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Abstract—The prevalence of the Smart Grid and its capabil-
ities, has enabled sophisticated energy management that can be
realized as a multi-constraint optimization problem and tailored
to the specific scenario needs. In conjunction with the increasing
introduction of Electric Vehicles (EVs), energy management
tools can now consider expanded conditions including grid
balance, cost optimization, EV characteristics, asset utilization,
operational goals etc. In this work we analyze such a scenario
and demonstrate how an EV fleet charging can be optimized in
a timely manner while taking into consideration local conditions
e.g., individual EV needs as well as global ones e.g., grid limits
and energy price. We formalize a model that reflects the EV
restrictions, and use it to assess an algorithmic approach that
solves this non-linear optimization problem.

Index Terms—Energy management; Smart grids; Mathemat-
ical model; Renewable energy sources; Optimization; Electric
Vehicles; Cost function; Load management

I. INTRODUCTION

In the Smart Grid era, increased capabilities for monitoring
and controlling energy-related assets [1], are expected to act as
enablers for sophisticated scenarios. Being able to monitor in
detail large-scale infrastructures, assessing complex conditions
and applying control actions with feedback loops in near
real-time, has the potential to revolutionize decision making
processes. The latter can now dynamically adapt to new
conditions, while considering complex technical and business
constraints at an unprecedented level. Asset flexibility is espe-
cially important in the Smart Grid as it can balance the highly
dynamic Renewable Energy Resources (RES) produced energy
patterns. In such flexible energy infrastructures [2], company
assets as well as larger infrastructures can dynamically adjust
and be optimized with multiple goals of energy efficiency, cost
reduction, operational goals etc.

A category of assets that fit very well to energy management
scenarios is that of Electric Vehicles (EV) which although still
at their dawn, are expected to have a significant impact once
a critical mass of them is available. Due to their flexibility in
charging and discharging, EVs can play the role of flexible
controllable assets [2], and pose a cost-effective alternative to
existing solutions for storing energy [3]. Companies that will
be operating larger numbers of them i.e., in EV fleets, will have
to make considerations about how to reach their operational
goals while considering cost-effective approaches to fleet

charging and operation. As such multi-constraint optimizations
are sought, that will not only consider constraints and goals but
also provide effective solutions in deterministic manner. The
latter implies real-world acceptable solutions (which may be
near to optimal ones but not necessarily optimal) that enable
an enterprise to achieve its objectives as good as possible.

The architecture of an energy management system that takes
into consideration many of these aspects has already been
proposed [4]. We take this as a starting point, and focus in
this work explicitly on the effort to achieve real-world optimal
charging of EVs, by considering constraints such as the grid
capacity, electricity price, and fleet operational utilization plan.
Our aim is to reach a nearly optimal charging plan, that can
dynamically adapt to adjustments of the external constraints
(electricity price, EV presence, grid capacity) in a timely man-
ner and with minimal user input. Complying with constraints
specified by the EVs and by their operational utilization plan,
the charging sessions are planned with the specified degrees of
freedom that dictate the available flexibility we can capitalize
upon.

The approach results in solving a multi-constrained opti-
mization problem, that should deliver a highly optimized and
realistic charging plan within the specific time-constraints. The
problem is formulated as a load management system that leads
to a mixed integer non-linear programming problem, and an
evolutionary algorithm is introduced to solve it. Subsequently
the evolutionary algorithm is assessed for a use case of a
typical EV fleet.

II. MODEL DESCRIPTION

To describe the charging plan of a fleet of electric vehicles,
we first need to investigate how the charging plan of an
single EV can be adequately modeled. The charging functions
considered in this model are discrete, which means that each
time interval has a constant charging power. Such function
are Lebesgue integrable, therefore we use the mathematical
construction of Lebesgue integrals for the description of the
model. The Lebesgue integral is defined for a measure space
which is a set Ω with a structure that allows to map a
certain subset to a measure, like its geometrical length. This
measurement is called Lebesgue measure [5]. A subset A in
Ω is called measurable, if it can be assigned to a measure.
In this case we call µ(A) the measure of A. This measure is



always a non negative real number or +∞. A Lebesgue null
set is a set N ⊂ Ω with the Lebesgue measure 0.

