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Abstract—Future industrial systems and applications are ex-
pected to be complex constellations of cyberphysical systems
(CPSs) where intelligent networked embedded devices play a
pivotal role toward the realization of new sophisticated industrial
scenarios. The prevalence of multifaceted devices enables new
avenues for monitoring at large scale via Internet of Things
(IoT) technologies, and, when coupled with the real-time analysis
of massive amounts of data, it results in new insights that can
enhance decision-making processes and provide a competitive
business advantage. How to collect, process, analyze, and in-
terpret big data is a challenge that affects all industries, and,
if effectively addressed, it would offer numerous operational
benefits. This article discusses some of the main architectural
issues related to collecting and handling big data for analysis
linked to IoT and cloud technologies in the industrial context.
The aim is to provide a high-level introductory view of this
topic, underpinned with examples from popular frameworks, and
discuss open research questions and future directions.

Index Terms—Cloud computing, Big Data, Industries, Compa-
nies, Protocols, Manufacturing, Real-time systems.

I. MEETING THE CHALLENGES

With the swift penetration of IoT [1,2], technologies into
a variety of industries, there is a potentially large increase in
collected data that need to be processed. Effectively handling
these big data is an opportunity to generate added value and
provide a business advantage [3,4]. For example, the health-
care industry in the United States alone could create more than
US$300 billion every year if big data are used creatively and
effectively [3]. The effective management of the lifecycle of
big data, including its collection, processing, and analysis for
decision making and insight generation, is seen as challenging,
and how effectively these aspects can be realized may impact
the competitiveness and performance of companies in various
industries.

IoT technology provides new opportunities to build pow-
erful industrial systems by connecting a large number of
smart networked embedded devices. Devices within these
industrial IoT (IIoT) or industrial CPSs (ICPSs) can sense and
control physical processes, make autonomous decisions, and
communicate and cooperate, thereby collectively generating
a massive amount of system data. Cloud computing [5] pro-
vides a promising solution for modern industrial systems and
applications by hosting services with flexible computational
and storage capacities. The integration of IoT and big data
technologies into the cloud will empower industries to build
a complex cloud-based CPS [6,7]. In some smart factories,
for example, operators can track the entire production process,
identify (often proactively) problem areas, and make informed

decisions, e.g., dynamically rescheduling processes and main-
taining systems on demand. The usage of cloud technologies
is increasingly penetrating industrial settings, and the term
industrial cloud refers to the cloud building an industrial
CPS and applications with IoT and big data technologies
[4,8] to distinguish it from the cloud for general purposes.
To effectively handle these data, industrial companies need
to consider upgrading current systems and technologies to
cope with this additional data volume and, in doing so,
will realize the benefits that big data handling delivers. This
recommends the key capabilities and features that need to
be developed to address various domainspecific requirement
challenges in CPS deployment, e.g., real-time monitoring and
control, flexible storage and timely generation of control and
business decisions, and enhanced infrastructure management
[6]–[9]. The effective handling and processing of big data is
the first step in overcoming these challenges.

II. THE INDUSTRIAL CLOUD AND BIG DATA

The Industrial Cloud and Big Data Big data allow indus-
trial companies and organizations to collaborate and create
new value from data [3]. Interconnected industrial devices,
e.g., smart meters and industrial equipment in the physical
world, can sense and control processes, generate data, and
communicate as part of the IoT. By capturing, processing,
and analyzing significant amounts of data from these devices
effectively, industrial companies and organizations can manage
their enterprise resources, optimize technical processes, under-
stand the market demand, and develop business intelligence
and analytics (BI&A) [10].

Due to poor scalability and low performance, many tra-
ditional computing technologies are inadequate for handling
big data, which are characterized by the volume, velocity,
variety, and veracity of the data (each of these characteristics
applies to ICPS data.) The volume of data will grow with
the adoption of IIoT technology. The velocity, i.e., the rate at
which data are generated, ingested, and processed, is crucial
for decisions that feed back into the system to control real-time
industrial processes. Since the ICPS consists of heterogeneous
systems of systems, the variety of the data is also very high.
The veracity (accuracy) of the data is also important in the
cyberphysical context as incorrect decisions made from low-
quality data could lead to physical disruption of industrial
processes. Big data have become a critical factor of the ICPSs,
and it is strongly suggested that industrial companies could
create a competitive advantage and boost productivity by
using cloud-based big data technologies [3]. Therefore, several



