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Abstract

Accurate forecasting of energy is of pivotal importance for the Smart Grid vision.
Today it is achieved through aggregation of numerous individual energy loads,
and hence stochastic behaviour costs are distributed to the entire aggregated
stakeholders. However, if one was able to accurately control the internal energy
behaviour in order to meet an accurate self-forecast (as seen from external stake-
holder’s point of view), new business opportunities in the Smart Grid era could
be considered. Static storage systems may be used to absorb forecast errors,
however these are still costly, and therefore alternatives are sought. Stakehold-
ers, however, can benefit from a plethora of alternative “storages” offered by
properly utilizing their assets. We approach the absorption of forecast errors by
utilizing a fleet of electric vehicles whose on-premise presence is used to com-
pose a variable energy storage. An empirical assessment with real-world data
is provided and results demonstrate the significance of electric vehicles towards
helping stakeholders achieve and maintain the accuracy of their self-forecast.

Keywords: Smart grids, Demand forecasting, Electric vehicles, Electricity
supply industry, Load management

1. Introduction

Increased adoption of Distributed Energy Resources (DER) and especially
volatile Renewable Energy Sources (RES) in electricity grids raised its complex-
ity and their management becomes increasingly difficult [1]. Such trends coupled
with the emergence of prosumers (producers and/or consumers of energy), as
well as the electrification of transportation [2], increase the unpredictability in
the grid and require costly solutions that raise the electricity costs. However, if
a prosumer could achieve determinism in his energy signature, via highly accu-
rate load forecast and potentially control over the deviations from that forecast,
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1 INTRODUCTION

he could act as a reliable resource on the grid [3]. The latter may lower the need
for costly mitigation plans that take care of grid reliability.

Emerging business models and roles in Smart Grids call for active participa-
tion of the traditionally passive consumers [4]. Such opportunities include for
instance active involvement in grid operations [5], participation in local energy
markets [6], or demand response programs [7] etc. To participate in such pro-
grams it is of key importance to fulfil the prerequisites which for the tradition-
ally passive consumers mean to feature an accurate self-forecast on their energy
loads [8]. Although not all stakeholders can achieve it [9], additional benefits
are expected for those who can report it to third parties [3] e.g. such that one
can verify and measure activity in demand-response programs [7]. The concept
of the self-forecasting stakeholders (or groups of them as one stakeholder [10])
is analysed in detail in [11] and is hereby referred to as Self-Forecast EneRgy
load Stakeholder (SFERS).

A desired accuracy of the self-forecast is achieved locally and the determinis-
tic energy signature is gained by reporting it to the external stakeholders [3]. To
meet the report, forecast errors produced within the self-forecast are absorbed
by locally available assets. In past, deployment of storage solutions in highly
volatile systems was successfully used to absorb uncertainty in power grids [12].
Similar applications were found in absorbing forecast errors of a smaller neigh-
bourhood [13]. These traditional battery storage systems proved to be efficient
but rather expensive solutions [14], thus efforts towards reducing their costs are
investigated [15]. Capitalizing on the locally available assets, may lead to a
significant cost reduction, thus economically enable business of the stakeholders
to profit in the Smart Grid era by acting as SFERS.

This work investigates how a commercial stakeholder can become SFERS
and utilise its newly available resources e.g. batteries of electric vehicles (EV)
[16] which can act as a variable energy storage. We identify the origin of fore-
casting errors [17] and assess the suitability of its existing EV fleet for achieving
our goals. The empirical investigation is based on real-world data obtained from
a commercial building and the EVs attached to its charging stations. We show
how the presence of its employees provokes higher forecasting errors, while EVs
that are present at that exact point in time can assist in mitigating this error.
As such, results show that an EV fleet can be used for self-forecasting, poten-
tially even eliminate a need for a static solution. However, it is also discovered
that in intervals of low fleet presence the availability of a static storage unit may
be more beneficial than increasing the fleet size.

