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Abstract Engineering methods and tools are seen as key for designing, testing,
deploying and operating future infrastructures. They accompany critical processes
from “cradle-to-grave”. Here we provide an overview of the user and business re-
quirements for engineering tools, including system development, modelling, visu-
alisation, commissioning and change in an SOA engineering environment. An ap-
praisal of existing engineering tools appropriate to IMC-AESOP, both commercial
and development prototypes are presented, culminating in the presentation of tool
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cartography graphically, defining the impact of these tools within the enterprise and
system lifecycle.

6.1 Introduction

Engineering of a new generation of very large-scale SOA-based distributed sys-
tems for batch and continuous process applications requires a new generation of
methods and tools. They need to support the lifecycle (e.g., design, configuration,
management and support) of new SOA-based system architectures, which must pro-
vide SCADA functional capabilities to meet user requirements for much greater
distributed control and decision-making abilities than current DCS system imple-
mentations.

Some 50% of the DCS platforms running process plants today are at least 20
years old with a large number of these at the end of their lifecycle. They typically
contain a mishmash of technology, which in turn requires a wide range of ad-hoc en-
gineering tools and methods to support them, limiting integration both vertically and
horizontally and making reconfiguration of systems, or their optimisation, difficult
to achieve effectively. There is a growing need to meet various migration require-
ments for both small and large system configurations in an efficient manner, and this
capability, to be provided via the identified core IMC-AESOP technology, needs to
be supported via specific engineering tools.

The shift from systems implemented via a predominantly centralised paradigm
to control and monitoring strategies based on a system of systems engineering ap-
proach [16, 15] with thousands of dynamic SOA-compliant devices requires a new
engineering methodology with requirements for new modelling and engineering ap-
proaches in order to enable such systems to be practically realised.

The approach adopted on the IMC-AESOP project was driven by user require-
ments derived from the studied use cases. These determined the required tools for
the considered SOA process control application(s), from which a tool cartography
has been created, as described in this chapter. In areas where suitable existing tools
either did not exist or lacked adequate functionality, new tools were developed or
existing ones extended to meet the requirements of the use cases. These are detailed
in section 6.3 along with the requirements they fulfil, how they were implemented,
and the results they produced.

The IMC-AESOP project has addressed the issues of DCS across differing indus-
trial/business domains, as highlighted by the different use cases, from real-time lu-
brication of mining machinery to heating management systems and district-heating
applications. The requirements of these applications are broad, and the engineering
content in each varies significantly. However, Section 6.4 describes how each of the
tools is used and categorises them as per their architectural level for each use case.
Finally the IMC-AESOP toolkit is identified, highlighting the tools recommended
to build the selected applications.
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6.2 Engineering Methods and Cartography of Identified Tools

The first activity constitutes the identification of tools and methods that are relevant
to the needs of the project, based on a study of the state of the art in engineer-
ing tools and methods for the development and support of SCADA and DCS sys-
tems. An overview is provided of the user and business requirements for engineer-
ing tools, from the SOA, system modelling and change management, application
and device design development and support perspectives. System simulation, visu-
alisation, commissioning and optimisation were also considered, together with an
overview of system-of-systems engineering from a tools and methods perspective.

6.2.1 SOA engineering methods

The engineering of distributed embedded systems requires the modelling and sup-
port of units of distributed functionality. Object-based specifications emphasize
structural decomposition, which facilitates the implementation of open and recon-
figurable systems, whilst industrial software standards such as IEC 61131-3 [4] pro-
vide mechanisms for functionally decomposing and programming and IEC 61499
[6] describes the modelling of communicating distributed function blocks. In this
case a system can be described as a composition of interacting components, such as
function blocks or port-based objects, which are then mapped onto real-time tasks.
Object and function-block based design uses a number of fundamental principles
such as encapsulation, aggregation and association of objects or components to build
applications.

However, whilst object- and component-based system software development is
well established in several domains, a major problem that has to be overcome is the
current informal and largely ad-hoc definition of application components. Ad-hoc
specification and design may severely limit component reusability. Therefore, it is
highly desirable to develop a formal framework that will allow for a systematic spec-
ification of reconfigurable components, which will be reusable by definition. Such
factors needed careful consideration in the realisation of the IMC-AESOP system
architecture and middleware which promote the building of applications comprising
interacting components from device level up to enterprise level.

6.2.2 System modelling, evolution and change management

In order to implement a smooth and consistent transition from a SCADA envi-
ronment developed via a classical (and often inhomogeneous and improvised) ap-
proach on proprietary, obsolete and rigid platforms into an open, standard, service-
oriented one, appropriate tools need to be realized for system modelling, evolution
and change management.
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The concept of application engineering tools needs to be considered in a broad
context including methodologies and soft skills in addition to the technological as-
pects.

• From the system- and information-modelling perspectives support is needed for
the following:

– A representation of the industrial environment with a standard recognized syn-
tax.

– The enrichment of models with related information as parameters, semantic
information, links with other objects and conditional functionalities.

– The definition of a hierarchy (taxonomy).
– An easy transposition in service architecture approach with automatic trans-

lation into XML syntax of metadata.

• Support for system change-management and evolution-management tools, al-
though beyond the scope of IMC-AESOP, are crucial for effective lifecycle en-
gineering. The management of change encompasses activities beyond data man-
agement, including people management, motivation and the ability to identify
key factors in complex environments.

6.2.3 Application design

Engineering tools to support the design of automation applications need to be imple-
mented in order to maximise the capabilities offered by the technological solutions
implemented at the shop floor level; this includes, but is not limited to, machine
mechanical modular design, distributed plug-and-play control systems, interfacing
to TCP-based networks and high level process management systems (e.g., ERP and
SCADA), as well as remote maintenance and monitoring systems, and support for
reusability and reconfigurability for effective design-change management.