Fig. 1. The industrial CPS systems powered by big data. Smart devices could communicate with the cloud using protocols like AMQP. The big data platform
hosted in the cloud enables efficient data ingestion, warehouse, processing, analytics, and visualization. Industrial clients from energy, building, manufacturing,
health care, logistics and transportation domains can gain insight into the big data through the service interfaces provided by the cloud. RFID: radio-frequency
identification; 3G: third generation, LTE: long-term evolution; ISA: International Society of Automation; AMQP: Advanced Message Queuing Protocol; GFS:
Google File System; API: Application Programming Interface; NFC: near-field communication; WiHART: Wireless Highway Addressable Remote Transducer
Protocol.

cloud-based technologies have been developed for handling
big data by taking advantage of the cloud characteristics,
e.g., distributed storage, dynamic computational scalability,
and parallel computing [4]. Combined with IoT technology,
a complex cloud-based ICPS can be built where industrial big
data are collected, processed, analyzed, and stored, providing
domain-specific services or software to industrial clients. The
architecture of a cloud-based ICPS is shown in Figure 1,
which provides a common framework that many participants
can work with, by promoting innovations and accelerating the
deployment of the cloud-based ICPSs and applications for
future industries.

A. Industry interest

Many industrial companies have introduced industrial cloud
platforms and services. GE is pitching an industrial cloud
platform, named Predix [11], for industrial big data and
analytics. Predix enables industrial-scale analytics for as-
set performance management and operation optimization by
providing a standard way to connect machines, data, and
people. IBM has developed IBM Cloud [12], which provides a
platform-as-a-service (PaaS) for developers and data scientists
to rapidly develop and efficiently manage their applications
that take advantage of data and analytics from connected smart
devices and sensors. Oracle Utilities [13] provides cloud-based
software to the utility industry and their customers by analyz-
ing smart meter readings, and uses statistical algorithms to
help their customers save money through behavioral changes.
Advantech, in collaboration with Microsoft, built a WISE-
Cloud [14] platform that integrates IoT software and a cloud
platform to provide services to industries, e.g., seamless sensor

information collection, remote management of devices, and big
data analytics. Several traditional cloud software companies
like Google, Amazon, Microsoft, Cloudera, SAP, Oracle, and
Salesforce.com have made efforts to integrate the IoT and big
data into their services, which greatly promotes the develop-
ment of the industrial cloud. Industrial alliances formed by
companies and academia promote the extensive cooperation
and standardization of the industrial cloud. The Industrial
Internet Consortium (IIC) [15] was founded by AT&T, Cisco,
GE, IBM, and Intel in 2014 and now has more than 200
members. The IIC was formed to accelerate the development,
adoption, and widespread use of interconnected machines and
devices and intelligent analytics. The Internet Protocol for
Smart Objects (IPSO) Alliance [16] promotes IPv6 connected
devices in energy, health care, and industrial applications. To
secure industrial cloud-based implementations, the Cloud Se-
curity Alliance (CSA) IoT Working Group [17] has committed
to defining actionable guidance for security practitioners.

B. Government and Policies

Aside from industry, government also plays an important
role in speeding up the deployment of the industrial cloud
by establishing active policies and providing financial sup-
port. Germany’s Industry 4.0 [7] is a key strategic initia-
tive aimed at strengthening the competitiveness of German
industry. Empowered by the industrial cloud and the IoT,
smart machines and production facilities can autonomously
exchange information, trigger actions, and control each other
independently, forming complex CPSs that pave the path to
Industry 4.0. In China, the Made in China 2025 and Internet
Plus strategies have made their debut, aspiring for a big leap

2
Preprint version for http://dx.doi.org/10.1109/MIE.2017.2788850

http://dx.doi.org/10.1109/MIE.2017.2788850


in innovation as well as manufacturing efficiency based on
smart technology, the mobile Internet, cloud computing, big
data, and the IoT. The U.S. government co-founded a national
network for manufacturing innovation (NNMI) made up of
several institutes for manufacturing innovation that provide a
manufacturing research infrastructure where U.S. industry and
academia collaborate to solve industry-relevant problems. Re-
search areas of the NNMI include three-dimensional printing,
big data, smart manufacturing, and medical devices. Although
the industrial cloud is being greatly promoted by industrial
companies and alliances as well as governments, it is still in
its nascent stage of adoption.