To validate our concepts we follow these steps: First the intraday forecast
accuracy is analysed in section 2. Subsequently in section 3 the storage capa-
bilities are analysed with focus on the EV fleet. In section 4 we provide some
insights on the variable storage capacity. Finally in section 5 we assess the actual
storage requirements of the stakeholder to achieve different levels of accuracy.
All these steps are further complemented with definitions as well as empirical
data to make it possible to fully comprehend them. In this manuscript, storage
is always referred to as energy capacity (in kWh) and not as power capacity (in
kW).

Preprint of article in Electric Power Systems Research Journal, Elsevier, 2015

http://dx.doi.org/10.1016/j.epsr.2014.10.008


2 INTRADAY FORECAST ACCURACY

2. Intraday Forecast Accuracy

Wide availability of the smart metering data enabled new energy related
opportunities even for individual consumers [11]. Their energy consumption
data is usually collected at a constant sampling period T , therefore represented
as a discrete-time signal y[n] ≥ 0 where n is an integer. As an example, Figure 1
depicts energy load data of a commercial stakeholder sampled by its smart meter
at T = 15 minutes. Although only 5 weeks are shown, this is a representative
pattern as the variations in consumption repeat continuously through the entire
year. The difference in consumption over days, led us to split the set into working
and nonworking days (including holidays). Their load difference, in particularly
the intraday behaviour, is expected to affect the errors in the forecasted intervals
[17].
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Figure 1: Heatmap of energy consumption of a commercial stakeholder

2.1. Quantitative Observation of Forecast Errors

In this work, the consumption self-forecast is done only for a short-term
horizon, for one day. Many forecast methods could be applied to the time series
data produced by a smart meter [18] and other indicators can further improve
the forecast [19]. If an interval forecast is ŷ[n] ≥ 0, the total forecast error of that
interval is w[n] = ŷ[n]− y[n]. Since that error will be accommodated within an
available storage capacity, both the Mean Absolute Percentage Error (MAPE)
and quantitative error (kWh) will be observed. If X is a set of index intervals
of interest, e.g. first interval of every work day in 2011, one can measure its
average interval error for any

W [n]X =

{
1
|X|

∑
k∈X

w[k − n], 0 ≤ n < ∆
T

0, otherwise,
(1)
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where |X| is cardinality, ∆ is the season length and k represents the element of
the set. Since the load varies on intraday basis, it is expected to have variations
in the required energy storage capacity to address the self-forecast errors [17].

2.2. Intraday Errors

Figure 1 depicts an example of the load produced by this commercial building
with offices with 139 working places and its resulting consumption in 2011 was
2440 MWh. As it can be seen, the building is mainly used in between 08:00–
17:00 and there is a significant difference in energy load for different days of
the week. The average daily power (over the entire year) approximates to 342
kW and 210 kW for working and nonworking days respectively. As such, the
interval set X is divided into sets of first indices for all working and nonworking
days, Xw and Xn respectively.

For the self-forecast the Seasonal AutoRegressive Integrated Moving Average
(SARIMA) model was selected, as it can be used to relatively accurately predict
electricity demand [20]. A forecast for next day is done on weekly seasonality and
the model is trained with 4 seasons (28 days). The model training is made only
with the samples known from 4 seasons up to a forecasted day and the model
parameters are extracted from the same set using the ”auto.arima” method
offered by the ARIMA libraries in the forecast package of R (www.r-project.
org). Observations are made for average daily 15-minute intervals of ∆ = 1
day, and Figure 2 depicts the resulting functions of W [n]Xw

and W [n]Xn
.
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Figure 2: Absolute forecast error averaged over intraday intervals to identify significance of
their forecast error contribution
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3 PRESENCE OF STORAGE UNITS

On a daily average, workdays resulted to MAPEXw = 8.55% and nonwork-
ing days to MAPEXn = 7.56%. Due to the actual consumption difference for
Xw and Xn, these forecast errors result in average daily error of 702 kWh and
388 kWh respectively. As Figure 2 indicates, quantitatively (and not by per-
centage) the errors differ significantly for the same intraday intervals. For lower
values of n, working W [n]Xw and nonworking days W [n]Xn have a comparable
forecast error, however the error of workdays around midday increases signifi-
cantly. Although the real cause for the error is hard to pinpoint, it appears to
be highly correlated with the working hours. Hence, one may expect that also
other commercial stakeholders may experience a similar correlation to errors of
their self-forecasts.