Fig. 6.1 Automation System Design – Tool design requirement
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In summary, key aspects of application engineering tool capabilities are the fol-
lowing:

• Reconfiguration: Configuration and change of the application by the user.
• Process description and validation: Control application defined in the user’s

terms.
• Device support & maintenance: Support for embedded device.
• Real-to-virtual connectivity: Integration with virtual engineering.
• Process-to-business connectivity: Integration with business and production mon-

itoring/support applications.

6.2.4 Device development and support

Using SOA on embedded devices down on the factory floor can enable powerful
cross-layer possibilities. However, SOA protocols, originally developed for the en-
terprise domain impose heavy restrictions on their usage on resource-constrained
embedded systems. This is especially true in the context of a Wireless Sensor and
Actuator Network (WSAN). The relatively low bandwidth of a wireless network
is a limiting factor for network performance when sensing very large packets. The
commonly used protocol today for SOA in industrial automation is SOAP, using the
verbose XML language. The use of XML drastically increases the size of a message
containing sensor data. However, XML has excellent support today from a large
number of software vendors, which makes it an open and standardized way to ex-
change data between devices from different manufacturers using different operating
systems and applications. One benefit of the SOA approach is that message parsers
can be automatically generated for each message class. This reduces the need to
manually write software for the serialisation of messages.

Today, the two most widely used operating systems for wireless sensor and ac-
tuator networks are TinyOS from University of California in Berkeley, and Contiki
from the Swedish Institute of Computer Science, Stockholm, Sweden. Research is
currently being performed by researchers in both academia and the industry to move
SOA technology down to sensor node level. The application of a widely used op-
erating system combined with auto-generated message parsers enables system de-
velopers to re-use the existing code base to a large extent and mitigates the need to
develop proprietary communication protocols. Today, gSOAP is a commonly used,
proven, and stable tool to generate XML parsers. New solutions based on binary
XML, i.e. EXI, need new tools to be developed. The use of EXI will be an enabling
technology for SOA-based wireless sensor and actuator networks.
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6.2.5 Simulation

System simulation is advantageous both at design time and during the operational
phase. Simulation capabilities (i.e. the capabilities to simulate the time-dependent,
dynamic system behaviours) can potentially provide strong support for testing vari-
ous aspects of the system design in a virtual form prior to its final implementation in
order to minimise design errors and compress design time. Simulation capabilities
need to be provided for, and adapted to, each engineering application that the system
design involves (e.g. control, process, and mechanical) as shown in Fig. 6.2. How-
ever, domain-dependent simulation capabilities should be integrated in a form that
will enable multi-disciplinary engineering teams to assess the level of completion
and quality of their specific design with regard to the characteristics and behaviours
expected of the final system.

Fig. 6.2 Overview of simulation capabilities of automation system design tools

6.2.6 System visualisation

Application tools that provide system visualisation capabilities are typically user
or domain specific, i.e. they provide a representation of the system focused on the
requirements of a specific end user or domain of activity. For example, a process
automation system will be perceived differently by control, process, electrical or
mechanical engineers, and the tools used to visualise the system need to be specifi-
cally designed to their requirements, as illustrated in Fig. 6.3.

Simulation, visualisation and system engineering applications are typically tightly
linked so that visualisation tools provide both static and dynamic system represen-
tations during the system design phase. Visualisation tools should provide user-
specific views of a system. However, a common, intuitive, non-specific represen-
tation of the system to support cross-domains engineering collaboration and general
communication between project partners is also needed.
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Fig. 6.3 Automation system Visualisation tool

3D computer graphic representations are typically used to implement common
visualisation models of physical systems such as automation systems since a 3D vir-
tual system representation provides a view of the system as perceived by the human
physiological sensory system (i.e. sight) as opposed to the specific mental images
that various engineers might have of the system. Domain-specific system visualisa-
tion tools might make use of very different representations (e.g. IEC 61131-3 for
PLC control logic, state transition diagrams and Petri-net based representations for
discrete system behaviour visualisation, and flow-based chart/graphs for continuous
system visualisation).

6.2.7 System commissioning

The commissioning of a plant is a specific phase in the lifecycle. In this phase,
the equipment, especially the field devices, will be installed and adapted to the real
process requirements. Important tasks during commissioning include the identifica-
tion of the devices, including the device type information, and setting the correct
instance information, e.g. the tag names of the devices. Commissioning may be
subdivided into offline and online configuration activities. The offline configuration
can be started directly after the instrumentation is defined, capturing the types of the
required devices, their placement inside the plant and their addresses.

Functional information is required for device configuration. Typical technologies
providing such information, for offline as well as online configuration, are the Elec-
tronic Device Description Language (EDDL, IEC 61804-3)[22, 8], Field Device
Tool (FDT, IEC 62453) [7] or the upcoming approach of Field Device Integration
(FDI).
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Fig. 6.4 Levels of Interoperability [2]

6.2.8 Interoperability

In order to build distributed control applications the components of a system need
to communicate successfully. Engineering tools are required to support this integra-
tion, and where direct interaction is not possible, then wrappers and mediators must
be employed. Fig. 6.4 illustrates the levels of interoperability from no interoperabil-
ity and technical interoperability at the network level through syntactic, semantic
and pragmatic interoperability at the application level, to dynamic and conceptual
interoperability at the modelling level. Each of these is described below [2].

• Level 0: Stand-alone systems have No Interoperability.
• Level 1: On the level of Technical Interoperability, a communication protocol

exists for exchanging data between participating systems. Here the communica-
tion of simple data is achieved with the network protocols being unambiguously
defined.