If N ⊂ Ω with µ(N) = 0 and f is a Lebesgue integrable
function, the following equation is valid:∫

Ω

f dµ =

∫
Ω\N

f dµ+

∫
N

f dµ =

∫
Ω\N

f dµ,

since the integral over the null set N is equal to 0.
This theory will be applied for fleets of electric vehicles,

starting with the description of one charging process of one
EV. The EV with number i should be charged in the time
Ti = [tArrival,i, tDeparture,i] ⊂ R+ with the energy amount
Ei ∈ R+. This energy amount is chosen so that the EV will
not charged more then up to its maximum battery capacity.

The charging function Li(t) ∈ L1(Ti) (space of Lebesgue-
integrable functions) is valid when it ensures that the needed
energy amount can be charged during the planed EV standing
time at the respective charging station. Expressed as an integral
this means:

∫
Ti
Li(t)dt = Ei.

Furthermore for each EV i we need to make sure that the
technical constraints given by the EV and the used charging
station like the maximal charging power Pmax,i ∈ R+ and the
minimal charging power Pmin,i ∈ R+ will not be violated.
The Pmax,i we use for the optimization resolves as the
minimum, of the maximum charging power given by the EV,
and the one given by the used charging station; Pmin,i is
assigned similarly as the maximum of both given minimum
charging powers. This ensures that no technical boundaries
of the EV and the charging spot get violated. Therefore
the charging plan Li always has to respect the boundaries:
0 < Pmin,i ≤ Li(t) ≤ Pmax,i. When we also allow
stopping the charging completely, the co-domain is given as:
[Pmin,i, Pmax,i] ∪ {0} . An example of such a charging plan
with respect to the boundaries is shown in Figure 1.
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Figure 1. Example charging plan for an EV

In times of discharging, each EV and each charging sta-
tion also has a maximum and minimum discharging power
P dis
max,i, P

dis
min,i ∈ R−. This leads to a co-domain for the

charging and discharging curve Li:[
P dis
max,i, P

dis
min,i

]
∪ {0} ∪ [Pmin,i, Pmax,i] .

This paper only considers charging of the EVs and not
discharging, due to the fact that most EVs do not allow
discharging yet. Furthermore it causes secondary losses by
discharging and recharging again. Therefore this approach
chooses to pause the charging in times of grid restriction as
a more efficient alternative of providing positive load shift to
the grid.

The considered charging function is discrete, which means
that the time interval [tj−1, tj) with a certain length (e.g., 15
minutes) has a constant charging power li,j , and can be written
as:

Li(t) =

n∑
j=1

li,j · 1[tj−1,tj)(t).

With the help of this discretisation the charging function
can be described as a vector:

~Li =


li,1
li,2

...
li,n

 ∈ Rn.

Having described the charging plan, we can now consider
the cost function K which is a piecewise constant in the same
discretisation as the charging plan:

K(t) =

n∑
j=1

kj · 1[tj−1,tj)(t)⇔ ~K =


k1

k2

...
kn

 ∈ Rn.

The optimal charging function regarding the cost Lopt
i is

then given by the following optimizations problem

Lopt(t) = minLi(t)

∫
Ti

Li(t)K(t)dt

or vectorial written:

~Li
opt

= minLi
~Li

T ~K.

For a fleet of m EVs, we can now describe the scenario as
the following optimization problem:

l1,1 l1,2 · · · l1,n
l2,1 l2,2 · · · l2,n

...
...

. . .
...

lm,1 lm,2 · · · lm,n

 ·

k1

k2

...
kn

 ,

where for each EVi the following constrains must be valid:
li,j ∈ [Pmin,i, Pmax,i] ∪ {0} and∫

Ti

Li(t)dt =

∫
Ti

n∑
j=1

li,j · 1[tj−1,tj)(t)dt = Ei.