3. Presence of Storage Units

With the electrification of transportation networks [2], we are witnessing an
increase in the penetration of highly mobile electricity storage units, e.g. electric
vehicles [16]. However, EVs are underutilized as they are idle 96% of their time
[21]. For EVs this may imply that the majority of that time they are connected
to the grid and can be integrated into a variable energy storage [3]. This holds
especially true for company cars parked in garages of the buildings employees
work in (as we have in this case). In this section a method to measure the
presence of mobile storage units of an entire fleet is proposed.

3.1. Unit Presence Definition

Every mobile storage unit is able to connect to the electricity grid at some
point in time and this connection time frame is called the grid session. Each
grid session s is instantiated by connecting a unit to the grid at time tc and is
terminated by its disconnection at time td. Sessions of each individual unit can
only occur sequentially, where for one session the storage unit is considered to
be present for any time t as tc ≤ t < td. The step function [22] is used to model
a single grid session of a storage unit. It is an elementary function denoted
by u(t), which holds one for positive side and zero for negative. A single grid
session s is represented by two step functions as

ps(t) = u(t− tsc)− u(t− tsd). (2)

As such, the function returns one only if a unit is present on the grid, otherwise
zero is returned. Numerous such sessions are actually the components for com-
position of the unit presence function p(t). This function will return the total
count of units present at time t. This is mathematically represented as

p(t) =
∑
s∈S

ps(t), (3)

where S is the set of sessions from all mobile units considered. As such, the
function returns N0, where zero indicates that none of the units is present.
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3.2. Statistical Presence

In contrast to the unit presence function, one may be interested in under-
standing how many units are expected to be connected at a selected point in
time. Furthermore, without knowing the number of present units of an entire
fleet, the presence rate cannot be calculated. Thus, function v(t) ∈ N0 indicates
the count of individual units in ownership over time. The presence function is
represented by

f(t) =
p(t)

min(v(t), q(t))
, (4)

where q(t) is reflecting the limited number of charging points on premise. As
such, the function is used for a statistical assessment of fleet’s behaviour allowing
scaling of their presence. If the set X contains time points of interest (e.g. 00:00
of all working days in year 2012), and ∆ indicates the season length, then the
statistical presence for all points in X is calculated as

F (t)X =

{
1
|X|

∑
τ∈X

f(τ − t), 0 ≤ t < ∆

0, otherwise,
(5)

where |X| is cardinality and the return value is R+
0 . Once calculated, the sta-

tistical model can be used for any fleet size to estimate the expected presence
at a point in time in the form of

f̄(t) =
∑
∀i

∑
τ∈Xi

F (t− τ)Xi , (6)

where Xi∩Xj = ∅ where all i 6= j. It is important to note that the model is not
prone to errors introduced by inappropriate selection of points in each Xi. In
fact, better selection of these points (e.g. only working days, without holidays)
will result to a more accurate statistical model of the fleet’s presence.

3.3. Presence of a Real-World EV Fleet

After quantitatively identifying forecast errors of the stakeholder, it would
be interesting to see if fleet’s presence can assist at the times of the highest
errors. In this section, the presence curves are produced from 1044 grid sessions
s ∈ S of a real-world EV fleet. The data is collected from 5 January 2012 to 10
August 2013 (585 days), where 18 working days were marked as holidays (thus
nonworking days). The fleet was continuously composed of five “Mercedes-
Benz A-Class E-Cell” vehicles (v(t) = 5) which were part of the 500 specially
manufactured cars built as part of the collaboration between Mercedes-Benz
and Tesla Motors. These cars are pure EVs, and the fleet is in full ownership of
the same stakeholder presented in subsection 2.2. As EVs were not exclusively
assigned to individual employees, different mobility patterns may be expected
[23].

