
Experiences in Integrating Internet of Things and
Cloud Services with the Robot Operating System

Stamatis Karnouskos, Nadine Gaertner, Nemrude Verzano, Frank Beck, Andre Becker, Santo Bianchino,
Daniel Kuntze, Miguel Perez, Rupam Roy, Serge Saelens, and Michael Schmut

SAP, Walldorf, Germany
Email: {stamatis.karnouskos, nadine.gaertner, nemrude.verzano, f.beck, andre.becker, santo.bianchino,

daniel.kuntze,miguel.perez, rupam.roy, serge.saelens, m.schmut}@sap.com

Abstract—New Internet of Things open source technologies,
middlewares, and programming languages, make the quick
integration of devices, systems and cloud services easier than
never before. With their utilization, complex tasks such as object
detection, tracking and tracing, can be easily realized, even
by embedded devices in a fraction of time. The interplay of
highly heterogeneous IoT devices and open source software,
has been utilized in this work as a learning tool, in order to
train developers and enhance their IoT skills. By designing,
implementing, testing and deploying a rapid prototype, new
knowledge is acquired, assessment of technologies and concepts
is carried out, and the end-result, although developed in a
constraint timeframe, is technologically promising, cost-effective
and feature-rich. This work sheds some light on the prototype
implemented and discusses the developer experiences and benefits
of this IoT integration hands-on approach.

Index Terms—Internet of Things (IoT), Robot Operating Sys-
tem (ROS), Open Computer Vision (OpenCV), Lego Mindstorms
EV3, Arduino Robot Arm, Augmented Reality, Cloud Services

I. INTRODUCTION

The era of Internet of Things (IoT) [1] has empowered
application and service developers with new capabilities that
blur the borders of the physical and cyber worlds. Enterprise
software can significantly benefit from this, as the repre-
sentation of the physical world in backend systems can be
done almost in real-time. The result is that decision-making
processes can be utilized based on real-world up-to-date data,
and as a consequence actions can be simulated in the cyber
world, and decisions taken there can now be enforced in
the real-world (management). Such dynamic systems that
encapsulate both the power of the edge (physical world) and
backend enterprise processes (e.g., ERP running on the cloud),
have the possibility to enhance enterprise services and lead to
more effective business processes. From a business viewpoint,
these disruptive technologies can improve operational effi-
ciency, empower outcome economy, enable human-machine
collaboration and give rise to new connected ecosystems that
blur traditional industry boundaries [2].

Autonomous machines will revolutionize industrial appli-
cations in the future. As an example, future warehouses are
envisioned to strongly rely upon autonomous robots, that will
embed themselves in the lifecycle of the relevant business
processes in a transparent manner and optimally execute them.

Real-time communication, cross-layer interaction among sys-
tems including, as well as the collaboration with human
personnel, are expected to transform tomorrow’s warehouse
operations. Typical tasks that could be overtaken by robots
include transport of products, visual quality inspection, opti-
mization of available storage, real-time monitoring, predictive
maintenance etc.

Open Source Software (OSS) today are in the forefront
of efforts to research and develop innovative applications. A
combination of several frameworks available, can easily be
integrated to a solution that provides sophisticated capabilities
with low effort and in a timely manner. One way to assess
the suitability of such technologies, is the empirical one, i.e.,
a hands-on approach that aims realizing a prototype utilizing
a large spectrum of the envisioned capabilities and software
functions in a constrained scenario. In such a prototype,
concepts can be explored, and the capabilities of the avail-
able software (in this case OSS) can be experienced by the
developers.

For a small group of developers, the challenge set was to
demonstrate that relative simple autonomous tasks can already
be realized easily by available IoT devices and empowered by
OSS. As such, a prototype has been proposed, that would fea-
ture demonstration of capabilities, that show robot interactions
while in parallel depicting autonomous behavior and enterprise
integration. The following goals have been defined:

• Integrate with the enterprise system (backend)
• Demonstrate autonomous behavior of robotic devices
• In-sync monitoring of the real-world and backend infor-

mation & management (digital twin paradigm)
• Distributed interaction among all systems and devices
• Utilize (learn & assess) OSS related to IoT device func-

tionalities (integration & computer vision)

The prototype ought to be developed in less than eight
weeks, while in parallel it would serve as a mean to learn
the new OSS technologies and IoT devices and assess them.
This paper provides insights on the outcome of this work i.e.,
the prototype and experiences acquired within the prototyping
and demonstration period.