The last important constrain for this scenario, is that the
load limits from the grid NK(t) in each time-interval must
not be exceeded. This means that for each j and time interval
1[tj−1,tj) the following equation must hold:

m∑
i=1

li,j · 1[tj−1,tj) ≤ NK([tj−1, tj)).

If we simplify the technical restrictions of the EV and
don’t allow complete stopping of the charging, our range
[Pmin,i, Pmax,i] is convex and we receive a linear optimization
problem. However, by adding the point 0 to our range, it is
no-more convex and we have to deal with a more complex



non-linear optimization problem. We now can model this as
an mixed integer non-linear problem by adding two additional
parameters xi,j ∈ {0; 1} and yi,j ∈ [0; (Pmax,i − Pmin,i)] for
each i and j. With this our charging function can be expressed
as: li,j = xi,j · (yi,j + Pmin,i) .

This mathematical description leads to a non-linear opti-
mization problem with two types of constraints i.e., hard and
soft. The hard constraints, must not be violated. In practice for
our investigation, these are the grid capacity and the charging
power of the EV and the charging spot. The grid capacity is
not allowed to be exceeded, otherwise it may cause blackouts.
The enforced charging power of the EV has to follow the EV
and charging spot specific parameters. This means that the
charging power for one EV has to lie between the minimal and
maximal charging power of this EV and the charging spot or
zero when charging is being paused. The soft constraints which
in practice for our investigation depict the desired state of
charge (SOC) at the end of a charging process. In exceptional
cases – when not enough capacity is available – the system
cannot ensure that this state of charge will be reached. In
extreme cases when grid loads are too critical, EVs have
to be rejected. In these cases the concerned fleet operator
receives information on possible alternative charging options
(e.g., longer standing time, a lower state of charge for the
charging process, a different charging location etc.). This EV
will be selected by the algorithm to ensure the best possible
solution where the most EVs can be charge to fulfill there
business purpose.

III. ALGORITHM

For the intelligent charging plan algorithm we use an
evolutionary algorithm whose general process [6] can shortly
be described by these steps:

1) Select a start population of individuals randomly or
partly randomly (first generation).

2) Analyze the fitness of each individual in that population.
3) Choose the most healthy individuals for reproduction

(parents).
4) Generate the next generation of individuals through

crossover and mutation operations.
5) Analyze the fitness of each individual of the new gen-

eration.
6) Substitute the least-fit population with individuals of the

new generation.
7) Iterate this evolution process (step 3-6) until the criteria

for termination is reached.
This process is adopted in the use case of EV fleets by

choosing a new specific representation for this model and
adjusting the standard operations for crossover and mutation to
it. Furthermore it is combined with methods from scheduling,
in order to select the starting population and introduce a
new measure that describes the flexibility that each EV has
according to its operational utilization plan. How this is done,
is described in the following sections.

First, to charge an EV i in time Ti with a requested energy
amount Ei, a discrete charging function Li(t) is calculated

with constant values for each time interval e.g., 15 minutes,
taking into account parameters from the energy market. The
representation of a solution is described as a permutation of the
EVs with an additional value for the maximal charging power
P rep
max,i. This represents the chronological order in which EVs

are optimized and the maximal charging power represents the
maximal power each EV is allowed to charge in each time
interval. This maximal power is not necessarily the same as the
one given by the technical restrictions. This randomly chosen
maximal power, which is always in the interval of Pmin,i and
Pmax,i given by the specific parameters of the EVs and the
charging spots, has to be high enough that the EV can reach
its requested state of charge in the specified time period.

Subsequently, each EV sets itself an optimal cost with a
greedy approach, considering its new given maximum charg-
ing power. One benefit from this approach is that the algorithm
for optimal setting of each EV can easily be replaced with
another algorithm without changing any other operators used
in the evolutionary algorithm. In the start population, random
orders of EVs and the random maximal power are chosen as
aforementioned.

Some of the solutions in the initial population are generated
with random maximal charging powers, as well as with the
actual Pmax given by EV and charging spot. To determine the
order of the EVs, possible selection methods from scheduling
are used: One is based on the predicted departure time, which
means that the EV that leaves first gets set first. A second
possibility is to select the EVs by their requested energy
amount, where the EV with the highest energy request is set
first.

