap.com

‡Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança,
Campus de Santa Apolónia, 5300-253 Bragança, Portugal, email: {pleitao, jbarbosa}@ipb.pt

Abstract—The increasing need for more adaptive production
environments is a big motivator for the adoption of agent-
based technologies in industrial systems, as they provide better
mechanisms for handling dynamically and intelligently various
kinds of production disturbances. Unlike with the utilization
of most conventional automation languages, the use of agents
enables, in an easy way, the setup of dynamic and autonomous
adaptive processes to handle large and complex engineering
system functions and interactions. Agent-technologies in cyber-
physical systems contexts require at some point integration with
automation controllers. However, most commonly available and
used agent system implementations in the industry were not
designed for hard real-time control use cases, and do not utilize
real-time operating systems or dedicated hardware. Hence, they
cannot match the hard-real-time performance of automation
controllers. This work provides some insights on the performance
that can be achieved with agent-based approaches that integrate
with low-level automation system functions. It considers the
performance of the agent-based practices in light of non-real-time
dedicated hardware or operating systems. The results show that
agents are well suited for the majority of soft-real-time control
applications.

I. INTRODUCTION

The concept of a smart factory, where intelligent resources
interact with each other and continuously adjust their behavior
to changes, opportunities, and disturbances, is increasingly
seen as the answer to attain more sustainable production prac-
tices at a time where product customization and complexity
are on the rise [1], [2].

Agent technologies have, for a long time, played an essential
role in influencing the design of the smart factory by promot-
ing distribution, decentralization, intelligence, autonomy, and
adaptation, contributing to achieving flexibility, robustness,
responsiveness, and reconfigurability [3], [4]. Nevertheless,
most of the experiments with such technologies and principles
have been restricted to smaller scale industrial demonstrators
and less commonly introduced in production. Among the
identified key factors that contribute to the adoption of agents
in industrial domain [5], are the technology (which includes
legacy system integration) and standardization issues. Their
scope of applicability and design rules have also been fre-
quently misunderstood which has not facilitated their adoption
[6].

The consolidation of some IT (Information Technologies) /
AI (Artificial Intelligence) technologies and the pervasiveness

of computer networks has re-ignited both the interest and
opened for new opportunities in multi-agent-based control.
This new wave of intelligent systems is going under the brand
of Cyber-Physical Systems (CPS). CPS stand for most of what
has been demonstrated with agents before but emerges at the
time where both concepts and technologies are starting to be
better understood. They are also transversal, cutting across
several domains: energy, health, agriculture, transportation,
social networking, surveillance, and defense, etc. [1], [7].

Current agent-technologies are well-suited to manage com-
plex and large engineering ecosystems such as a smart factory.
Previous work in multi-agent systems applied to production
automation has indicated a superior performance in managing
uncertainties and catering for unexpected events [8] but has
also exposed the deficiencies in handling hard-real-time events.
For that reason, researchers and practitioners have traditionally
used agents in combination with conventional automation con-
trollers. This enables a proper separation of concerns regarding
the action scope and objectives of the different concepts and
technologies.

Several integration and interaction practices, connecting
these two worlds, have emerged independently and been
dispersed in the literature. Until recently, very little work has
been done to characterize the adequacy of the practices in
different contexts [9]. Existing standards for software products
such as ISO/IEC 25010 could be relevant for assessing the
practices [10].

When considering the utilization of agents in industrial
settings, one key quality sought is related to the performance
of the agent solution. However, due to lack of standardized
interfaces and detailed performance measurements, it is diffi-
cult to compare industrial agent practices, particularly using
different interface approaches to interconnect software agents
and physical automation devices. In this context two major
Research Questions (RQ) arise:

• RQ1: Is the performance of the interface practice ad-
equate for industrial system control? What levels of
performance can be expected?

• RQ2: Is the industrial agent-based solution behavior
stable, and if not, which factors affect it?

To approach these research questions, several aspects related
to the performance need to be investigated. For instance, RQ1



requires an investigation of different integration patterns and
absolute statistical values pertaining to the performance e.g.
by measuring the round trip time (RTT) of the agent and
device interaction. For RQ2 a statistical analysis of thousands
of requests needs to be made. The aim of this work is to try to
empirically approach these two RQs along the line of thought
discussed.