II. SCENARIO

The goals set in section I imply track and trace of moving
assets with computer vision, relocation of physical objects
with the help of IoT devices, integration with enterprise
services and demonstration of the prototype. The IoT hardware
available was: Lego Mindstorms EV3 [3] (shown in Figure 1a),
Braccio Robotic Arm [4], and Myo Gesture Control Armband
[5] (both shown in Figure 1b). From OSS technologies, it was
decided to use the Robot Operating System (ROS) [6], [7] as
a middleware and OpenCV [8] for visual object recognition
and tracking. On the enterprise side, the SAP IoT services was
used to connect IoT to backend services and collect data. It
has to be pointed that the developers did not have previous
experience utilizing such IoT technologies, and therefore the
eight weeks timeframe ought to include their learning curve,
hardware setup, development environment setup, identification
of a scenario, architecture design, incremental prototype de-
velopment and integration.

(a) Lego Mindstorms EV3
with Pixy camera

(b) Braccio robotic arm
and Myo armband

Figure 1: Some of the “things” used in the prototype

The following scenario has been realized: First via a user
interface (UI) an order is issued for the production of a
specific setting, i.e., a selection of 3 balls with specific colors
(selected from blue, yellow, and red) need to be positioned in
designated locations in the arena. The balls are thrown into
the arena according to the production plan, by a robotic arm.
Subsequently a robotic vehicle tracks them and moves them
to their designated locations.

Tasks that need to be realized (e.g., throw/remove balls
in/from the arena, moving of balls) are created asynchronously
and can be picked up by the available IoT devices that have
the capabilities to fulfill them. For instance, a “throw ball”
task can be done by a robotic arm (Arduino Braccio), which
can deliver the task of throwing balls of selected colors into
the arena. Similarly, a “move task” can be picked up by the
Lego Mindstorms EV3, which can visually track down the
specific ball within the arena, pick it up and then transport it
to its designated location. The scenario is finalized, once all
balls are transported to their locations (as defined by the user)
while no extra balls are in the arena. In case such extra balls

are detected, they have to be brought back to the robotic arm,
which disposes them to its storage area.

Although the EV3 features a camera to track objects in its
vicinity, a low-cost camera is mounted on top of the arena
to monitor it and provide track & trace information of all
available objects. Real-time status information for all devices,
current camera view, reconstructed view from backend data
(digital twin) of the arena, and augmented reality information
are also provided to the end-users via a web based dashboard
(shown in Figure 3). Each entity acts autonomously, while
the information flows in a distributed manner among all
stakeholders in the scenario following the publish/subscribe
paradigm provided by ROS [7].

III. ARCHITECTURE

Integrating the things in IoT can be realized in multiple
ways in order to address the requirements posed [9]. Of key
importance when designing IoT architectures is the consid-
eration of device capabilities, information flow, data storage
& processing, as well as other aspects such as scalability
and extensibility. Such guiding principles have also been
adopted in the architectural design of this prototype, which
is depicted in FMC notation [10] in Figure 2. IoT prototyping
requires systems which comprise components for controlling
and communicating with robotic devices in a fast, and versatile
manner.

Things

Cloud

IoT
Service

Web Dashboard
(Digital Twin)

Augmented 
Reality 

Dashboard

Cloud 
Connector

R

R

Data Lake

ROScore
(incl. ROSbridge)

R
Workflow 
Engine

Arena
Camera

EV3
(Vehicle)

Braccio 
(Robotic Arm)

Myo
(Gesture 
Armband)

R

User

Thing Integrator Thing Controller
R

R

R

R

R

Figure 2: Main components of the system architecture; green
boxes indicate ROSnodes

ROS [7] is a popular OSS for integrating robots, and covers
well required features as such hardware abstraction, message
passing, publish/subscribe capabilities etc. In ROS ecosystem
models and reusable implementations for common physical
devices are already available or can be easily extended to cover
prototyping needs. ROS-based systems consist of a collection
of independent processes which are called ROSnodes, while