A more complex approach (but still with the two options
for the maximal charging power) is to sort the EVs by their
flexibility. To calculate the flexibility, the following formula is
used: Ei∫

t
Pmax,idt

. This represents the quotient of the requested
energy amount divided by the maximum energy that the EV
can charge in its standing time.

As a one-point-crossover operator for our representation we
choose a random crossover point and keep the first part of each
solution. The missing EVs in this permutation are used in the
same order as in the other solution. As a mutation operator
we use a swap mutation operator. This means, that we choose
randomly two points of the permutation and switch them.
These EVs can then set themselves again in the new order
and choose a new maximum charging power. Another option
for a mutation operator is to choose randomly two numbers
of the permutation and switch them; then set them again in
the new order but with the old maximum charging power.
The third option is to choose randomly two numbers of the
permutation and only select a new maximum charging power,
without switching the order. To ensure efficient mutation, only
EVs with overlapping charging time are switched and EVs
without flexibility cannot be shifted. After this recombination
and mutation process each solution is evaluated.

For each solution we measure the overall cost which in-
cludes the energy price as well as penalty cost for the rejection
of EVs or violation of the operation plan which is expensive



(e.g., 1000 times the maximum energy price). Furthermore for
different use cases we can include additional penalties like too
many interruptions, irregular charging or the circumstance that
priority EVs are not prioritized. For the selection algorithm a
best selection is used. The idea here is to select the fittest
individuals of a generation and leave them unchanged in the
next generation. But of course the same algorithm would work
with a more complex selection strategy like e.g., tournament
selection.

IV. EVALUATION

A. Use Case: DHL fleet

The challenge of the energy management we pursue, is
to satisfy all constraints e.g., minimize the electrical energy
costs for the fleet, avoid the violation of the load limitation
curve, and respect the technical restrictions of each EV. This
means that the energy management system has to calculate the
optimal charging plan for each EV with respect to the cost for
the entire fleet. For this the energy management system has to
use data from the energy market, the EV and the fleet operator.
An overview of the system with all the necessary interfaces
is depicted in Figure 2. The necessary data is collected from
the technical parameters of each EV, the EV fleet operational
schedule, the (forecasted) electricity price curve, as well as the
load limitations for a specific period of time e.g., 24 hours.
With this data the algorithm will calculate a cost optimal
charging plan for the fleet that respects the constraints of the
fleet operator, the EVs and the energy market. This charging
plan is then communicated to the charging stations, which
enforce it and control the charging of the EVs.

Energy Market

Grid

Energy Management System (EMS)

Load limit
W

t

Price
€

t

Electric Vehicles (EVs)

EV Technical Constrains

Fleet Operator

Charging
Optimization
Algorithm Charging Plan

EV Fleet Operational
Utilization Schedule

Database
Communication to the

EV Charging Stations

Figure 2. Overview of the Energy Management System and its interactions

As proof of concept, we focus on a real-world use-case
i.e., we look at fleets of EVs which can be found usually in
enterprise environments. The fleet of the German parcel and
post service DHL is taken here as an example. The DHL fleet
is a good example for a fleet with high predictability. The fleet
schedule follows two groups with different departure times.
The first group leaves between 07:35 and 07:45, the second
one leaves between 08:45 and 08:55. The arrival time for both
groups lies between 16:00 and 18:00. In average they drive

50–60 Km per day;this makes them an ideal case for electric
vehicles [7].

The orientation for the technical data of the EVs was the
e-Vito with a maximum range of 130 km, a battery capacity
of 36 kWh and a charging time for complete recharging of 5
h [8]. Based on this fact-sheet, we choose choose 30% of the
EVs a maximum charging power of 6 kW and desired energy
amount of 20 kWh, 30% with 7 kW and 24 kWh and 40%
with 9 kW and 32 kWh for the 40 considered vehicles. The
minimum charging power for all vehicles is set to 2.3 kW.