• Level 2: The Syntactic Interoperability level introduces a common structure to
exchange information, i.e., a common data format is applied. On this level, a
common protocol to structure the data is used; the format of the information
exchange is unambiguously defined.

• Level 3: If a common information exchange reference model is used, the level
of Semantic Interoperability is reached. On this level, the meaning of the data
is shared; the content of the information exchange requests are unambiguously
defined.
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• Level 4: Pragmatic Interoperability is reached when the interoperating systems
are aware of the methods and procedures that others are employing. In other
words, the use of the data or the context of its application is understood by the
participating systems; the context in which the information is exchanged is un-
ambiguously defined.

• Level 5: As a system operates on data over time, the state of that system will
change, and this includes the assumptions and constraints that affect its data inter-
change. If systems have attained Dynamic Interoperability, then they are able to
comprehend the state changes that occur in the assumptions and constraints that
others are subject to over time, and are able to take advantage of those changes.
In particular when interested in the effects of operations, this becomes increas-
ingly important; the effect of the information exchange within the participating
systems is unambiguously defined.

• Level 6: Finally, if the conceptual model is a meaningful abstraction of reality,
the highest level of interoperability is reached: Conceptual Interoperability. This
requires that conceptual models be documented based on engineering methods
enabling their interpretation and evaluation by other engineers. In other words,
on this we need a “fully specified but implementation independent model” and
not just text describing the conceptual idea.

6.2.9 Cartography of identified tools

Within the IMC-AESOP project a study was carried out to compare practically
available enabling technologies for application systems engineering, which might
be utilised within the scope of the project. The coverage takes a selective and criti-
cal look at available candidate engineering tools.

Summaries of the strengths and weaknesses of the evaluated engineering tools
provide a broad indication of their capabilities against selected criteria for control,
enterprise integration, supply-chain/lifecycle support, and virtual engineering. This
information was helpful in understanding what aspects of current toolsets were ap-
plicable in the context of the project use cases. As a result of this study, tools suitable
for use on the IMC-AESOP project were identified.

As can be seen in Fig. 6.5 above, the coverage of the tools is potentially suffi-
cient to allow the whole lifecycle and all architectural levels to be supported. There
is, however, a large amount of overlap between many of the tools, and support is
highly fragmented. It should be noted that this overlap does not necessarily im-
ply duplication, as different aspects (either complimentary or unrelated) may be
covered. Table 6.1 describes the selected engineering tools that were subsequently
identified for use in IMC-AESOP.
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Fig. 6.5 Overview of Tool Cartography

6.3 Prototypes of critical tools, including system modelling and
analysis methods

Based on the analysis of the requirements of the IMC-AESOP use cases against the
tool capabilities described in section 6.2, critical new tools or tool-extensions were
identified and developed within the project. In particular:

1. EXI Compression. See section 4.2.2
2. Ignition SCADA OPC-UA API. See section 4.2.4
3. Electric car charging optimiser. See section 9.3.2.
4. Orchestrators. See section 9.3.2
5. Service bus configurator. See section section 7.3.3
6. Aggregations services. See section 9.2.3
7. Process Definition Environment, PDE toolkit. See section 10.3
8. Continuum. See section 10.3

The following sub-sections briefly review the emerging tool developments under-
taken on the project highlighting the requirements addressed, the implementations
undertaken, and the results achieved.
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Table 6.1 Engineering tools

Name Description

Control Build Applica-
tion Generator

Control Build is dedicated to the needs of control systems engi-
neers, providing standards-based (IEC 61131-3) programming lan-
guages and integration into HMI/SCADA systems; it is positioned
well for PLC / distributed system development[11]

PDE Toolkit The PDE toolkit supports a component-based approach to systems
engineering. On the IMC-AESOP project it enabled application
logic for three of the use-cases to be defined in a state-based man-
ner and supported the creation of an integrated 3D visualisation of
the system behaviour in each case. [11]

SAP MII SAP Manufacturing and Intelligence (MII) [24] is a tool that pro-
vides the capability of integrating business logic within monitoring
and visualizing KPIs. Additionally it is fully integrated via enter-
prise services with other systems such as ERP, CRM, etc. In IMC-
AESOP this was used to demonstrate the creation of flexible mon-
itoring event-driven KPIs, visualisation of business-relevant data
and integration with shop-floor devices.

Cross-layer
integration tools

Honeywell prototype engineering tools for the configuration and
maintenance of plant information models to support cross-layer in-
tegration by maintaining consistency between individual layers of
the process plant hierarchy [5].

ARIS – Architecture of
Integrated Information
Systems

ARIS is designed to provide a framework in which business compo-
nents and interactions may be described and stored in detail. These
components may then be used to build and analyse business pro-
cesses to provide more effective business processes. ARIS was used
in the IMC-AESOP project to design, store and analyse the business
process including the interaction between stakeholders in the sup-
ply chain [13].

Microsoft
Stream-Insight

Microsoft’s StreamInsight [18] provides a flexible platform to en-
able low-latency complex event processing. These capabilities were
used in IMC-AESOP to provide a general-purpose service enabling
alarm processing, monitoring and system diagnostics in a very
adaptable way [1].

DOME Tools The Distributed Object Model Environment (DOME) Toolset from
ifak is a suite of tools used on IMC-AESOP to support the engi-
neering and commissioning of SOA-based applications. The toolset
provides translation from the object notation language (DOME-L)
to a target language (currently C++), as well as tools for debugging,
network discovery, examination and connection of automation de-
vices providing DOME functionality. [21].