2

Preprint of doi:10.1109/INDIN.2017.8104924

http://dx.doi.org/10.1109/INDIN.2017.8104924


their discovery is done via the ROScore. As shown in Figure 2,
in the realized setup one Thing Controller (ROSnode) and one
Thing Integrator (ROSnode) are instantiated for each physical
device, i.e., the Braccio (robotic arm), EV3 (vehicle), Arena
camera, and Myo (gesture armband). The Thing Controller
handles the low-level device control, for example regulating
the speed of the individual wheels of the EV3. The Thing Inte-
grator is responsible for broadcasting and receiving messages
related to the physical device, for example the device status.

Another ROSnode is the Workflow Engine which monitors
the system and serves as a task administration entity. It pub-
lishes messages regarding the next tasks to be accomplished,
for example to notify of missing balls. The robotics devices
(EV3, Braccio) decide independently whether to bid for such
tasks, and if awarded, they can execute them autonomously.

For enabling analytics, selected data generated by the ac-
tivities is streamed from the physical system into the cloud.
The entry point for the enterprise cloud is the IoT services
[11], which accept incoming IoT data and store them in the
data lake. The integration is done via the Cloud Connector
component which interfaces with the ROSbridge which is a
JSON API to the ROS system that exposes a websocket server.
The Cloud Connector utilizes the ROSbridge to get access to
the data available via ROScore and transforms the received
messages into MQTT protocol [12] messages. Once available
in the cloud, the data is prepared for end user consumption
and can undergo e.g., analytics, dashboard visualization etc.

The end user interacts with the system via various options.
An application enables the end user to start the scenario via
a web interface (e.g., from a phone or tablet) by specifying
and transmitting the overall ball constellation to be assembled
by the robots. A web dashboard provides via the cloud a
digital twin of the physical scenario along with real-time status
information from the robots as shown in Figure 3. Augmented
reality applications are connected and consume data streams
via the Cloud Connector to display device-related information
in place.

IV. IMPLEMENTATION

Driven by the architecture shown in Figure 2, all of the
components have been implemented. These fully support the
realization of the scenario as described in section II.

The Web Dashboard depicted in Figure 3 is a SAPUI5
enabled Spring Boot application that shows a real-time view of
the arena and the actions realized. The Dashboard realizes the
“Digital Twin” approach in that it displays both an annotated
image view coming directly from the arena camera, as well
as a full reconstruction of the whole arena based on the
data that comes from the messages exchanged via the devices
and systems. As such both the cyber and real-worlds are in
sync. In addition, information about the current goal (selected
ball configuration), and status of the robots tasks, including
their actions and state is visualized. An Augmented Reality
Dashboard is also implemented and visualizes similar data via
an iPad one this is pointed towards the devices or designated
locations.

Figure 3: Digital Twin demonstration: Cyber (reconstructed)
view on the left side and Real (camera) view on the right side

The Workflow Engine decides on actions that need to be
carried out to satisfy a specific scenario i.e., the positioning
of the balls to their selected positions. Once the information
is available it creates a workflow and issues notification via
ROScore about the available tasks. Such tasks are picked up by
the Thing Integrator who acts on behalf of the available robot
and bids for that task. Once a task is awarded, it has to be
carried out by the respective robot who won the bidding. For
instance if there are more than one EV3s capable of moving
the balls around, and both bid, one of them will win and
will get the task of actually moving the ball. The Workflow
Engine is made aware of changes in the arena via an event-
triggered method, either from the arena camera for changes in
the arena pertaining devices and balls, or the Thing Integrator
for bidding and acquiring tasks.

Once the Thing Integrator has acquired a task for a specific
robot, the information is propagated to that robot’s Thing
Controller. For the EV3 that implies the ball color and the
designated position that it has to be transported to. For the
Braccio this implies the color of the ball that needs to be
thrown into the arena. The Thing Controller is a ROSnode
that encapsulates the functionalities of the specific robot, and
makes available a service that can be called upon it. Additional
communication is happening over ROS topics.