For the capacity boundary for the fleet first a constant grid
capacity minus the standard load profile of average households
[9] is used, and as a second approach real-world data is used
from renewable energy sources like wind production. This
generation datasets for wind refer to a single location in Spain
as collected by the NOBEL project [10]. To calculate the
energy production from the wind data, we used the model
for the “Tornado 1 kW” turbine. According to [11] there are
regions in Spain where the mean wind speed lies between 4
and 5 m/s such as the region close to the NOBEL trial from
where we have the field data. The dataset we used in our
evaluation resulted in an average wind speed of 4.76 m/s. For
the evaluation the example day 02-Oct-2013 was chosen from
the dataset.

In this DHL scenario, EVs are treated equally and it is con-
sidered that the fleet operator can send a charging plan to each
EV to control the charging within the given flexibility. This
charging plan has to ensure that all the EVs are charged at least
at the level the fleet operator wishes at the end of the charging
session. Failure to do so would imply that the EVs would not
be operational and can not fulfill their business purpose, which
would result in higher cost. Besides the constrains set by the
fleet operator, we also consider the technical boundaries of
each EV e.g., battery capacity. Additionally the grid and the
energy market have some influence in the charging plan, as a
variable price profile for one day and grid load limit curves
are obtained.

B. Assessment

In literature there a several publications [12], [13] that
consider complex battery models and model the charging of
a fleet as a linear model. For instance optimized charging
and discharging for an EV fleet is presented, as well as
a framework for this optimization using a linear program-
ming approach by assuming a continuous interval between
the maximum discharging and charging from the battery is
demonstrated [14]. In another approach [15], an algorithm
builds on the inhomogeneous Markov model to optimally
decide when to charge an EV can be used to schedule the
charging. Others [16] have also used an improved particle
swarm optimization algorithm to reduce the operational cost
of the power grid while meeting the EV owner’s driving
requirements. An evolutionary algorithm to integrate a single
EV in a smart home environment has also been investigated
in that context [17]. In this work, we also use, as already
discussed, an evolutionary algorithm to optimize the charging



for an EV fleet by considering the given EV restrictions, that
collectively lead to a non-continuous interval for the allowed
charging power.

Due to this non-linearity present, we are not able to
use standard mixed-integer linear programming solvers like
IBM CPLEX, Gurobi, and Xpress. Methods like Branch-and-
Bound are also available in some of these libraries but they
have a long execution time, as it was shown for an energy
management case in a smart home environment [18]. Hence
this is not attractive for our use case, where we target low
execution times. Therefore we used the algorithmic approach
as described in section III, to solve the optimization problem
and evaluate it for the example case of the DHL fleet.

For the parameters used in the algorithm, a standard sugges-
tion is used [6], advising that the population size lies between
1 and 30 solutions and the best selection for the quotient
between parents solutions and number of solutions in the
evaluation of the fitness has a value between 1

5 and 1
7 . In

this case this leads to a start population of 20 solutions and in
each evolution process 40 child individuals are generated with
recombination and 40 with mutation. For the next generation,
the 20 best solutions are selected, and this is repeated for 1000
generations.

The experiments show that the first two scenarios tend to
start with a good fitness which marginally increases. This is
due to the fact that the start population is already generated
with an intelligent approach, based on scheduling strategies
and that enough capacity is available. In the third scenario
(as depicted in Figure 5) the capacity is scarce and the first
populations start with poor fitness, which however significantly
changes within the first 5–10 generations. Afterwards the
fitness increases only minimally over the next approximately
500 generations. In the majority of experiments (20 for each
scenario) the fitness does not noticeably change (less then
0,1%) after the 500th–1000th generation. The execution time
for the algorithm with 500 generations can be realized within
less than 20 seconds. With this short run-times we can afford
to let the optimization run for 500 generations even though
it does not improve the end result significantly. Therefore in
this work we decided for a longer optimization time (approx.
20 sec), but still have the option of shorter run-times (few
seconds) if mandated by the requirements of time-sensitive
scenarios. Experience from the 100 and 1000 generation
experiments have shown that the run-time of the algorithm
behaves approximately linearly by scaling the numbers of the
EVs from 40 to 200 in steps of 40 EVs.