Many different variations in session duration were noted (15 minutes ≤
tsd − tsc ≤ 4 days), the first observation is done through their duration. The
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distribution function of unit sessions from the set S is depicted in Figure 3.
A peak of short sessions can be immediately noticed, however these sessions
have no significant impact on the unit presence curve p(t). Further investiga-
tion revealed that sessions initiated on Friday have much greater impact on the
fleet’s presence. As Figure 3 indicates, the mean duration from the complete
set S averaged around 10 hours, while for Fridays (depicted from 179 sessions)
resulted in more than 13 hours. As it can be observed, small peaks around 72
hours have significant impact as vehicles are present over an entire weekend.

Session duration (hours)

D
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Session duration mean

All days
Friday

Figure 3: Distribution function of the session duration for the complete set S and set of session
initiated on Friday

A second observation is made for the duration of a grid session td−tc over its
connection time tc. Such investigation will help understand intraday behaviour
of the units, having S′ ⊆ S, where duration of all sessions is limited to 1 day.
In Figure 4 one can see the movement of EVs for all sessions s ∈ S′, where
most vehicles are connected within the stakeholder’s working time (noted in
section 2). The trend of availability at the end of working time can be noticed
from the drop of hours on the grid if moving along the tc axis. All of the
connections above this drop are considered as storage units being available over
midnight, what appears to be more often for nonworking days.

Points in set X can be set to many different variations, however for experi-
ments with a commercial stakeholder the weekly points should be used due to
the significant difference over weekdays. For a better understanding of fleet’s be-
haviour, the defined sets S and S′ can be both observed through their statistical
presence function F (t)X . As previously depicted in Figure 3, such limitations
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Figure 4: Duration of the grid connection session in respect to time of their intraday initial-
ization

are expected to be significant in the overall presence of the fleet. Figure 5
depicts the resulting statistical presence for both the complete set S and the
reduced one S′ for ∆ of 1 week. A significant improvement of the presence for
the complete set is observed.

Interestingly all workdays of the week look alike (in average 18.9% for S
and 11.3% for S′), while significant drop is noticeable over weekend days (in
average 9.1% for S and 1.8% for S′). Such a small difference allows the distinc-
tion of X to working days Xw and nonworking days Xn (including holidays).
Their statistical presence appears to have good fit to the forecast errors (of the
stakeholder described in subsection 2.2) and will be scaled to achieve a required
self-forecasting accuracy of the stakeholder.

4. Variable Storage Capacity

The definition of the presence curves in the previous section are further
used to address the specific stakeholder’s forecasting errors. As an example,
the analysis of the stakeholder in subsection 2.2 and its EV fleet presence from
subsection 3.3 appears to be a good fit. Once the presence curves are computed,
they are used to calculate the resulting energy capacity (in kWh) composed of
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Figure 5: A real-world EV fleet statistical presence at weekly ∆ for both complete S and
reduced set S′

storage units. These units will be observed as the dynamic part of the variable
storage. If the capacity of a single unit is denoted as c, simple multiplication as

pc(t) = cv(t)f(t) = cp(t), (7)

will give the total capacity available over time. From the experiment described
in subsection 3.3, we have in Figure 6 the capacity availability from the fleet
that is calculated for c = 36 kWh. The statistical capacity present over Xw and
Xn resulted with an average capacity of 36.9 kWh and 16.6 kWh respectively
for the complete session set S. As such, pc(t) can be used in the assessment
simulation for improvement through an existent EV fleet. For further scaling of
its fleet, statistical presence curves F (t)X can be used only for one classification
of storage characteristics c. Since many fleets are expected to have different c,
the equations need to be further expanded.