The rest of the paper is organized as follows: section II
briefly discusses the related work that supports the present
research, and section III presents the reasons for the method-
ological approach and the selected test cases; section IV
focuses on the empirical results achieved; section V discusses
the implications of the findings, especially in the context of the
set of defined research questions; and finally, in section VI the
conclusions and future research and development directions
are presented.

II. RELATED WORK

The connection between agent-based systems and conven-
tional automation controllers has been explored for the past
ten years and different practices have emerged. The typical
practice realizes a two-layered system, similar to the holon
and mechatronic concepts, comprising: (i) a low level control
layer (LLC), consisting of system specific high performance
controller code, and (ii) a high level control layer (HLC)
dominated by agents or higher order control entities incapable
of delivering real-time performance but able to provide intel-
ligence to decision-making.

Early works seeking a more standardized integration of
the HLC and the LLC layers include [11]–[14]. In these
approaches, the dominant technologies on the LLC layer
include code developed by using programming languages
from IEC 61131-3 [15] and IEC 61499 standards, while the
HLC layer has been predominantly dominated by agent-based
implementations. The implementation of the two-layered inter-
face system based on the IEC 61131-3 standard for the LLC
layer has resorted to distinct connectivity solutions, but the
ones based on IEC 61499 have used mechanisms that have
been considered in the standard for this specific purpose.

A more recent study [9] has uncovered a wider range of
different integration practices and patterns across three appli-
cation domains: factory automation, power and energy systems
and building automation. The surveyed practices confirm the
prevalence of already mentioned technologies but exposed a
larger set of interaction and communication protocols as well
as HLC integration practices. Specifically, the HLC can be
deployed within and outside the automation controller and its
interaction with the LLC ranges from almost direct control
through shared memory space to modern brokered message-
based interaction.

Of particular relevance is the conclusion that according to
the location of the HLC (e.g., the software agent) and the
LLC (e.g., the low-level automation function), the HLC and
the LLC can share the same computational platform (on-
device) or can be in different ones (i.e. hybrid). Depending
on the scope, the HLC can exert more direct control on the

LLC (tightly-coupled) or the interaction can be mediated by
a broker (loosely-coupled).

In this work, the focus is on the tightly coupled design,
where the HLC has a permanent, non-mediated, connection
to the LLC. Such connection can exist in the form of direct
network communication or shared memory. In this abstraction
level, three designs are possible. The first one consists of
computationally separating the HLC and LLC, as represented
in Figure 1, with HLC accessing remotely to the LLC. Both
ends will implement communication mechanisms that enable
them to interact. This is affected, by the design, the quality of
the network infrastructure and the computational capabilities
at both ends.

Agent (HLC) LLC

API client API server

Interface (Tightly Coupled, Hybrid) 

channel

• Socket-based
• Other network-based direct 

call communication channels

Figure 1. Structure for the Hybrid Tightly Coupled interface

Embedding the HLC into the low-level control device, as
illustrated in Figure 2, mitigates the network related issues
and should improve the overall performance if the device has
enough computational power to support both the HLC and the
LLC while fulfilling the timing requirements of both.

Agent (HLC) LLC

API client API server

Interface (Tightly Coupled, On Device) 

channel

• Socket-based
• Other network-based direct 

call communication channels

Figure 2. Structure for the On Device Tightly Coupled interface

In the very extreme case, the HLC may be compiled together
with the LLC creating a fully coupled structure without
any significant computational separation. This version of the
design attempts to ensure maximum performance, but as a
drawback, it may limit the reconfiguration capabilities of the
agent.

III. TESTING METHODOLOGY

To answer the posed research questions, a structured test
plan has been derived. For RQ1, in order to investigate the
performance, absolute values are needed. As such, it was
decided to investigate three different parameters:

(i) Inter-Tick Time (ITT) – measures the agent’s cycle time
(i.e., the time between executions);

(ii) Tick Time (TT) – measures the agent’s total execution
time per cycle (i.e., from the moment it starts executing
the behavior that includes the call to the controller to the
moment it finishes it);

2
Preprint version of doi:10.1109/INDIN.2018.8471927

http://dx.doi.org/10.1109/INDIN.2018.8471927


(iii) Round Trip Time (RTT) – is measured from the moment
the agent issues a command to the controller to the point
where it receives a reply for that command from the
controller it is communicating with.