III. CLOUD-BASED BIG DATA TECHNOLOGIES

Several cloud-based technologies have been developed for
handling big data by taking advantage of distributed storage
and parallel computing in the cloud.

Several cloud-based technologies have been developed for
handling big data by taking advantage of distributed storage
and parallel computing in the cloud. In this section we discuss
the core functions of big data processing – data ingestion,
stream processing, scalable storage and batch processing –
and discuss, as examples, how prominent existing frameworks
implement these functions. To end we briefly discuss data
analytics and visualization.

A. A High-Throughput and Fault Tolerance Data Ingestion

A huge amount of data from the IoT needs to be transmitted
to the cloud effectively and in real time. In a conventional
request/response messaging configuration, a message producer
and a consumer are tightly coupled, and the performance of
data transmission depends on both sides. If one side is slow,
the transmission will be slow. Therefore, a request/response
messaging paradigm may not be suitable for large-scale and
high-throughput data ingestion. In contrast, publish/subscribe
messaging provides a loosely coupled method for data trans-
mission. In this messaging pattern, message producers, (e.g.,
IoT devices or gateways) publish characterized messages on
one or more brokers, (i.e., servers) and message consumers,
[e.g., Storm, Spark, Hadoop Distributed File System (HDFS),
or a Hadoop database (HBase)] could subscribe to the mes-
sages they are interested in. Once the broker receives a mes-
sage, it will deliver the message to those consumers who have
subscribed to this message. Hence, a publish/subscribe mes-
saging paradigm is potentially a good fit for scalable and dis-
tributed data ingestion in the cloud. Several publish/subscribe
messaging brokers, e.g., Active Message Queuing (AMQ),
RabbitMQ, and Kafka have been developed.

Apache ActiveMQ [18] is a powerful open-source messag-
ing broker that fully supports Java Message Service [19]. In
addition, it supports many protocols [such as Simple Text
Oriented Messaging Protocol (STOMP), AMQP and MQ
Telemetry Transport (MQTT)] that allow clients to use a
variety of messaging protocols. The publish/subscribe pattern
of ActiveMQ is shown in Subfigure 2(a). Producers address
messages to a topic, which functions like a bulletin board.
Subscribers can then receive messages on the topics they

have subscribed to. Apart from a publish/subscribe messaging
pattern, ActiveMQ supports a peer-to-peer (P2P) model. In
the P2P model, the producer submits messages to a message
queue, and recipients can browse the queue and decide which
messages they wish to receive. Every single message will be
received by exactly one consumer. Since the P2P model works
in an asynchronous way, the sender and receiver are decoupled
by this model as well.

The RabbitMQ [20] messaging broker is created by the
functional language Erlang. Erlang is especially suited for
distributed applications, as concurrency and availability are
wellsupported. The publish/subscribe model of RabbitMQ is
shown in Subfigure 2(b). Messages are published to exchanges,
which are often compared to post offices or mailboxes. Ex-
changes then distribute message copies to queues using rules
called bindings. Bindings use an optional routing key attribute
(acting like a filter) to bind a queue to an exchange. RabbitMQ
brokers provide four exchange types (direct, fanout, topic, and
headers) where a topic exchange type is used to implement
a publish/subscribe messaging pattern. A topic exchanges
route messages with one or many queues based on matching
between a message routing key and the pattern that was used
to bind a queue to an exchange.
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Consumer 2

Consumer 3

TopicProducer

(a) ActiveMQ [18]

Broker

Consumer 1

Consumer 2

Consumer 3

Queue 1

Queue 2
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Fig. 2. Three open source publish/subscribe messaging brokers.