4.1. Mobile Units of Different Classification

Although the calculation of the presence curves can be done through capac-
ity, it is not applicable to fleets with units of different capacities. For example,
if only two vehicles of capacity c and 10c are available, the presence of smaller
unit may jeopardize the estimation of the capacity available. With that in mind,
every session s is expanded with the classification j of invariable capacity cj .
All sessions sj are therefore populating the set of Sj ⊆ S. The classified sta-
tistical presence is expanded from Equation 5 as Fj(t)X , where only s ∈ Sj are
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Figure 6: Storage capacity present from the fleet’s statistical presence

considered. Although cj is considered to be invariable, the total count of clas-
sified mobile units is to be scaled in simulations and is represented as vj ∈ N0.
Scaling v of each classification will contribute to the total capacity present and
is mathematically described as

p̄c(t) =
∑
∀j

cjvj f̄j(t). (8)

The total capacity available is expected to grow by an increasing number of units
within the stakeholder’s fleet, so one can assess their impact on the achievement
of a higher forecast accuracy. As such, individual variation of vj can be used for
assessment of the SFERS simulations with scenarios utilizing different vehicle
classifications.

4.2. Constantly Present Storage

For highly variable fleets, a continuously present storage can be critical to-
wards reaching a required forecast accuracy [17]. For instance, if a fleet suffers
from low presence intervals (as observed in Figure 6), forecast accuracy may
converge to MAPE > 0. For this particular example, even a significant fleet
scaling might still result to insufficient capacity to cover the forecast errors in
the intervals of low presence. Hence the model should adopt a static storage
capacity in parallel with the variable one to compensate for such gaps. The
total capacity present can be noted as

P̄c(t) = C + p̄c(t), (9)
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where C is the static part in the variable storage and p̄c(t) its dynamic part.
Scaling C and unit count vj is therefore used for assessment of impact in ab-
sorbing the forecast error.

4.3. Property of a Variable Storage

In the context of the statistical presence curves, the overall storage capac-
ity is calculated from many different mobile units e.g. EVs, that connect and
disconnect at any point in time. This introduces increased complexity of unit
management, in particular towards estimating the connection and disconnection
State of Charge (SOC) of an individual asset [24]. As this complexity manage-
ment goes beyond the scope of this work, it is important to mention that SOC
is not treated individually. If t1 < t2, the overall SOC is expressed as

SOC(t2) =
SOC(t1)P̄c(t1) + a(P̄c(t2)− P̄c(t1))

P̄c(t2)
, (10)

where state at t2 is inherited by its previous one (at t1) and forecast error
is added thereafter. As the SOC per unit is not available, the variable a is
introduced for the adjusting the SOC of expanded/reduced storage units. In
this work, variable a will result to

a =

{
50%, P̄c(t2) ≥ P̄c(t1)
SOC(t1), otherwise.

Management of connected vehicles can be based on numerous factors [21] e.g.
selecting a unit to be charged. This is similar to the power plant management,
where ”dispatch” refers to the timing turning on and off power plants to match
grid’s needs. Although considered interesting, evaluation on an individual SOC
of units is left for future work.

5. Assessment on Actual Storage Requirement

In this section, the stakeholder analysed in subsection 2.2 is evaluated with
respect to the presence of the fleet as it is analysed in subsection 3.3 that is
further scaled by applying the methods from section 4. Since the energy data of
the stakeholder is a discrete-time signal of T = 15 minutes, the presence curves
are sampled at the same frequency. This is important as a forecast error w[n] is
quantitatively absorbed by an estimated capacity P̄c[n] for the same interval n.
With help of the discrete-time signals, the assessment of SFERS via P̄c is done
by variation of the mobile units in its ownership vj (or their capacity cj for any
classification j) and the static storage capacity C.