Simply put, ITT contains TT which contains RTT and, collec-
tively, they enable measuring different execution moments in
the interaction between the HLC and the LLC as depicted in
Figure 3.

request

response

HLC (agent):
Device e.g. 

Raspberry Pi
Device e.g. 

Raspberry Pi

LLC: 

RTT 
time

IN
TE

R_
TI

CK
_T

IM
E

Repeat for n calls

TICK_TIME

preparation
procedures

Figure 3. Probing points in the testing agent lifecycle

TT, ITT, and RTT are known to be influenced by the
underlying implementation and the computational platform
supporting it. However, TT and ITT are also strongly influ-
enced by the selection of the agent platform and the additional
application-specific code. Considering that the present paper
is focusing on the interaction between HLC and LLC, it
places a considerable focus on the RTT analysis. TT and ITT
provide insight into the operation of the HLC itself and are,
in the present context, only generally relevant to understand
the quality of the tested implementations and their suitability
for hard-real-time operation since the focus of the work lies
on the interaction between HLC and LLC.

For RQ2, in order to find out if the behavior is stable, tests
need to be carried out that stress the system beyond its normal
operations. Here we consider that agents are not hard-real-
time entities and that they operate in an event-driven time-
independent manner. With the currently available technology,
they execute (HLC-level) is the hundreds of milliseconds scale.
At this scale, for instance, issuing a large number of requests
(e.g., 200000) as quickly as possible, should reveal if the
performance is stable over all these consecutive tests, but at
the same time should not happen frequently in real operation
at HLC level for most automation processes. To approach
the second part of this RQ and find out the potential impact
of individual factors, one needs to vary them individually,
for example the number of requests from the agent to the
device, the message size (payload) and experiments with
communication patterns (e.g., as fast as possible or in defined
cycles).

Table I
OVERVIEW OF EXECUTED TESTS AND PARAMETER SCALING

Test Number of Calls Message Size (Bytes) Target Cycle Time (ms)

1 10-10-100 1000 10
2 100-100-1000 1000 10
3 1000-1000-50000 1000 10
4 10-10-100 1000 freewheeling
5 100-100-1000 1000 freewheeling
6 1000-1000-50000 1000 freewheeling
7 50000-5000-200000 1000 freewheeling
8 10-10-100 2000 10
9 100-100-1000 2000 10

10 1000-1000-50000 2000 10
11 10-10-100 2000 freewheeling
12 100-100-1000 2000 freewheeling
13 1000-1000-50000 2000 freewheeling
14 50000-5000-200000 2000 freewheeling
15 1000 100-100-1000 freewheeling
16 1000 100-100-1000 10
17 1000 1000-1000-10000 freewheeling
18 1000 1000-1000-10000 10
19 1000 1000 1-1-20
20 1000 1000 10-10-100

In order to approach both RQs empirically, as discussed, a
set of 20 classes of tests were defined for the different physical
testing setups. There are three main identified variables:

(i) number of calls from the HLC to the LLC;
(ii) target cycle time of the agent;

(iii) the size of the message being transmitted.
A summary of the 20 classes of tests, detailed in Table I,

was therefore executed. The pattern A-B-C denotes scaling of
the specific test parameter from A to C in increments of B.
The message size is kept moderate, above and below to the
IP fragmentation & reassembly level that is defined by the
maximum packet length limit of 1500 Bytes. The target cycle
time is set in ms, or as “freewheeling” which indicates “as
fast as possible” behavior.

Table II
HYBRID TIGHTLY COUPLED CASE SUMMARY

Case HLC LLC Connection Type & Behaviour

1 Raspberry
Pi 1
Model
B+

Raspberry Pi 1
Model B+ with
embrick Z-
RaspberryBrick-
01 (expansion
board) and
embrick G-
8Di8Do-01
(expansion
board) [16]

The LLC runs an socket server that
accepts commands from the agent
and executes them. The execution
involves reading the message pay-
load, and writing and reading a
random 16-bit value to and from its
digital I/Os before sending back a
copy of the initial message to the
agent. The communication is done
over a 100 Mbps Ethernet.