Apache Kafka [21] is a distributed publish/subscribe mes-
saging broker, rethought as a distributed, partitioned, and
replicated commit log. Like ActiveMQ, Kafka maintains feeds
of categorized topics and a producer can publish messages to
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a topic. The messages are stored and replicated as a cluster of
brokers. Since Kafka is distributive in nature, a topic can be
divided into multiple partitions, and each broker maintains one
or more of the partitions for the purpose of load balancing.
Then, a consumer subscribes to one or more topics and
acquires the data from the brokers. To achieve fault tolerance,
Kafka replicates a partition to multiple brokers. Each partition
has one broker acting as the leader and several brokers acting
as followers. The leader is in charge of all read/ write requests
for the partition, and the followers passively replicate the
leader. Once the leader fails, one of the followers will be
automatically selected as the new leader. Previously, there
was no standard for a messaging protocol. Common protocols
include AMQP, MQTT, OpenWire, Representational State
Transfer (REST), STOMP, and Extensible Messaging and
Presence Protocol (XMPP), and nearly all of these protocols
are supported by ActiveMQ and RabbitMQ, as shown in Table
1. However, instead of adopting an existing protocol, Kafka
uses a binary protocol over Transmission Control Protocol
because existing messaging protocols may not work well in
providing a truly distributed messaging system. The designers
of Kafka must build something that works differently. Thus,
Kafka is able to provide high-throughput and fault-tolerant
data transmissions, which makes it a good solution for efficient
large-scale data ingestion in an industrial CPS.

TABLE I
PROTOCOLS SUPPORTED BY ACTIVEMQ, RABBITMQ AND KAFKA

Protocol ActiveMQ RabbitMQ Kafka
AMQP 1.0 0-8, 0-9-1 No
MQTT Yes Yes No
OpenWire Yes No No
REST Yes Yes No
STOMP Yes Yes No
XMPP Yes Over Gateway No

B. Real-time stream processing

Some data collected from IoT devices have to be processed
in real time or near real time. This creates a demand for stream
processing of big data. Essential to stream processing is the
ability to continuously calculate mathematical or statistical
analytics on-the-fly on the data stream. Stream processing
solutions are designed to deal with high volumes at a high
speed with a scalable, highly available, and fault-tolerant
architecture. Many stream processing frameworks have been
developed, among which Samza, Storm, and Spark Streaming
have been widely adopted.

Samza [22] is an open-source distributed stream-processing
framework based on Kafka. An example of Samza stream
processing is shown in Subfigure 3(a). Like Kafka, a stream
is divided into partitions in Samza, and each partition is a
sequence of ordered messages. A job is the code that consumes
and processes a set of input streams. To scale the throughput
of the stream processing, a job is separated into smaller units
of execution, named tasks. Each task consumes and processes
messages from one or more partitions.

Task 1

Task 2

Task 3Input Stream Output Stream

(a) Samza [22]

Tuples

TuplesSpout

Spout

Bolt

Bolt

Bolt

Bolt

Bolt

(b) Storm [23]

DStream
(Original)

RDD 1 RDD 2 RDD 3

RDD 1 RDD 2 RDD 3DStream
(Transformed)

DStream
(Windowed)

Window-based operation

Operation

Window

(c) Spark Streaming [24]

Fig. 3. Three popular stream processing frameworks.

Storm [23] is another distributed computational system for
large volumes of high-velocity data. Storm users have to
define topologies for how to process the data. As shown
in Subfigure 3(c), the topology includes sources of streams,
named spouts, and a set of bolts, which process input streams
and produce output streams. In Storm, a stream is transformed
into a sequence of tuples (an ordered list of elements).

Spark Streaming [25] does not process streams one at a time
like Samza and Storm. Instead, it slices streams into small
batches of resilient distributed datasets (RDDs) before pro-
cessing, as shown in Subfigure 3(c). A continuous discretized
stream (DStream) consists of a batch of RDDs, which could
be operated in parallel or selectively operated over a sliding
window. Therefore, Spark Streaming has the potential for
combing batch and stream processing in the same framework.

Understanding the features of these frameworks will be
important for every developer who wants to take full advantage
of stream processing. When these technologies are used in
productive systems, the industrial requirements must be con-
sidered. A comparison of Samza, Storm, and Spark Streaming
is shown in Table II.