6.3.1 EXI Compression

Requirement: In order to support device development, as has been stated in 4.2.2,
EXI is a promising technology to compress the amount of data being transmitted
over the network. No open-source implementation of the EXI specification had been
identified that was specially targeted at resource-constrained devices. By creating a
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suitable tool, it was possible to encode up to ten times smaller standard service
messages (XML) on extreme resource-constrained sensor and actuator devices.

Implementation Description and Use: The tool was developed from scratch using
a modular design and portable source code. The tool was used extensively during
the IMC-AESOP demonstrations related to the LKAB ore processing and district
heating application use-cases for implementing light-weight SOAP and RESTful
Web services.

Results: The developed tool is open source (exip.sourceforge.net), has been
downloaded more than 1600 times, and is already being used in projects outside
IMC-AESOP. The current version of the tool is in alpha form, and there is a need
for more testing to make the code stable enough for production use. The tool comes
with both user- and developer-documentation that is up to date and in use by con-
tributors and end-users alike.

6.3.2 Ignition SCADA OPC-UA API

Requirement: As described in 4.2.4 OPC-UA is a widely accepted standard for pro-
viding interoperability between devices and systems. For the IMC-AESOP project
Ignition SCADA was the chosen SCADA solution which supports OPC-UA. To in-
tegrate Ignition SCADA with DPWS an OPC-UA API was be created. Ignition is
an industrial application server from Inductive Automation [9], used to create HMI,
SCADA, and MES systems. Ignition (formerly FactorySQL and FactoryPMI) is a
mature and well-tested application. The feature list includes:

• Web-based gateway configuration and HMI drag-and-drop editor.
• A rich set of visual components free for end-users.
• Database-centric architecture.
• Advanced reporting and alerting mechanisms.
• Designed from the ground-up for scalability.
• Implemented in Java, so it can be run on a wide range of platforms, on all major

operating systems.
• Control system access on mobile device.

State-of-the-art SCADA systems are capable of supporting almost any industrial
communication protocol, such as Modbus, Profibus and DeviceNet. In the case of
DPWS embedded devices, however, such support does not currently exist. It was
therefore necessary to develop a SCADA plug-in that would enable this functional-
ity in a commercial SCADA system, in this case the Inductive Automation Ignition
system.

Implementation Description and Use: A new gateway module was created on
IMC-AESOP containing a DPWS client stack. This client stack will discover DPWS
devices and create representations of the devices as nodes in the OPC-UA Address
Space. Any OPC-UA client connecting to the Ignition OPC-UA server must be able
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Fig. 6.6 Generic Mapping from DPWS to OPC-UA for Device Object Model [19]

to invoke operations and subscribe to events on the discovered DPWS devices, us-
ing the OPC-UA service sets. The Ignition SDK, a collection of libraries and sam-
ple code for creating custom Ignition Modules, was used to achieve this mapping.
A “generic mapping” is shown in Fig. 6.6 (www.inductiveautomation.com/scada-
software). The MethodSet gathers all the methods that are exposed to the client, and
the ParameterSet gathers all parameters of the device. The FunctionalGroups rep-
resenting the hosted services organizes the methods and parameters of the device.
Multiple FunctionalGroups can reference the same methods and parameters. Asyn-
chronous push-mode events defined in WS-Eventing do not clearly fit into the OPC-
UA for Devices Object Model. One approach is shown in Fig. 6.6, although many
different approaches could be designed. Events are grouped in a separate functional
group, nested within the Hosted Service, with the appropriate output parameters and
a method for subscribing and unsubscribing to each event.

Results: A new DPWS Driver was written using the Ignition SDK, and includes
JMEDS. The DPWS Driver module:

• Uses WS-Discovery to dynamically discover all DPWS devices in the network.
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• Creates, manages, updates, and deletes representations of the devices in the OPC-
UA Address Space and in the Ignition SQLTags system and maintains consis-
tency between the two representations.

• Connects the actual device with its representation in the OPC-UA Address Space.
• Handles communication with the discovered devices, including subscription

management, receiving events, and operation invocations and responses.

6.3.3 Electric car charging optimiser

Requirement: The requirement for optimisation of electric car charging is that ex-
cess energy from the power plant be used in order to charge electric cars in a cost-
optimized way. Here the requirement is to build an optimized scheduling of the
charging of electric cars in order to adhere to constraints set (e.g., the available en-
ergy, electricity price, minimum electric car charging requirements). To do so, a
service has been developed that tries to charge all electric vehicles to specified en-
ergy levels within a limited timeframe (i.e., by the car’s expected departure time),
while trying to exploit fluctuating electricity costs and respecting maximum power
limits.

Implementation Description and Use: The orchestrator brings together the fol-
lowing systems:

1. Plant simulator
2. Electric Car Optimizer (running in the SAP HANA Cloud)
3. Energy Market (running as an Internet public service)

The service has been implemented in Java and runs in the SAP HANA Cloud [23].
It is called by the orchestrator, which transmits data about the available cars, their
requirements and their needs, as well as information about the power plant’s energy
production limits and costs. The interface is implemented as a set of REST services.

Results: The electric car charging optimiser could play a crucial role in the
smoothing out of power consumption and making energy production more efficient.
It was shown that a cloud service providing this functionality is viable and can em-
power more sophisticated scenarios. Additional info can be found in Chapter 9.

6.3.4 Orchestrators

Requirement: An application (Matlab/Simulink) has been used in order to simulate
the power plant itself as well as the cars that get charged. As this is currently a private
simulation and not a public service, an “orchestrator” is required to act as the glue
between the three different systems. Further to this, the Orchestrator also hosts the
logic for contacting the energy bidding agent and passing it all the necessary data
for acting in the energy market.
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Implementation Description and Use: The orchestrator logically integrates the
Plant Simulator with the Electric Car Optimizer running in the SAP HANA Cloud,
and the Energy Market that runs as an Internet public service [10].