2 Raspberry
Pi 1
Model
B+

Raspberry Pi 1
Model B+

Similar to case 1 but without the
hardware write and read opera-
tions.

The experimental setup to test the selected integration cases
needs to fulfill a number of conditions in order to allow
the replication of the experiments. The test focuses on the
integration itself and the conditions on the agent, and the
controller sides need to be kept controlled. With this rationale
in mind, it was decided that the agent component (HLC) in the
hybrid model would be executed on several platforms shown

3
Preprint version of doi:10.1109/INDIN.2018.8471927

http://dx.doi.org/10.1109/INDIN.2018.8471927


in Table II. The on-device cases are executed similarly on the
selected platforms shown in Table III.

Table III
ON DEVICE TIGHTLY COUPLED CASE SUMMARY

Case HLC & LLC Connection Type & Be-
haviour

1 Raspberry Pi 1 Model B+ with em-
brick Z-RaspberryBrick-01 (expansion
board) and embrick G-8Di8Do-01 (ex-
pansion board) [16]

Same as case 1 in Table II
with the corresponding adapta-
tion for the On Device case

2 Raspberry Pi 3 local call
3 MacOS 10.13 (Intel Core i7, 2.3 GHz,

16 GB RAM)
local call

4 Windows 10 (Intel Core i5, 2.3 GHz,
8GB RAM)

local call

The agent software is implemented in JADE version 4.4
[17]. JADE is one of the most widely-used platforms for de-
veloping agent-based systems; it is FIPA (Foundation for Intel-
ligent Physical Agents) compliant and thoroughly documented.
Agents within an agent-based system often handle more than
one task simultaneously. It is impossible to predict the load
of a specific agent as this is always application specific. For
this reason, the implementation of the testing agent considers
that each agent is running one behavior only, cyclically, with
a reconfigurable target cycle time. The different Raspberry Pi
platforms used the same image of the operating system, i.e.,
32-bit Raspbian GNU/Linux 8.10, and Java 8.

IV. RESULTS

The result of performing tests 1–20 on the 6 test cases
described in Table II and Table III has provided several
relevant insights to the pursued RQs as well as about the
differences among the selected cases.

One significant differentiator is whether the tests are carried
out in freewheeling mode or on fixed-cycle, e.g., 10 ms.
Overall, the freewheeling execution mode was consistently
faster across the entire battery of tests. This could be even
seen in the tests with a 1ms fixed cycle time. However, at
this pace, the agent is generally not able to keep-up with
the cycle time. The measurements done in both cases are in
general similar, with the corresponding offset for the fixed
cycle cases. However, the freewheeling tests will generally
consume a significant portion of the available computing
time in comparison with the fixed period tests. Concerning
variations within a fixed cycle time the observations suggest
that the HLC implementation struggles to keep up with short
cycle times ([1ms,3ms]) but generally fulfills higher cycle
times.

In the tests with varying payload, the results are too enough
for any significant difference to be noticeable and practically
relevant. This is true also for the scenarios where the HLC and
LLC were in the same physical machine and for the remote
tests. We have not carried out tests with large sizes, as these
do not correspond to typical cases in industrial automation,
where it is more often, that many messages, typically small in
size are exchanged (rather than few but big in size messages).

Figure 4. RTT for 200000 requests from Raspberry Pi to embrick with full
data (top) and with outliers removed (bottom).

Finally, the number of calls seems to affect the performance
of the instantiated cases. In the tests for cases 1–15, it was
possible to observe an important increase in the performance
between cycles 1000 and 2000 (as shown in Figure 5 and
Figure 4). This was consistent across all tests and had an
impact on all the measurements (RTT, TT, and ITT). For exam-
ple the RTT values consistently dropped from approximately
[25 µs,40 µs] to approximately [8 µs,11 µs] in case 1 (Table II).
The sudden increase in performance shown at Figure 5 (top),
was attributed to Java Virtual Machine (JVM) optimizations
at runtime. By explicitly switching off the optimization, the
results in Figure 5 (bottom) were attained, where it is clear
that the initial performance gap was smoothed out. However,
as seen, although the performance is stable, it is consistently
worse.