C. Scalable Data Storage

Big data generated by millions of IoT devices, such as
sensors and radio-frequency identification readers and gener-
ators, need to be managed efficiently in the cloud. Since the
data are always unstructured or semistructured with different
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TABLE II
A COMPARISON OF SAMZA, STORM AND SPARK STREAMING [26]

Feature Samza Storm Spark Streaming
Processing
Model

one record at a
time

one record at a
time

micro-batch

Delivery
Semantics

at least once at least once exactly once

Latency milliseconds milliseconds seconds
Throughput 100k records per

node per second
10k records per
node per second

100k records per
node per second

Language Scala/Java Any1 Scala/Java/Python
1 Storm uses Thrift for defining topologies. Thrift can be used with any
language.

volumes, the conventional relational database management
system may not be appropriate. NoSQL databases provide
a mechanism that does not enforce a strict schema, which
allows for highly flexible data modeling. Therefore, NoSQL
databases are increasingly used in big data and realtime web
applications.

HBase [27] is a distributed NoSQL database and runs on
top of an HDFS, which easily combines data sources that use a
wide variety of different structures and schemas. In an HBase,
data are stored in tables that are made of rows and columns.
A table is partitioned into regions that are contiguous sorted
ranges of rows of a table. A store corresponds to a column
family in a region, and each store hosts a MemStore and a set
of StoreFiles. The MemStore holds inmemory modifications to
the store and will flush the data into an HDFS file StoreFile
in HFile format when the MemStore reaches a certain size.
Regions are served by HRegionServers (Figure 4), and an
HMaster is used to assign regions to the HRegionServers. The
assignments are then recorded in ZooKeeper. When a client
wants to put data into or get data from an HBase, it has to first
connect to ZooKeeper to find the HRegionServer in charge of
the region. The client then talks to the HRegionServer directly.

DataNode

HBase

ZooKeeper

HRegionServer

HRegion

H
Lo

g Store

HRegionServer

HRegion

H
Lo

g Store

StoreFile

HFile

DFS Client

DataNode DataNode

DFS Client
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HDFS

HMasterClient

MemStore MemStore

StoreFile

HFile

StoreFile

HFile

Fig. 4. Hadoop NoSQL database HBase [28].

An HBase uses an HDFS to store data, as shown in Figure 4.

An HDFS has a master/slave architecture. An HDFS cluster
consists of a NameNode and a number of DataNodes and
exposes a file system namespace that allows the data to be
stored in files. Each file is split into blocks, which are stored
in a set of DataNodes. The NameNode executes file system
namespace operations, e.g., opening, closing, and renaming
files and directories. It also determines the mapping of blocks
to DataNodes. The DataNodes are responsible for serving read
and write requests and also make decisions about replication
of blocks for fault tolerance. An HBase provides a wide-
column data model on top of an HDFS. It can horizontally
scale out to efficiently serve billions of rows and millions of
columns by auto-sharding, which makes it suitable for scalable
unstructured or semistructured data storage and management.

D. Large-Scale Batch Processing

As an alternative to stream processing, data that has first
been stored in file systems (e.g., HDFS) can be processed
on a large scale as part of batch processing. A Hadoop
MapReduce [29] is a highly scalable programming paradigm
capable of processing massive volumes of data. As shown in
Subfigure 5(a), MapReduce provides a programming model
composed of a map procedure and a reduce procedure. The
input data are divided into splits and assigned to map func-
tions that map input key/value pairs to a set of intermediate
key/value pairs. Then, the map outputs are merged during the
shuffle phase. In the end, the reduce procedure carries out
grouping and aggregation operations. In this way, MapReduce
can process vast amounts of data in parallel on large clusters.
However, since MapReduce requires considerable time to
move the data in and out of the disk, it is not an appropriate
solution for complex algorithms (e.g., iteration).

Spark [25] is designed to extend a Hadoop MapReduce to
better support iterative algorithms (e.g., machine learning) and
interactive data mining. Spark performs in-memory processing
of data, which is much faster than MapReduce. As in Spark
Streaming, an RDD is the basic abstraction in Spark, which is
able to elegantly unify the batch and stream processing into a
single framework. An RDD supports two types of operations:
transformation and action [Subfigure 5(b)]. Transformation
functions are lazy, and nothing actually happens when the code
is evaluated. When an action is called, RDDs are processed
or saved to a file. Compared to MapReduce, Spark holds
immediate results in memory rather than on disk and provides
more operations. For example, some of the transformation
functions are map, filter, flatMap, groupByKey, reduceByKey,
union, join, mapValues, and sort, while action operations
include count, collect, reduce, lookup, and save. Therefore,
Spark provides a faster and more flexible solution for large-
scale batch processing on the cloud.