5.1. Individual Capacity Scaling

As the forecast algorithm utilized in section 2 resulted to greater errors
within the working hours, the capacity available from the dynamic storage in
subsection 3.3 is expected to be highly relevant towards absorbing them [17].
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The efficiency of the dynamic storage shape Pc cannot be directly compared to
C on the efficiency to absorb the errors. As such, the dynamic storage shape
available is to be averaged and scaled by a constant over all working Xw and
nonworking Xn days in X. The average capacity presence resulted respectively
in 20.5% and 9.2% for the overall shape efficiency, having an average (on weekly
basis) of 17%. As described in [17], for their direct comparison equal shape
areas need to be considered as:

P ′c = m

∫ b

a

P̄c(t) dt ≡
∫ b

a

C dt = C(b− a), (11)

where m is the scaling factor used to align the areas of the dynamic and static
shapes. For the follow-up experiments, m = 100%/17% = 5.88 is used to
calculate the efficient dynamic storage. This overall shape efficiency is used to
depict the approach comparison in Figure 7, by individually scaling of vj and
C in P̄c.
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Figure 7: Efficiency of static and dynamic storage shapes to absorb the forecast errors

As initially suspected, the fleet presence successfully overlaps with the work-
ing hours in Xw and over-performs when compared to the static storage. How-
ever, the error reduction on nonworking days is significantly higher with the
static storage approach, due to the capacity availability when low presence of
dynamic storage is observed [13]. Equation 11 is not to be omitted, as average
shape efficiency of the dynamic storage resulted only in 17% for the complete set
S. Combining these two approaches may reduce costs [16], and their individual
advantages are expected to complement each other.
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5.2. Interdependent Storage Relationship

Individual scaling in subsection 5.1 already emphasizes weaknesses and strengths
of the two approaches. Their combination is expected to fill-in the performance
gaps of the other approach. The results from Figure 7 strongly indicate that the
two approaches are advantageous either for Xw or Xn. Applying Equation 9,
the storage scaling is performed for both C and aj together, thus affecting the
total capacity available P ′c. Figure 8 depicts how their scaling reduces the ab-
solute forecast error for working Xw and nonworking Xn days, as well as their
difference.
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Figure 8: The forecast error reduction on daily average with the interdependent storage
approaches

The values in Figure 8 are selected so that one can observe the advantage
of the two datasets, having 0 ≤ C ≤ 1500 and aj = 100 (or 72% of employees).
Aligned axis values of 8a and 8b are important for a quantitative observation in
forecast error reduction from their daily consumption (of 8.2 MWh and 5 MWh
respectively). The capacity selected from both approaches is insufficient for Xw,
while the static storage was embolden for Xn. As expected, both figures show
high convergence towards the average forecast error of zero once approaches are
combined. The difference between forecast errors from Xw and Xn is interesting,
as one can see how the error reduction of Xw prevails over the improvement rate
of Xn, whereby for the low values of C the error of Xw overcomes Xn on greater
values of aj .

It is important to point out Equation 11, where C of the constantly present
storage takes 100% of capacity availability while dynamic capacity efficiency
is measured to 20.5% for Xw and 9.2% for Xn. Understanding the benefits
of the presented approaches to address the uncertainty of self-forecasting can
help obtaining a most economical settings to achieve an adequacy of SFERS
becoming a resource [25]. Omitting the potential of stakeholder’s EV fleet would
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increase the requirement of a constantly present storage, which is expected to
rise the overall system costs [26].

5.3. Achieving Forecast Accuracy Levels

Envisioning a longer-term role of SFERS with their variable storage as com-
pensation of their forecast errors, and opportunity (dependent on the actual
SOC) to accommodate an intermittent energy resource, can lead us to rethink
the roles in the energy systems of today. A question to a stakeholder becoming
a SFERS is where to draw a line between the two approaches presented, partic-
ularly on economical terms [26]. Perhaps their performance dependency needs
to be evaluated for the levels of forecast accuracy (e.g. 2% or 3%) relevant to
the most economical position for the stakeholder. In dependence to their goal,
stakeholders can achieve sufficient accuracy for daily, weekday or even intraday
requirements [27]. Hereby only continuous accuracy is observed, where the fore-
cast error levels will be always below a certain MAPE limit. Figure 9 depicts a
few example results from the data of the experiment in subsection 5.2.