The arena camera is a low-cost PS3 Eye USB camera,
mounted on top of the arena, in order to identify and locate
all items such as robots and balls, as shown in Figure 4a.
The camera publishes in ROS topics a list of tracked objects
available in the most recently processed camera image, and
an annotated version of the input image where all detected
balls and the robot, if detected, are marked and tagged with
a discrete id. Everytime a new image is received, image
processing starts and the results are published to the respective
ROS topics. The camera has the capability to autodetect the
corners of the arena via a Hough-Lines detection followed by
a line intersection computation. The detected corners are then
stored in the ROS parameter server.

The EV3 is the robot equipped with a gripper to pick-up
balls and a Pixy (CMUcam5) camera [13] for tracking the
balls in its view field as shown in Figure 1a. In order to easily

3

Preprint of doi:10.1109/INDIN.2017.8104924

http://dx.doi.org/10.1109/INDIN.2017.8104924


(a) Arena camera view (b) Braccio ball picking-up (c) Braccio ball throwing

(d) EV3 Ball tracking (e) EV3 ball grabbing (f) Transportation to designated position

Figure 4: Arena overview and example functionalities

track the robot and its pose by the arena camera, a cover with
two circles is put on top of the EV3. There is a part running
on the EV3 itself, and a part running on a server as the EV3
computational power is not adequate to run the ROScore itself,
and therefore a separate CPU is needed. Services running in
EV3 ROSnode enable the instruction of the robot via the Thing
Controller which calls the different functions of EV3 such as
move, open/close the gripper, robot status (e.g., battery level,
and gripper info), and identify via the Pixy camera an object
and pick it by the gripper. Once a task is bid by the Thing
Integrator e.g., move the blue ball to position 1, the EV3 is
instructed via the Thing Controller and autonomously attempts
to fulfill the task as shown in Figure 4d – Figure 4f. The EV3
acquires info from the Arena Camera in order to acquire the
ball position and also track its own position. The EV3 then
utilizes its front camera (Pixy) once it is in the vicinity of the
ball to follow the targeted ball and eventually capture it with
its gripper as shown in Figure 4e.

The Braccio is a robotic arm with the capability of (i)
picking up balls stored in the three 3D-printed containers and
throwing them into the arena, and (ii) picking up balls from
the arena and storing them back to the respective containers
depending on their color, as shown in Figure 4b and Figure 4c.
Similarly to EV3, tasks acquired by the Thing Integrator are
passed to the Thing Controller. Services exist that expose the
key functionalities of the Braccio arm in a modular fashion
e.g., lift, pick, throw, and recover ball. The ROSnode controls
the underlying Arduino Uno board via a serial interface.

The Myo gesture control armband is used as an alternative
method of controlling the Braccio manually by a user as shown
in Figure 1b. As such, tasks are then guided i.e., picking and
throwing of the ball. The respective Thing Controller maps
the Pose, Gyroscope and Acceleration data from the Myo
Armband to device commands.

Finally, selected data and messages in the device world

is propagated to the enterprise backend. This is realized via
the SAP Cloud Platform IoT service [11] that acquires and
stores the data for further analytics and visualization. To
make that possible a Cloud Connector had to be developed
that connects ROS to the SAP Cloud platform. The Cloud
Connector subscribes to the websockets of the ROSbridge by
the use of the roslibjs javascript library and sends received
messages to the IoT Services via MQTT protocol [12].

V. EXPERIENCES AND LESSONS LEARNED

The development of the prototype achieved its goal of
getting the developers acquainted with new OSS technologies
pertaining IoT integration. As a follow-up, interviews have
been realized in order to deep-dive to the experiences during
the development and demonstration of the prototype, and
acquire new insights on the process itself as well as the newly
acquired knowledge. In addition, with respect to the prototype
itself, several issues were raised in its design, development
and operation. Here we discuss on some of the experiences
and lessons learned from this prototyping exercise.