E. Big Data Analytics and Visualization

The core focus of this article is on the architecture and
approaches to data collection and processing, but, for com-
pleteness, we also comment briefly on the analytics and
visualization of the underlying data. Advanced analytics tech-
niques can be applied to big data [4,30] , and visualized
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Fig. 5. Two example batch processing frameworks.

results represent system performance and trends. This has
the potential to improve several industrial processes, e.g.,
energy management, supply chains, and manufacturing [31]–
[35]. By using these techniques, data can be transformed into
information about historical patterns, current performance, and
future trends, which is critical for (BI&A) [10,36].

The most fundamental challenge for big data analytics is to
explore the large volumes of existing data and extract useful
information or knowledge for future application. This endeavor
is referred to as data mining [37]. Data mining consists of a
set of techniques, including association rule learning, cluster
analysis, classification, and regression. Machine learning is
another foundational technology for big data analytics [10]; it
aims to design and develop algorithms that allow computers to
identify behaviors based on empirical data. A major problem
addressed by machine learning is to automatically recognize
complex patterns and make intelligent decisions based on the
data. Machine learning is highly related to data mining, and
there are several similarities between them [38]. For instance,
both often employ the same methods, such as classification,
clustering, and regression; however, they have different em-
phases. Machine learning focuses on predictions based on
known properties learned from the training data, while data
mining focuses on the discovery of unknown properties in
the data. Traditionally, data mining and machine learning are
applied to small-scale data sets, so a single desktop computer
is sufficient to fulfill the goals of data analytics [37]. In
the era of big data, large-scale data are stored in the cloud,
where a cluster of high-performance computers is deployed.

Additionally, big data storage and processing are implemented
in a distributed and parallel way, such as HDFS and Spark.
Therefore, cloud-based data mining and machine learning
solutions are needed to meet these new challenges. Examples
of existing solutions are Hadoop Mahout and Spark MLlib,
which provide libraries for implementing data mining and
machine learning algorithms for data analytics.

Visualization can intuitively represent the results of big data
analytics with images, diagrams, and animations. Effective
visualization helps users analyze and reason about data and ev-
idence. To convey ideas clearly and effectively, both aesthetic
form and functionality need to be considered, with the high
heterogeneity of the data making its visualization a challenge.
Numerous business intelligence platforms, some with a strong
IoT focus, utilize common big data platforms to deliver data
analytics and visualization, e.g., Tableau, Orange, Power BI,
IBM Watson Analytics, and SAP Leonardo.

IV. RESEARCH CHALLENGES AND FUTURE TRENDS

The cloud, along with big data capabilities, empowers trans-
formation to a digital, networked, intelligent, and knowledge-
based industry. There is no doubt that industrial applications
will benefit significantly from effective big data processing
(examples of work on industrial big data and cloud are listed
in Table III). However, cloud-based industrial CPSs are still
in their infancy, and there are many challenges waiting to be
addressed. Future steps should be taken to address challenges
and upgrade conventional industrial systems, while also being
mindful of new developments in cloud and IoT technologies.
For the cloud-based industrial CPSs and applications to ma-
terialize and become a reality, several challenges identified in
[6,9,36] need to be adequately addressed.

A. Management

It is possible that millions of smart devices could be utilized
in industrial environments (e.g., a smart city), so new ways to
easily manage large-scale and complex systems [9,36] must be
considered. Dynamic discovery, interaction, and exchange of
information, as well as lifecycle management (especially over
federated systems), are challenging. The industrial cloud also
allows for optimization from various perspectives, e.g., exe-
cution, communication, interaction, and management. Hence,
more sustainable strategies need to be realized for managing
these resources and businesses (e.g., energy-driven manage-
ment). Such efforts should be seen in a greater context (e.g.,
smart city-wise).