Results: The implemented orchestrator plays a crucial role:

1. In acting as a mediator between the different technologies, e.g., between OPC-
UA and REST.

2. As a management point during the whole lifecycle of the simulated scenario.
3. As an instrument to collect real time data for date collection and analysis.

Additional info can be found in Chapter 9.

6.3.5 Service bus configurator

Requirement: The Distributed Service Bus middleware applied on IMC-AESOP re-
quired some configuration and monitoring capability. The identified needs included:

1. Monitoring of discovered Service Bus nodes and managed devices.
2. Enabling/ disabling specific interfaces.
3. Security configuration (Role Based Access Control).
4. Management of Service Bus built-in services, including time synchronisation.

In order to facilitate the deployment and maintenance of this tool, a Web client
solution, served by one or several Service Bus bricks, was preferred.

Implementation Description and Use: The Configurator has been implemented
as a Web application, using the popular Google Web Toolkit development frame-
work. This framework allows developers to write the client application in the Java
language and then convert it to AJAX (Asynchronous JavaScript).

Results: The implementation proved to be successful, providing a stable and ef-
ficient tool to monitor the Distributed Service Bus, and it has been demonstrated in
the lubrication application of use case 1. The Configurator tool was used, in particu-
lar, to manage time synchronisation between the Service Bus and other demonstrator
components (Mediator and CoAP), monitor managed devices (AS-I and CoAP), and
monitor the LKAB application logic that was running on the Service Bus itself.

6.3.6 Aggregation services

Requirement: The orchestration of services is a core concept in Service-Oriented Ar-
chitectures (SOA). This is basically about creating new, added-value services out of
existing services and is a concept that was established from the beginning of SOA.
There are a number of specifications available to assist in the composition of ser-
vices. The most prominent one is probably WS-BPEL[20]. Others either deal with
the orchestration or choreography of services. Within IMC-AESOP the focus was
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on providing a service or a tool for helping in the real-time analysis of a large num-
ber of events from multiple sources. In this case the service that processes data is a
Complex Event Processing (CEP) service. Currently, services are being deployed at
device level, such in the Internet of Things, which is advocated by the IMC-AESOP
project. These services may be considered as data services providing a continuous
stream of data. The CEP service may be regarded as an event broker with analytics
capabilities and with the ability to connect stack services, making it possible to:

1. Define the flow of events (data) by topics.
2. Define queries (analytics) processing incoming data by topic.
3. Define consumers of events by topics.

Implementation Description and Use: To enable the definition of events and top-
ics in an easy way a “CEP Server Launcher Designer” tool has been developed. This
tool (see Fig. 6.7) helps to define a list of services that act as sender (e.g. Alarm),
consumer (e.g. Dashboard) or broker (e.g. Configuration). The CEP Server is a spe-
cial instance since it accepts query definitions. Each connection is annotated with
the name of the topic. The direction of the arrow (from Alarm to CEP Server) shows
the direction of the event flow.

Fig. 6.7 CEP Server Launch Designer

Results: So far the tool has been used internally. Functionally it provides an ef-
fective solution, but quantitative results have not yet been collated.
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6.3.7 Process Definition Environment, PDE toolkit

Requirement: The IMC-AESOP project requires the building and integration of
application-related services across a range of systems. The Process Definition Envi-
ronment (PDE) enables the definition of relationships between system components
in support of orchestration or choreography. The PDE toolkit enables systems com-
posed of many logically interlocked components to be visualized and validated.

Fig. 6.8 Process Definition Environment (PDE)

Implementation Description and Use: On the IMC-AESOP project the PDE
toolkit was used to validate and visualize Use Cases 1 and 4 for lubrication and
building systems, respectively [11]. This is illustrated in Fig. 6.8. Routing logic de-
fined within the PDE toolset enables the material or product flow in the system to
be simulated. This in conjunction with a simulation engine enables each application
to be observed and validated. The state-based components within the system can
be stored in a library with their associated 3D visualisations. The PDE toolkit [12]
employs a simulation engine that requires the definition of how the outside world
(e.g., product or process parts) interacts with the machinery. This process knowl-
edge, typically defined by a process engineer, is entered into a routing, which in
turn drives the input of the sensors in the simulation, which drives the application
to react to fulfil the desired logic. Once the control has been validated, it can poten-
tially be downloaded to orchestration engines on a range of SOA devices; however,
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this phase was beyond the scope of IMC-AESOP although it is a major objective
for future work. The PDE tool supports the deployment of the application logic to
orchestrators at potentially any level in the target architecture on a range of target
devices.

Results: The PDE toolkit has been successfully used to simulate the behaviour
of components in the lubrication application of Use Case 1 and verify the behaviour
of the district heating system in Use Case 4 as depicted in Chapter 10. Break points
have allowed the scenarios defined in these use cases to be quickly evaluated. The
inclusion of processes has created the ability to “manage” the automation system
using the high-level process view. This results in the control system being easier to
understand from a maintenance point of view and in the case of Use Case 4 provides
the ability to run different processes based upon external factors, such as long-range
weather forecasts.

6.3.8 Continuum

Requirement: With the Continuum tool [17] it was possible to create very large con-
trol and monitoring structures by using the formal method “High-level Petri Nets”
(HLPN). Related to the HLPN theory there are a range of analysis and validation
possibilities. The Continuum tool provided a lot of these important functionalities.
Based on analysis and validation results, calculated from the tool, it was much eas-
ier to introduce the simulation of complex monitoring and control systems in the
next step. The start of the implementation of the Continuum tool was in the EU FP6
SOCRADES project where the first control structures were built with this tool. In
this project the Continuum tool helped to solve the challenge to design very complex
control structures for very large control and monitoring systems in a rapid manner.