Figure 9: Example of forecast accuracy levels of the commercial stakeholder

The limits are minimal for each depicted accuracy level of MAPE, thus
on the right side of the limits a lower MAPE is expected (for both Xw and
Xn). Furthermore, losses due to the storage efficiency ξ can be omitted if
the observation is made through the entire consumption of a stakeholder as
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(1−ξ)
2 |w[n]| + y[n]. For example, if forecasted load is ŷ[n] = 150 kWh and the

actual energy consumed is y[n] = 160 kWh (having MAPE of 6%), with an
ξ = 90% the actual energy consumed deviates only 0.3% (or 160.5 kWh) from
the stakeholder’s original consumption. With this in mind, the storage efficiency
has almost no impact to costs of a stakeholder; hence stakeholders can apply
the proposed methodology to evaluate their dependency on static and dynamic
storage in their target to become an economically sustainable SFERS.

6. Discussion

There are several limitations present, including the off-the-shelf forecasting
algorithms used in this work, which can significantly improve results presented
here through further optimization and inclusion of additional customization [19].
Another limitation is the usage of the statistical curve where an approximation
of the significance of the fleet to absorb forecast error is considered. In this way,
one cannot observe the actual SOC of a battery, which led to the respective
discussion in subsection 4.3. Although this is an interesting aspect, it is not
within the scope of this work. As an extension of this work, future simulations
of individual units need to be considered, as well as technical limitations (e.g.
charging power in kW) of the storage units.

If a company utilizes an EV fleet as a storage solution, the system has
to make sure that the individual driver requirements are met e.g. each car
is adequately charged for its next trip. As an example, if a desired SOC for
SFERS with a static storage solution would be at 50%, the clustered available
storage from EVs would have to also be at that level. However this does not
mean necessarily 50% SOC for all individual EVs as this might conflict with the
owner’s goals which are e.g. to be at least 80% in order to cover his travel plans.
Furthermore, each unit can provide a certain percentage of the battery capacity
to the variable storage and still can guarantee that the EV is ready whenever
the user needs it. Understandably, more research is needed towards local and
global constraint consideration, however such strategies are not considered part
of this assessment here and are seen as future work.

7. Conclusion

Significant research in the Smart Grid is devoted towards improving the
stability of electricity grid and their quality of service. By becoming SFERS,
the stakeholders can slip into new roles as these are envisioned by the Smart
Grid and benefit business-wise. This work demonstrates an empirical approach
towards achieving higher accuracy of self-forecast by the usage of the variable
energy storage e.g. made available via the presence of EVs. The results show
that the forecast errors (in kWh) of the commercial stakeholder grow within
the working hours, thus higher grade of absorption needs to take place in those
time frames. We identified the presence of EVs at those time frames, and
demonstrated empirically how the forecast improvement progresses along with
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size of the EV fleet. A requirement analysis is conducted by scaling the fleet
size and capacity of a static energy storage at the stakeholder’s premises.

Finally, for the demonstration of a variable energy storage we adopt one
composed of the batteries of the EV fleet. However, clearly this can in the future
include any asset that can help absorb the errors produced by a self-forecast.
Such assets can somehow appear to “store” energy directly or indirectly (e.g. via
transformation to kinetic) or via its selective control strategy (e.g. supermarket
freezers, data servers or even emergency power systems). The approach depicted
in this work may additionally help realizing energy-autonomous infrastructures
in the future as in conjunction with using variable storage, also control and
rescheduling or adjustment of processes can complement it, and potentially lead
to better energy management.
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