B. Privacy and Security

While cloud computing brings key advantages, it also brings
new and challenging security threats pertaining to outsourced
data, critical infrastructure, operations, safety, and privacy
[53]. For many applications, such as the smart home [36,46]
and ubiquitous healthcare [54], there is much privacy-related
information (e.g., patient medical history) that needs to be pro-
tected. There are also new attacks emerging, e.g., manipulating
input data to misrepresent CPS state information [43,55].
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TABLE III
EXAMPLE ENHANCEMENTS BASED ON THE INDUSTRIAL CLOUD

Domain Application Traditional On-premise System Cloud-based Industrial CPS

Energy

Smart grid High management costs and passive
consumption

Producer & consumer participation, real-time smart grid
data analytics, and sustainability [39]–[41]

Energy
management

Inflexible management and static net-
work

Optimized and adaptive demand response, resilience,
and information-driven interactions [42,43]

Building
Building
automation

Information silos and inconsistent stan-
dards

Intelligent unified management (e.g., light control), and
full information integration [44,45]

Smart home Inflexible service model Personalized design of smart systems [46]–[48]

Manufacturing

Factory automation Hierarchical management, inflexibility,
proprietary systems

Adaptive CPS, high customization, low cost, and easy
migration [49,50]

Production
management

Lack of effective operational mecha-
nisms of resources and services

Fastest Time-to-market, highest quality, lowest cost, best
service, cleanest environment, greatest flexibility, and
high knowledge [51,52]

The private cloud provides a single-tenant environment for
an organization in a relatively safe and efficient way compared
to public clouds. A user can either implement an on-premise
cloud platform or rent a virtually/physically isolated private
cloud on the public cloud. However, private clouds will hinder
interaction and knowledge sharing among enterprises. Private
clouds also have a significant physical footprint, requiring al-
location of space, hardware, and environmental control [5,56].
These assets have to be refreshed periodically, resulting in
additional capital expenditure.

As an alternative solution, the public cloud provides a
shared environment where clients could purchase services or
computing resources based on their requirements [5]. The
additional expense is virtually eliminated since the financial
burden is shifted to a fee-for-service. However, security and
privacy are problematic in a public cloud scenario, and the
performance may be degraded due to the increased number of
tenants [56]. Much work has been done to take advantage of
the public cloud while protecting the privacy of clients at the
same time. For instance, privacy preserving public auditing
[57] enables the third-party auditing process in the public
cloud without introducing vulnerabilities in user data privacy.
Also, some new research focuses on searchable encryption
[58],, which allows users to search encrypted data stored in
the public cloud. However, there are still many privacy and
security issues to be addressed, such as privacy preserving
big data analytics [59] on the cloud. In addition, the current
landscape of security standards for cloud computing is not yet
mature [60], and the CSA is urging standardization of cloud
confidentiality, integrity, and availability auditing.

C. High-Performance IoT Gateway

The IoT gateway is the bridge between the IoT and the
cloud and is responsible for data collection and distribution.
On one side, IoT gateways enable communication among
networked devices through lightweight IoT protocols like Con-
strained Application Protocol and MQTT; on the other side,
they exchange data with the cloud via distributed ingestion
frameworks, like Kafka. It is possible for an IoT gateway to
be connected to several brokers on the cloud at the same time;
therefore, IoT gateways have to better manage the connections
to the cloud, while handling the load balancing of the device

communication [61]. IoT gateways are also the ideal protocol
translation point for device networks, allowing for legacy
systems to be connected to back-end big data frameworks
without complete migration of the device network to new IoT
technologies.

Traditional IoT gateways are mostly vendor-specific and are
incompatible with other network devices. To address this prob-
lem, Intel proposed an IoT gateway solution that enables seam-
less and secure data flow between edge devices and the cloud
by providing pre-integrated and pre-validated hardware and
software building blocks. Because of its easy manageability,
developers can focus on innovations for new services, big data
solutions, and IoT-related applications. Others provide open-
source solutions for IoT gateways, providing a wide range
of Application Programming Interfaces and allow developers
the flexibility to deploy customized applications. For example,
Eclipse Kura runs on top of a Java virtual machine and
leverages the Open Service Gateway Initiative to simplify the
process of writing reusable software building blocks. However,
an increased number of customized software may escalate the
burden of the gateway, so resource optimization should be
further considered.