As the majority of the developers had no experience with
most of the IoT technologies used (ROS, python, openCV,
Arduino, etc.) the learning curve played a key role in the
progress of the project. The high quality of documentation
available for OSS, and especially online tutorials targeting
beginners were of great help towards realizing the first steps.
It has to be noted that all developers had several years of
expertise with software engineering, hence online examples
could be easily understood and integrated in the first steps
of understanding what and how things are done in the IoT
integration. For instance, the ROS examples available in the
ROS web site [6], as well as code snippets pertaining key
functionalities available in public web sites such as stack-
overflow or github, enabled quick grasping of common ways
things can be realized. Similar experiences were observed with

4

Preprint of doi:10.1109/INDIN.2017.8104924

http://dx.doi.org/10.1109/INDIN.2017.8104924


openCV, Arduino, python etc. Even for specialized tasks such
numerical computations with NumPy, the width and depth of
online examples was more than adequate to help with specific
issues that were raised during development. Being able to get
easily help minimizes the risk of the developer being stuck in
problem solving which is the most major factor in developer’s
unhappiness [14].

The prototype utilized a multitude of programming lan-
guages, including python, C++, JavaScript etc. All of the
developers were familiar with compiled languages such as
Java, Scala, C++ etc. which come with their respective In-
tegrated Development Environment (IDE) and tools. When
the option arose on the selection of tools e.g., to program
ROSnodes, of either sticking to what they know (i.e., use
C++) or go for something new (i.e., use Python), a split was
observed. Some decided to follow the C++ path, as they were
familiar with the language and tools that accompany it, and
would only need to learn the ROS concepts. This was done
in the hope of progressing more rapidly with the tasks and
functionalities envisioned in the prototype. Others chose to
follow python, since being a scripted language promised more
interactive usage, that is fit for experimentation with IoT and
has a low learning curve. Coming from a compiled language
background, implementing prototypes with a scripted language
like Python was a pleasant surprise for all of the involved
developers. Key appraisals for it, were the high level of code
readability, compactness of code (in comparison to Java or
C++), the functional programming paradigm, the extensibility
empowered by a wide range of libraries available, etc. The lack
of an advanced IDE was a bit unusual at the beginning, but was
soon overcome by setting up a coding environment easily with
the utilization of vim, atom and utilization of style guides such
as PEP8 that enabled homogeneous coding style. The latter
limited the potential of bad code quality and code practice,
which is one of the major reasons for developer unhappiness
[14].

Linux environments are the predominant choice for IoT
tools, incl. ROS and edge device integration. For some of the
developers, this was the first time they had to set-up and use
non-Microsoft Windows environments. The learning curve was
steeper than with pure programming languages, especially due
to the multitude of ways that things can be done, including
command-line utilities. However, once the workflows were a
bit clearer, such issues were quickly tackled and integrated into
the everyday work. Of paramount importance in overcoming
the difficulties, were other developers with Linux knowledge,
that could guide the newbies.

As the development was done in a distributed manner, git re-
pos were created, that enabled the developers to easily develop
and interact with eachother. Of key appraisal is here the strong
support for distributed and non-linear development, the easy
merging of changes, the tracking of modifications in the code,
the pull requests with code review, comments and compilation
confirmation via continuous integration (CI) tools. Especially
the automated builds via CI tools, helped tremendously in
reducing conflicting changes, easing integration and testing.

For those not used in this mode of development, the effect was
very positive, as collaborative coding, integration, testing and
deployment processes were transparent, simplified and timely
utilized.

With respect to the design of the prototype itself, deci-
sions taken focusing on autonomous task fulfillment, message-
passing communication via ROS, and distributed architecture
were good choices and fit for the intended purpose. The
distributed workflow, the clear separation of duties and func-
tionalities, and the independence from a central controlling
point, enabled easy addition of new devices (scalability),
while the local decision making meant that even without
cloud connectivity, all tasks would be carried out. In case of
connectivity loss with the cloud, data sync would be deferred
to a later point, which had no operational influence, apart from
the UI for monitoring. Another backup solution would be to
instantiate a local copy of the dashboard which would tap to
the messages provided via the ROSbridge and could depict
a large portion of the monitoring functionality. Due to the
high level of expertise with cloud technologies, integrating the
prototype with cloud applications and services unproblematic.
The integration was eased also with the development of
connectors such as the Cloud Connector (shown in Figure 2),
which enabled data to flow into IoT services and the web
dashboard.