Implementation Description and Use: The performance challenge was solved by
parallelising the algorithms and by using GPUs for the new algorithm design. The
company NVIDIA provides a framework called CUDA for parallel programming
needs, which was used for the parallelisation. The performance of the Continuum
tool is now growing with the increasing performance of NVIDIA GPU technologies.

Results: With support from this tool it was possible to generate monitoring and
control structures in a very fast way for very large systems. Continuum is a powerful
prototype tool with the potential to be extended in the future to a mature engineering
tool. First publications are available describing a graphical engineering interface and
method that will provide a very easy engineering method. The approach is simple
to apply even to very complex control and monitoring structures in a system-of-
systems paradigm, with automatic support for analysis and validation by the tool.
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6.4 Engineering Toolkit Application to Use Cases

In order to explain and classify methods and tools employed in the different engi-
neering processes associated with the design, development and commissioning of
SOA-based monitoring and control systems on the IMC-AESOP project, architec-
tural levels (e.g. field device, process control system and enterprise management),
as defined by the standard ISA-95, have been used. The four use cases introduced
in Chapter 1 are presented below, with regard to their functional and architectural
aspects, in relation to engineering methods and tools utilized to engineer each of
them. The set of tools used in each use case is presented in a diagram, showing the
mapping between tools and the addressed ISA-95 architectural levels.

Fig. 6.9 ISA-95 Layers [3]

6.4.1 ISA-95 Layers Applied to the Categorisation of IMC-AESOP
Tools

A brief description of the ISA-95 standard is included here for completeness. The
standard consists of several layers[3]:

• ISA-95 Device Level 0-1: ISA-95 device level consists of levels 1 and 0 in the
standard. Level 1 is the level for sensing and manipulating the production pro-
cess, usually consisting of sensors and actuators. Level 1 is connected to Level 0
which is the actual production process, more specifically described as the actual
physical process. The device level consists of usually small resource-constrained
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devices that link the service architecture to the production process. The impor-
tance of a semantic Web service approach at the device level can be found in
[14]

• ISA-95 Control/ SCADA Level 2: In general terms this level is concerned with the
control and visibility of production processes. This does not include the real time
control of processing equipment, which is the concern of Level 1, but chiefly
the integration, e.g., the orchestration or choreography of devices, in the Level 1
controllers to achieve specific tasks related to recipes or production objectives.
This may be in the form of either orchestration or choreography of devices (e.g.,
in discrete manufacturing), or supervisory multivariable control of the steady
state operation (e.g., in the continuous process industry).

• ISA-95 MES Level 3: Manufacturing Execution System (MES) is referred to as
Level 3 in the ISA-95 standard. The MES level handles workflow and recipes,
among other things, in order to produce the desired products.

• ISA-95 ERP Level 4: ISA-95 is a standard developed to address the interface be-
tween enterprise and control systems. More specifically, it addresses integration
with the production/MES layer as well as B2M transactions. Level 4 as described
in ISA-95 deals with business planning and logistics, including plant produc-
tion scheduling and operational management. The timeframe here could be days,
weeks, months or shifts, considerably longer than at the other lower levels.

The discussion now moves to focus on the different use-cases and the mapping
of tools to these layers.

6.4.2 Use Case 1: Migration of a Legacy Plant Lubrication System
to SOA

The objective of use case 1 was to demonstrate the migration of an existing lubri-
cation system in an industrial process plant to the IMC-AESOP architecture. Lubri-
cation systems represent one of the most important types of support systems seen
in such industries. Although such lubrication systems are critical for good perfor-
mance, they are often implemented as black-boxes with limited system integration.

The tools utilized to engineer the migration of the plant lubrication system to
SOA are described below.

• C compiler (GCC): A compiler is required to translate the human readable source
code into binary code for processors and microcontrollers. The Mulle module
uses a Renesas M16C microcontroller. The GNU Compiler Collection consists
of a C and several other compilers. GCC supports many different development
and target systems. With cross compiling it is possible to develop software on an
ordinary PC and compile it to a completely different system e.g. running on an
x86 PC.

• Timber: Timber is a functional programming language derived from Haskell.
Timber is event driven using reactive objects. The compiler compiles from Tim-
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ber to intermediate C code that is parsed to GCC. Other intermediate options
like Low Level Virtual Machine (LLVM) are investigated by other organisations.
Earlier versions of Timber were interpreted.

• Flasher: Flasher is a software kit to program flash memories on the Mulle mod-
ule. Mulle uses a Renesas M16C microcontroller connected to external flash
memories.

• CoAP/EXI: CoAP can support several transfer methods, ranging from human
readable XML to more efficient binary methods. In order to enable efficient XML
Interchange, EXI has been chosen for this use case due to several performance
advantages, such as reduced memory footprint and shorter packets that are more
likely to fit in a single (radio) frame. For embedded devices and sensors in partic-
ular memory resources are often scarce. Fewer radio frames increase reliability
and battery life.

• SOA4D DPWS Toolkit: One of the major results of recent R&D projects like
ITEA2 SIRENA and European FP6 SOCRADES has been a DPWS implemen-
tation called SOA for Devices (www.soa4d.org). This implementation has been
further improved for the IMC-AESOP approach and used in this use case. Specif-
ically, the SOA4D toolkit is utilized to implement the DPWS support in the ser-
vice bus, both for the communication with a mediator component and for the
communication with a Smart Meter Emulator.