D. Optimization for Data Processing

Cloud computing provides a distributed environment where
data are stored in separated disks and processed by mul-
tiple servers in-parallel. Therefore, the cloud must address
the challenge of minimizing the cost of data transmission
[62]. Ineffective design of data processing algorithms may
increase the communication burden on the cloud, and several
solutions have been proposed to address this problem. For ex-
ample, Map-reduce-merge [63] improves the batch processing
MapReduce by adding a merge stage after the reduce phase to
decrease the data to be transferred among servers. However,
this type of solution may increase the design complexity
since developers have to carefully design the topologies or
the programming models. Rather than designing an efficient
algorithm for a job, some studies [64] focus on how to allocate
computing resources to match the requirements of the job.
Challenges such as increasing the complexity and dynamics
of jobs still need to be addressed.
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E. Development and Engineering Tools

Efficient development and engineering tools will ease the
creation of industrial services and applications within complex
environments [6,9]. User-friendly cross-platform availability
and capability are treated as the key aspects for development
and engineering tools. Additionally, due to high-dynamic
changes in industrial cloud-based systems, the tools should
consider the robustness of the system to avoid interfering with
the current operations when developing an application.

F. Migration and Integration of Legacy Systems

Transition is not expected to be instantaneous, and for
existing investments in infrastructure, efforts toward migration
and integration of legacy systems should not be underestimated
[65]. As there is no one-size-fits-all solution, brown-field de-
velopment, re-engineering, utilization of appropriate patterns,
and meaningful integration into the rest of the ICPSs without
sacrificing their capabilities and properties (e.g., safety and
reliability) is seen as challenging.

G. Technologies for Improved Architecture

IoT and cloud technology continue to evolve and offer new
options for system architecture. The rise in the number of
smart devices connected to the cloud and the huge amount of
data generated will significantly increase the workload of the
centralized industrial cloud architecture. It may not be feasible
to migrate some real-time applications that require a short
reaction time to the industrial cloud because of bandwidth
limitations and Internet delays. New technologies are therefore
required to reduce the burden on the cloud in future.

Fog and edge computing [33,66,67] provide a promising
way to enable computing services to reside within and at the
edge of a network, as opposed to only on centralized servers.
Fog computing uses a collaborative multitude of network
devices to carry out a substantial amount of storage, communi-
cation, control, configuration, measurement, and management.
Edge computing moves these functions completely to network
endpoints, i.e., the edge of the network [68]. Since fog and
edge computing devices are located closer to the edge of the
network, they provide low latency and location awareness and
improve the quality of service for streaming and real-time
applications [69]. Local communication, interoperation, and
decision making are supported by fog and edge computing,
which will greatly improve the performance of the ICPSs,
while the centralized industrial cloud provides online big data
analytics and storage.

There are other technologies that will promote the devel-
opment of the industrial cloud as well as future ICPSs, such
as fifth-generation mobile networks [70] and deep learning
[71]. These technologies will either improve the connectivity
of the physical world or empower big data processing capa-
bility, which will significantly benefit a variety of industrial
applications in the near future.

V. CONCLUSION

There are a number of technologies that could be adopted
by the modern CPSs, such as the industrial cloud, the IoT,

and big data methods. Combined, these technologies can
contribute to the realization of a more intelligent, flexible, and
cooperative industrial environment. In this article, we provided
an overview of big data handling realized within the context of
industrial cloud computing and CPSs. The future of industry
will rely on a large ecosystem where industrial applications
and enterprises are able to exchange information, share knowl-
edge, and comprehensively collaborate in an efficient way.
One of the main challenges would be to manage data flow
from and to numerous operational technology devices within
the IIoT. Industrial cloud services provide potentially powerful
data storage, processing, and analytics capabilities for big data
generated and collected from a variety of networked devices.

To gain the full benefits promised by big data and the
industrial cloud, however, a number of key challenges must be
met. A huge number of devices should be efficiently managed
and the big data generated from these devices should be
processed, stored, or visualized in real time. Comprehensive
cooperation among devices, as well as enterprises in different
domains, should be enabled in an efficient way, while privacy
and security should be ensured at the same time. As the bridge
of the IoT and the industrial cloud, IoT gateways should be
well designed to support efficient protocol conversion, load
balancing, and customized applications. Many other important
issues like optimization in big data processing and design of
development tools should be taken into account during the
realization of an service-oriented architecture-based industrial
cloud infrastructure. To better satisfy the new requirements of
this future industry, more effort must be made to address these
challenges.
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