Testing of the whole system was done in a hybrid manner,
meaning that some tools simulating behaviors of the individual
components, especially with focus on the interactions among
them, were developed. These were used to guarantee the
interoperable interaction among the different ROSnodes, and
for debugging of potential problems, while developing more
in-depth functionalities per component. Holistic integrations of
all components were done in order to detect additional issues
in “live” mode. It has to be pointed out that ROS has several
tools that ease testing and simulation, such as the “bags”,
that enable data logging (via subscription to ROS topics),
which can then be used for data playback, and therefore
greatly enhance the testing of the individual parts of the
system. This can simplify individual testing and shorten the
respective development, testing and integration lifecycles. As
IoT systems scale and get more complex, simulation and
modelling tools will be increasingly needed to develop and
test them sufficiently [15].

Not all devices utilized the same technology, and that
created additional work to homogenize them. As an example,
the EV3 utilized python 3.4 while the ROS deployment in EV3
was in python 2.7. That resulted in some recomplilation in
order to support the utilization of ROS in the EV3 environment.
At this stage, the EV3 does a track and trace of the balls, the
position of which however is pinpointed by the top mounted
camera. A more sophisticated object detection at the EV3 level
is possible; however that would result in more processing time
due to the limited resources. Complementing the EV3 with an
external board e.g., a Raspberry Pi to handle computationally
costly tasks would be a good solution to increase on-device
intelligence and autonomous behavior.

5

Preprint of doi:10.1109/INDIN.2017.8104924

http://dx.doi.org/10.1109/INDIN.2017.8104924


In Braccio robotic arm, although several controlling actions
could be realized, what was missing were sensors for accurate
self-positioning of the robot (and reporting of deviations).
As such, the developer had to assume the exact position
of the robotic arm after the execution of a command (e.g.,
rotate 45°), which might be slightly different each time due
to the mechanics involved. The presence of sensors such
as gyroscope etc. could have enabled the robot to provide
accurate pose and as a result the developer would have to
make less assumptions/checks in the code. In addition, as the
Braccio ROSnode depended on the underlying Arduino board
to execute the hardware movements, sometimes serial buffer
overflows were detected which led to unpredicted robotic arm
behavior. As such, better synchronization between high level
(ROS messages) and low level (Arduino control) is needed,
including potential prediction of overflows and corrective
measures. As there is no safety-control on the movements of
the robotic arm, quick and uncontrollable movements of the
robot may lead to partial destruction of the arm itself, or the
motors that power it. Hence, safety mechanisms ought to be
integrated, to avoid damage and enhance operational safety.

During a two full-day demonstration of the prototype to the
public, and the continuous operation of the robots and other
tools, some issues were detected, that could be enhanced in the
future. For instance, flickering in the top-camera view (e.g.,
due to shadows, or because of the EV3 partially covering a
ball), resulted in a ball being detected as missing from the
arena, which subsequently started other events, such as the
throw of another ball of the same color by the Braccio in
the arena. Although excessive balls were removed by having
the EV3 put them in a designated spot near the Braccio, so
that the robotic arm could fetch and put them back in their
bins, this process could have been better optimized. Another
aspect is that the actions of the robots could have performed
better if they had some prioritization, that would enable them
to more wisely select their tasks e.g., avoid changing goals in
the middle of tracking a specific ball, or prioritize bringing the
balls to their designated locations and then attempting to clear
the arena from excessive balls. Such issues could be potentially
enhanced with introduction of reinforcement learning.

In some cases, the robot would approach a ball with high
speed and an angle, which would result to the robot being
turned upside-down, something that would require human
intervention. Such issues could be avoided with adjusting the
speed and more careful approaching of the target. Similarly,
the Workflow Engine could be enhanced with different work
strategies e.g., prioritize balls, parallelize robot tasks based
on hypothetical routes they will follow in order not to collide,
prioritize robots that perform better over time, try to be energy-
aware by selecting robots in a way that would not deplete their
battery, detect misbehaving or out-of-order robots and reassign
their tasks etc. Such considerations are however seen as future
work, and could be potentially done with machine learning, in
order to attempt the creation of generalized strategies that the
workflow can utilize depending on the situations that arise in
the arena.