All of the tests show some outliers, which were hypothe-
sized since we do not utilize a real-time platform. Removing
the outliers enables us to obtain more detailed insights on the
actual micro-behaviors. For instance, Figure 4 shows on top
the view with the outliers, which if removed, reveal the bottom
figure that provides insights into the actual measurements
carried out. However, outliers cannot generally be ignored.
Figure 4 (top) shows an important distribution of outliers
(roughly 4.14%) approximately in the range [30 µs,310 µs]
with a small percentage approaching 1ms. If one concentrates
on the central part of the distribution (bottom Figure 4) then
the majority of the samples lie in the interval [5 µs,8 µs].
The graph shows the data points compressed into several
bands. Such behavior is a direct consequence of the resolution
of Java’s nanosecond time measuring function on the test

4
Preprint version of doi:10.1109/INDIN.2018.8471927

http://dx.doi.org/10.1109/INDIN.2018.8471927


Figure 5. RTT for 5000 requests from Raspberry Pi to embrick with Java
optimization on (top figure) and turned off (bottom figure).

devices. The only guarantees provided by this timer are that the
precision is in nanoseconds and the resolution, being system
dependent, is at least milliseconds.

Finally, as expected, the performance of the tests is qualita-
tively proportional to the computational power available both
in the HLC and LLC platforms. This is evidenced in multi-
core platforms (e.g., the Raspberry Pi 3) where the overall
performance is considerably better. In addition, depending on
the GC strategy, the presence of more memory as well as
the parallel usage of many CPU cores, minimizes the GC
interference in the performance.

V. DISCUSSION

The RQ1 posed the question of performance suitability
for industrial scenarios and the performance levels that can
be attained. The results in section IV show examples of
the time behavior in the investigated practices. They clearly
depict a "best effort" performance from the HLC, in keeping
up with potential LLC performance requirements but also
with a significant outliers population. This suggests that the
practices are not compatible with hard-real-time requirements
of many industrial cases, especially with those under the 1ms
threshold.

JADE is considered good enough for achieving soft-real-
time constraints; however hard real-time aspects cannot be
guaranteed [18]. Although low execution times can be reached,
that make software agents in JADE appropriate for a wide
range of control scenarios, closed-loop controls and other
critical missions that rely on low execution time variations

need further work in the direction of a fully-fledged real-time
OS and appropriate utilization at the agent level.

RQ2 posed the question of behavior stability and factors that
affect it. As shown in section IV, there is behavior variability
and some factors were identified. Some of the effects measured
and discussed are common in the Java world. In particular,
the used agent platform (JADE) is implemented in Java. Java
applications are known to include optimizations, which may
vary the behavior over time [19], [20]. In addition, they may
slow down when the Java Garbage Collector (GC) becomes
active. Even if in all the tests specified in Table I the heap
size of the JVM has been set to 256 MB, garbage collection
is almost inevitable for the most intensive tests. It is known
that Java’s GC is a major source of performance variability
in a real-time context [20], [21]. By scaling the number of
messages and controlling the target cycle time of the agent, the
rate of object creation and destruction is necessarily varying.

While Java optimization was clearly evident by the improve-
ment of the RTT performance, GC impacted the performance,
as attested by the outlier population. Such variability in
behavior has also puzzled others, especially in more complex
settings with multiple agents, where the interactions among
them make it more challenging to investigate it [22]. Overall
for small execution bursts (tests 1, 2, 4, 5, 8, 9, 11 and 12 in
Table I) the GC had, generally, a minimum interference. For
longer execution bursts (tests 3, 6, 7, 10, 13 and 14 in Table I)
its action was noticeable.

The performance of the tested scenarios is somehow more
stable if Java optimization is turned off. However doing so
entails a relevant performance penalty. An interesting option
may be controlling this optimization procedure by shortening
the number of executions that Java should use to base its
optimization on. In these cases, a middle-ground between
behavior stability and performance was attained. Nevertheless,
and as expected, hard real-time performance could never be
attained during the tests and this arises from the nature of the
programming tools, platforms and communication protocols
selected. For industrial scenarios, the exact use-case require-
ments need to be considered, including the number of calls to
be made by the agent as well as the interval, in order to judge
if such performance effects do make a difference in practice.