Figure 3 depicts the resulting charging plan (denoted with
the blue line) for a DHL fleet of 40 EVs. The green curve
shows the available energy and is calculated as the constant
capacity minus the standard load profile of households. The
red line denotes the electricity price profile (which is common
in all tests) ranging from 0.20e – 0.28e per kWh. Without
the algorithm the vehicles start charging with full power as
soon as they are plugged in. In Figure 3 we see that they
exceed the grid capacity. This will cause problems e.g., black
outs. One can see that a non-optimized approach is not viable,
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Figure 3. Charging plan for a fleet of 40 EVs

as the grid capacity is not respected and of course there is no
cost optimization whatsoever. As depicted in Figure 3, the
grid capacity limit is respected, and additionally the charging
is happening during the lowest cost (price curve shown in red)
slot, which results in 25% lower overall cost for charging the
whole fleet. On the contrary in the same graph the algorithm
ensures that all EVs are charged. Additionally it shifts the
charging to a cheaper time and respects the grid boundaries.

In our scenario we consider energy supplier and grid
provider as two independent stakeholders. Therefore the price
profile is not necessarily correlated to the wind profile, even
though in future, especially in demand-response scenarios, this
might be the case. This scenario shows that the algorithm
can handle both possibilities. The first priority is to respect
the grid restrictions and with the flexibility which is given
(under these restrictions) the algorithm chooses the best and
cheapest solution for the EV fleet. This set-up may allow
the EV fleet operator to have a preferential contract with the
supplier for a better energy price. Furthermore the EV fleet
operator may couple such actions with its corporate social
responsibility (CSR) and sustainability goals e.g., lowering
its CO2 emissions by charging the EVs when energy from
RES is available. Another possibility would be that the grid
provider is the owner of the wind farm and aims at absorbing
the maximum available RES energy generated before deciding
on interacting with other stakeholders [4].
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Figure 4. Charging plan for a fleet of 40 EVs with restricted grid capacity
due to limited wind production

In Figure 4 the capacity boundary is now determined by the
dynamic wind production. It can be seen that the consumption
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Figure 5. Charging plan for a fleet of 40 EVs with restricted grid capacity
due to limited wind production and changes in the wind production

follows the production with respect to the optimization of
EV charging i.e., the EVs are charged when surplus wind
electricity is available and stop charging when there is no
production. Furthermore the cheapest time slots with available
wind production are selected by the algorithm. In Figure 4
we see the charging plan which was calculated with prior
communicated wind production. Due to uncertainties in the
wind forecast the wind production was updated with a more
precise forecast 4 hours before the change. The algorithm
calculates quickly a new charging plan and shifts the missing
load to earlier times. The new charging plan is shown in
Figure 5. The short run time of the algorithm shows that it
can react on dynamic changes and that this scenario would
work even for changes that are communicated for the next 15
minutes interval.

V. CONCLUSION

Effective management of the charging of EV fleets may
provide tangible benefits for its owner, while in parallel
adhering to dynamic conditions such as grid capacity, RES
availability, cost effectiveness etc. The charging scheduling
problem is formulated as a load management system, that
leads to a mixed integer non-linear programming problem,
solved by an evolutionary algorithm. Due to the simplifications
we make, low execution time is achieved for the construction
of an adequately for the real-world optimized charging plan.
As such we can execute the optimization often in order to
accommodate dynamic changes in the constraints given e.g.,
change in grid capacity, EV presence, electricity cost etc.
Experiences show that the run-time of the algorithm behaves
approximately linear depending on the number of generations
as well as size of the fleet. As proof of concept we have
simulated the charging plan for 40 EVs based on real-world
data and demonstrated the effectiveness of the approach. Next
steps will focus on more in-depth evaluation of the algorithm,
with varying scenario constraints and an increased number of
stakeholders that interact. Another option for future work is
using the possibility of the algorithm to adjust on dynamic
changes to participate in demand response or demand side
management. Furthermore we can select different recombina-
tion and mutation operators within the algorithm to compare
the performance operators. The real word scenario can be
expanded to bigger fleets and different use cases.
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