• Smart Meter Emulator: A simulator for the energy-related aspects of devices tar-
geting smart metering and costs has been developed. It gives the possibility to
interact via DPWS and REST with the devices and additionally supports device
lifecycle management (e.g., for start/stop/add/remove) of any device, flexible de-
scription of classes of devices and their behaviour (done in XML configuration),
adjustment of energy prices that are used for operational cost calculation, and
support for automated creation of a large number of devices to ease tests (done
via XML configuration).

• TinyOS: TinyOS is designed for low-power wireless devices like Mulle. TinyOS
partially supports IPv6 and CoAP. UDP is supported with TCP in prototype form.
For CoAP GET & PUT methods are supported, but neither POST nor DELETE
are supported.

• Mozilla Copper plug-in: This plug-in provides a handler for the “CoAP” URI
scheme to Mozilla Firefox. With this plug-in capability Firefox can be used for
troubleshooting and for some configuration during commissioning.

• Service Bus Configurator: The Service Bus middleware is intended to run on
industrial embedded devices. Such devices typically have very limited HMI ca-
pabilities. The Service Bus however needs some means for its configuration and
monitoring. This has been achieved through a Web-based application hosted on
each device, called a Service Bus Configurator. This application relies on Rich
InteLTUrnet Application concepts and has been written using the Google Web
Toolkit software development kit. The Configurator application is downloaded
from any device hosting the Service Bus into a Web browser running on a com-
puter connected to this device. Communication between the Configurator and the
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Service Bus is based on RESTful Web services. Features that can be configured/-
monitored using the Service Bus Configurator include:

– Adding a new device to the Service Bus (e.g., CoAP edge router and AS-i
gateway . . . )

– Monitoring devices/services composing the Service Bus (status, configuration
parameters . . . )

– Configuring/monitoring event broker topics and subscriptions
– Service Bus system events

• WinCC Open Architecture: WinCC-OA [25] is a complex and flexible object-
oriented SCADA system that is implemented on the Maintenance station as an
HMI solution for the lubrication system.

• Step 7: The SIEMENS Step 7 [26] programming environment has been used
to investigate the legacy PLC-code in the lubrication system. The result of this
analysis was a humanly readable functional description that was then used to
implement the SOA-based replacement system functionality that resulted from
the migration process.

• PDE Toolkit: Provided system application logic simulation, validation and pro-
cess visualisation. The lubrication system configuration was modelled from its
constituent components, e.g., values and pumps, supporting both their state be-
haviour and 3D schematic visualisation.

Fig. 6.10 Use Case 1 Plant Lubrication Application- Tool mapping into the ISA-95-levels

Fig. 6.10 illustrates how the tools used in Use Case 1 correspond to the ISA-95
levels.
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6.4.3 Use Case 2: Implementing Circulating Oil Lubrication
Systems based on the IMC-AESOP Architecture

Oil lubrication systems are commonly used in paper machines where hundreds of
lubrication points are needed. In general, for the implementation of this use case
two different types of tools were used:

1. Development and Deployment tools were used to create, program and configure
the necessary behaviours and functions of the use case.

2. Testing tools used to test the developed and deployed system.

Development tools used:

• Apache ServiceMix: A platform providing useful functionality for integrating
technologies internal to components, and WS frameworks for exposing services.

• Apache Camel: An open source integration framework based on enterprise inte-
gration patterns, which provides connectivity to a wide array of technologies/-
transports/protocols/APIs, included in ServiceMix.

• Jetty: A simple HTTP server, which can be used for consuming and producing
HTTP requests.

• WS4D-JMEDS (Web services for Devices – Java Multi-Edition DPWS Stack):
An open-source stack for developing DPWS clients, devices, and services.

• JAX-WS: (Java API for XML Web services) A Java API for developing Web
services.

• WCF (Windows Communication Foundation): Windows runtime API for devel-
oping SOA applications in C#.

• StreamInsight:A platform for developing and deploying CEP applications from
Microsoft

• Ignition Server: A commercial HMI/SCADA system with integrated OPC-UA
server.

• Ignition Developer API: An application programming interface for developing
custom modules for the Ignition Gateway, Designer, or Client in Eclipse.

• Eclipse BPEL Designer: A graphical editor for creating BPEL processes.
• Orchestration Engine: A tool developed for executing WS-BPEL processes.

Testing tools used:

• WCFStormLite: For testing WCF Services.
• DPWS Explorer: For testing services on DPWS devices.
• UA Expert: A free OPC-UA Client for testing OPC-UA and DPWS integration.

Fig. 6.11 shows the ISA-95 level for these tools in a graphical form.
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Fig. 6.11 Use Case 2 Circulating Oil Lubrication Application- Tool mapping into the ISA-95-
levels

6.4.4 Use Case 3: Plant Energy Management

The main objective of this use case 3 was to highlight advantages of service ori-
entation, event-driven processing and semantics for easier configuration, dynamic
synchronisation and maintenance of complicated multi-layer solutions, which are
needed today in continuous process plants.

Tools used:

• Matlab Simulink: multi-purpose dynamic simulation environment, which was
used for development of the power plant dynamic model.

• Honeywell UniSim: proprietary simulation environment for development, valida-
tion and real-time execution of dynamic process models.

• Honeywell Profit Suite: a framework with a set of proprietary tools for develop-
ment, configuration, and deployment of control applications.

• Microsoft StreamInsight: a framework for implementation of Complex Event
Processing applications.

• Eclipse for JAVA implementation and Microsoft Visual Studio for C++ imple-
mentation.

• Information model building tools: Address Space Model De-signer (ASMD),
XML editor and OPC-UA Model Compiler. tools were used to create the OPC-
UA address space. This includes nodes, attributes and their mutual relationships.

• The data binding tool: for binding of the data items inside a server address space
to external data sources.

• Information model configuration tool: for the chained Level 2 servers where it
allows to create an instance of a sub-system and define device, topology, and
binding views.