This work adopts a rather simplistic view that in an hard-
real-time system all the deadlines must be strictly met, while
in a soft-real-time some deadlines may be missed which
will result in acceptable performance degradation. In this
context, considering that existing agent-based systems cannot
meet hard real-time requirements, the present tests indicate
that, in applications requiring hard-real-time assurances, the
LLC should provide these guarantees while ensuring that its
performance gracefully degrades due to HLC delays. The
HLC appears to have a stable response over time with its
performance degrading periodically due to the action of Java’s
GC but without any important cumulative effect over time.
This is encouraging as it enables the design of the LLC in a
compatible way with these periodic perturbations.

Finally, the relatively simple setup used did not produce

5
Preprint version of doi:10.1109/INDIN.2018.8471927

http://dx.doi.org/10.1109/INDIN.2018.8471927


meaningful differences between separating the HLC and LLC
in terms of performance (cases 1 in both Table II and Ta-
ble III). Such results though should be taken with a grain of
salt, since both the HLC and LLC implementations in this
work have been reduced to an absolute minimum. It may be
reasonable to think that a typical HLC and LLC full-featured
implementation would have a considerably higher impact on
computational resources. In this case, the CPU and available
memory may become bottlenecks, especially considering the
typical cases of embedded devices.

VI. CONCLUSIONS

Two typical interaction patterns for the integration between
Industrial Agents and a low-level automation function have
been empirically assessed. On both patterns, the agent exerts
direct control by communicating with the low-level controller,
which acts as a command interpreter. The results confirm
literature findings and re-enforce the notion that the set of
wide-spread supporting agent technologies cannot operate in
hard-real-time environments, without explicitly focusing on
real-time stacks. However, as discussed, there is a wide range
of soft-real-time scenarios where direct control would be
feasible.

In the soft-real-time context, as evidenced by the empirical
approach in this work, some considerations emerge. Even if the
RTT measurements are consistently within the µs region, the
HLC implementation reduces the scope of actuation to the ms
region on the tested scenarios. Performance can be enhanced
by increasing the computational capabilities of the supporting
physical platforms. Here CPU performance and availability
have an important impact.

The performance is also very sensitive to the configuration
of the JVM and interesting results can be attained if the agent
is executing repetitive tasks by forcing the optimization to
operate prematurely. Disabling the optimization completely
will lead to a more predictable behavior at a performance
penalty. This is generally not recommended since it does not
lead to hard-real-time capable execution anyway.

The tests have not shown cumulative performance degrada-
tion in the long run. This is an important conclusion since it
indicates that it is possible to integrate the HLC and LLC in
a way hard-real-time is guaranteed and can address the worst
case scenarios of the HLC in an acceptable way.

Overall the quantitative results show a higher range of
potential applications than generally expected, considering
the characteristics of the tested hardware and software. This
somehow contradicts the popular idea that the role of agents
should be confined to higher abstraction layers with very
limited timing constraints.

REFERENCES

[1] P. Leitão, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial cyber–physical systems,” Proceed-
ings of the IEEE, vol. 104, no. 5, pp. 1086–1101, May 2016.

[2] S. Karnouskos, A. W. Colombo, and T. Bangemann, “Trends and
challenges for cloud-based industrial cyber-physical systems,” in Indus-
trial Cloud-based Cyber-Physical Systems: The IMC-AESOP Approach.
Springer, May 2014, pp. 231–240.

[3] P. Leitão, “Agent-based distributed manufacturing control: A state-
of-the-art survey,” Engineering Applications of Artificial Intelligence,
vol. 22, no. 7, pp. 979–991, Oct. 2009.

[4] P. Leitão and S. Karnouskos, Eds., Industrial Agents: Emerging Appli-
cations of Software Agents in Industry. Elsevier, Mar. 2015.