VI. CONCLUSION

Learning by doing, especially in the world of IoT, is
powerful and has proven to be a fruitful approach for getting
acquainted with new technologies and concepts. Especially in
the rapidly evolving domain of IoT, that features a plethora
of heterogeneous devices, software, development approaches
and challenging integration, learning by doing is witnessed
to be beneficial even for newbies. The developed prototype
utilized several robots (EV3, Braccio) and other IoT devices,
and focused on their interplay in order to realize a scenario
that brings forward aspects of autonomous behavior, decen-
tralization, decision-making, object detection, track & trace,
integration with enterprise systems etc. Its goal of training the
developers to new technologies, and having them assessing a
variety of OSS and development approaches was a success.
As discussed, the experiences acquired in a limited amount of
time, have enhanced the developer skills and how problems
pertaining physical devices and enterprise software can be
approached in the future. In addition, the feedback from the
two full-day demonstration of the prototype at a company
internal event was very positive, and demonstrated that the
integration of state of the art technologies can be done relative
easy, even by non-experts in the domain, who can utilize it
for solving complex tasks. The experiment also made obvious
what many strictly-software developers usually ignore: the
dynamics introduced by the hardware of the devices, and the
unpredictability of the real-world that impacts the devices,
their sensors and eventually how software application perceive
the real world via those sensors and their data.

REFERENCES

[1] J. Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, and
D. Boyle, From Machine-to-Machine to the Internet of Things: Intro-
duction to a New Age of Intelligence. Academic Press, Elsevier, 2014.

[2] WEC, “Industrial Internet of Things: Unleashing the Potential of
Connected Products and Services,” World Economic Forum (WEC),
Tech. Rep., 2015. [Online]. Available: http://www3.weforum.org/docs/
WEFUSA_IndustrialInternet_Report2015.pdf

[3] Lego Mindstorms EV3. [Online]. Available: https://www.lego.com/en-
us/mindstorms/products/mindstorms-ev3-31313

[4] Braccio Robot Arm. [Online]. Available: http://www.arduino.org/
products/tinkerkit/arduino-tinkerkit-braccio

[5] Myo Gesture Control Armband. [Online]. Available: https://www.myo.
com/

[6] Robot Operating System (ROS). [Online]. Available: http://www.ros.org/
[7] A. Koubaa, Ed., Robot Operating System (ROS). Springer International

Publishing, 2016.
[8] OpenCV. [Online]. Available: http://opencv.org/
[9] S. Karnouskos, V. Vilaseñor, M. Handte, and P. J. Marrón, “Ubiquitous

Integration of Cooperating Objects,” International Journal of Next-
Generation Computing (IJNGC), vol. 2, no. 3, 2011.

[10] Fundamental Modeling Concepts (FMC). [Online]. Available: http:
//www.fmc-modeling.org

[11] SAP Cloud Platform IoT Service. [Online]. Available: https://
cloudplatform.sap.com/capabilities/iot/iot-service.html

[12] MQTT specification. [Online]. Available: http://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[13] Pixy (CMUcam5) camera. [Online]. Available: http://cmucam.org/
projects/cmucam5/wiki

[14] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On the
Unhappiness of Software Developers,” ArXiv e-prints, Mar. 2017.

[15] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Mod-
elling and Simulation Challenges in Internet of Things,” IEEE Cloud
Computing, vol. 4, no. 1, pp. 62–69, Jan. 2017.

6

Preprint of doi:10.1109/INDIN.2017.8104924

http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
http://www3.weforum.org/docs/WEFUSA_IndustrialInternet_Report2015.pdf
https://www.lego.com/en-us/mindstorms/products/mindstorms-ev3-31313
https://www.lego.com/en-us/mindstorms/products/mindstorms-ev3-31313
http://www.arduino.org/products/tinkerkit/arduino-tinkerkit-braccio
http://www.arduino.org/products/tinkerkit/arduino-tinkerkit-braccio
https://www.myo.com/
https://www.myo.com/
http://www.ros.org/
http://opencv.org/
http://www.fmc-modeling.org
http://www.fmc-modeling.org
https://cloudplatform.sap.com/capabilities/iot/iot-service.html
https://cloudplatform.sap.com/capabilities/iot/iot-service.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://cmucam.org/projects/cmucam5/wiki
http://cmucam.org/projects/cmucam5/wiki
http://dx.doi.org/10.1109/INDIN.2017.8104924

	Introduction
	Scenario
	Architecture
	Implementation
	Experiences and Lessons Learned
	Conclusion
	References