• Electric Vehicle Scheduler/Optimizer: schedules in a optimal way (under con-
straints) the electric cars of the company. It is implemented as a cloud service
(REST) based on SAP HANA Cloud.
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• Orchestrator: used to integrate among the Matlab simulator (via OPC-UA), the
Electric Vehicle Scheduler/Optimizer (via REST service calls), and the Energy
Market (via REST service calls).

• Energy Market: Offers the ability to trade (buy and/or sell) energy on local energy
markets as envisioned in the SmartGrid era. It is running as an Internet REST
service.

Fig. 6.12 illustrates how the tools used to engineering the use case 3 correspond
to individual ISA-95 levels.

Fig. 6.12 Use Case 3 Plant Energy Management - Tool mapping into the ISA-95-levels

6.4.5 Use Case 4: Building a System of Systems with SOA
Technology – a Smart House Use Case

The goal of the District Monitoring use case is to demonstrate the application of
the IMC-AESOP architecture in a complex and heterogeneous environment that
can enhance the overall comfort and reduce operating costs in residential areas. The
application of the IMC-AESOP architecture will allow integration and configuration
of operational parameters of various district systems, such as heating, electricity, and
transportation.

Below is a description of the tools used in the development and implementation
of the District Monitoring use case. The tools are categorized in three types: Devel-
opment and Deployment tools used in the development phase, Core tools that im-
plement the required functionality during the exploitation phase, and Testing tools
used to verify the behaviour of the system.

25

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234


Harrison et al.
6.4. Engineering Toolkit Application to Use Cases

Tools used:

• Integrated Development Environment (IDE): the prototype development used
IDEs, such as Eclipse, to assist in the software implementation. This tool was
used in all the components of the system in the Development and deployment
phase.

• Mulle developing kit: This includes a C cross-compiler for Renesas M16C micro-
controller (m32c-elf-gcc), a flasher (sflash) to deploy the programs and help
libraries available from EISTEC AB. This tool was used for the Mulle com-
ponents, iRoad/iPark devices and the Car HMI. The C cross-compiler and the
flasher are Development and Deployment tools while the help libraries are Core
tools.

• Contiki: A light-weight OS for IoT devices. This OS provides concur-rent pro-
graming and network stack for resource constrained devices. It is a Core tool
that is the foundation of the functionality provided by the Mulle and iRoad/iPark
components.

• Timber compiler and run-time: Used for the real-time CEP simulations in the
District management system. It is both Development and Deployment tool and
Core tool that execute during the exploitation phase.

• CoAP/EXI RESTful engine: An integration of libCoAP or Contiki built-in CoAP
implementations and EXIP. It is a Core tool used to provide RESTful Web ser-
vices in Mulle components, Visualisation console, iRoad/iPark and Car HMI de-
vices.

• Mozilla Copper plug-in: It is a web-based interface that is used to test the CoAP
interfaces in Mulle components, Visualisation console, iRoad/iPark and Car HMI
devices. The tool’s category is Testing.

• Complex Event Processing Engine: The CEP engine is based on the Microsoft
StreamInsight software for developing CEP applications. This tool is categorized
as both a Core and a Development and Deployment tool.

• PDE tookit and simulation engine: This component-based engineering environ-
ment was used to simulate and visualise the control behaviour of the system. The
PDE toolset includes an integrated 3D system visualisation capability and a sim-
ulation engine. Once verified the control logic can be deployed to an associated
orchestration engine on runtime control systems on a range of platforms.

• Continuum: This tool was used in conjunction with the output of the PDE tool
to formally analyse different orchestration topologies and verify different system
behaviours under varying conditions. Among others, structural and behavioural
orchestration specifications can then be validated, e.g., the cyclic and deadlock-
free evolution of the system.

Fig. 6.13 depicts the tools used in use case 4 and how they correspond to indi-
vidual ISA-95 levels.
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Fig. 6.13 Use Case 4 Building System of Systems with SOA Technology – a Smart House – Tool
mapping into the ISA-95-levels

6.5 Conclusions

The methods, tools and practices needed to engineer the next generation SCADA/DCS
systems will necessarily vary with the characteristics of the plant and the use cases
involved. Nevertheless, on the IMC-AESOP project it has been possible, across the
four use cases studied, to extract the common elements to produce an effective IMC-
AESOP engineering toolkit, to aid anyone wishing to engineer a SOA-based ISA-
95 multi-layered system solution. Fig. 6.14 summarises the IMC-AESOP tools that
could be used to build SOA-based SCADA/DCS applications.

Fig. 6.14 IMC-AESOP Tool mapping into the ISA-95 levels
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Device level support can be provided by CoAP and EXI, using the service bus
configurator for integration of devices built using development tools such as Timber
and the Mulle development kit, which are deployed on devices running FreeRTOS,
TinyOS and Contiki.

SCADA functionality can be provided by Ignition and WinCC-OA using the pro-
totype OPC-UA interface for integration with the devices, whilst system modelling,
simulation and visualisation is supported by the PDE toolkit for simulation and Con-
tinuum for verification. The HANA Cloud is used to provide manufacturing execu-
tion system functionality.

The enterprise level tools highlighted by IMC-AESOP are the Eclipse BPEL de-
signer and a BPEL orchestrator to execute them. Finally Microsoft’s StreamInsight
has been employed for the aggregation and processing of events generated by large
scale systems as well as for integration of disparate systems, as part of a system-of-
systems approach.

The combined use of these tools allows the engineering of complete applications
in which components from any level of the ISA-95 can be integrated to provide a
coherent SOA-based SCADA/DCS solution, such as the ones described in Chapters
7-10.
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