[5] S. Karnouskos and P. Leitão, “Key contributing factors to the acceptance
of agents in industrial environments,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 2, pp. 696–703, Apr. 2017.

[6] L. Ribeiro and M. Björkman, “Transitioning from standard automation
solutions to cyber-physical production systems: An assessment of critical
conceptual and technical challenges,” IEEE Systems Journal, pp. 1–13,
2017.

[7] S. K. Khaitan and J. D. McCalley, “Design techniques and applications
of cyberphysical systems: A survey,” Systems Journal, IEEE, vol. 9,
no. 2, pp. 350–365, Jun. 2015.

[8] P. Valckenaers and H. Van Brussel, Design for the unexpected: From
holonic manufacturing systems towards a humane mechatronics society.
Butterworth-Heinemann, 2015.

[9] P. Leitão, S. Karnouskos, L. Ribeiro, P. Moutis, J. Barbosa, and T. I.
Strasser, “Common practices for integrating industrial agents and low
level automation functions,” in IECON 2017 - 43rd Annual Conference
of the IEEE Industrial Electronics Society, IEEE. IEEE, Oct. 2017, pp.
6665–6670.

[10] S. Karnouskos, R. Sinha, P. Leitão, L. Ribeiro, and T. Strasser, “Assess-
ing the integration of software agents and industrial automation systems
with iso/iec 25010,” in IEEE International Conference on Industrial
Informatics (INDIN), 2018.

[11] O. J. L. Orozco and J. L. M. Lastra, “A real-time interface for
agent-based control,” in Industrial Embedded Systems, 2007. SIES’07.
International Symposium on. IEEE, 2007, pp. 49–54.

[12] I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M. Merdan,
“Integrating software agents and iec 61499 realtime control for recon-
figurable distributed manufacturing systems,” in Industrial Embedded
Systems, 2008. SIES 2008. International Symposium on. IEEE, 2008,
pp. 249–252.

[13] P. Vrba, P. Tichy, V. Marík, K. H. Hall, R. J. Staron, F. P. Maturana,
and P. Kadera, “Rockwell automation’s holonic and multiagent control
systems compendium,” Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions on, vol. 41, no. 1, pp. 14–30,
2011.

[14] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on Cyber-Physical Systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11–25, Sep.
2015.

[15] IEC 61131-3:2013, Programmable controllers – Part 3: Programming
languages, International Electrotechnical Commission (IEC) Std.
[Online]. Available: https://webstore.iec.ch/publication/4552

[16] “emBrick G-8Di8Do-01 module.” [Online]. Available: http://www.
embrick.de/products/g-8di8do/

[17] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. Chichester, England Hoboken, NJ: John Wiley,
2007.

[18] D. Krol and F. Nowakowski, “Practical performance aspects of using
real-time multi-agent platform in complex systems,” in 2013 IEEE
International Conference on Systems, Man, and Cybernetics. IEEE,
oct 2013.

[19] V. Horký, P. Libič, A. Steinhauser, and P. Tůma, “DOs and DON'ts of
conducting performance measurements in java,” in Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering
- ICPE '15. ACM Press, 2015.

[20] D. Gu, C. Verbrugge, and E. M. Gagnon, “Relative factors in perfor-
mance analysis of java virtual machines,” in Proceedings of the 2nd
international conference on Virtual execution environments - VEE '06.
ACM Press, 2006.

[21] P. Libič, P. Tůma, and L. Bulej, “Issues in performance modeling
of applications with garbage collection,” in Proceedings of the 1st
international workshop on Quality of service-oriented software systems
- QUASOSS '09. ACM Press, 2009.

[22] G. Polakow, “JADE environment performance evaluation for agent-based
continuous process control algorithm,” in 2016 21st International Con-
ference on Methods and Models in Automation and Robotics (MMAR).
IEEE, aug 2016.

6
Preprint version of doi:10.1109/INDIN.2018.8471927

https://webstore.iec.ch/publication/4552
http://www.embrick.de/products/g-8di8do/
http://www.embrick.de/products/g-8di8do/
http://dx.doi.org/10.1109/INDIN.2018.8471927

	Introduction
	Related Work
	Testing Methodology
	Results
	Discussion
	Conclusions
	References

