
Chapter 4
Promising Technologies for SOA-based
Industrial Automation Systems

François Jammes, Stamatis Karnouskos, Bernard Bony, Philippe Nappey, Armando
W. Colombo, Jerker Delsing, Jens Eliasson, Rumen Kyusakov, Petr Stluka, Marcel
Tilly, Thomas Bangemann

Abstract In the last years Service-Oriented Architectures have been extensively
used in order to enable seamless interaction and integration among the various het-
erogeneous systems and devices found in modern factories. The emerging Indus-
trial Automation Systems are increasingly utilizing them. In the cloud-based vision
of IMC-AESOP such technologies take an even more key role as they empower
the backbone of the new concepts and approaches under development. Here we re-
port about the investigations and assessments performed to find answers for some
of the major questions that arise as key when technologies have to be selected and
used in an industrial context utilizing Service-Oriented Architecture (SOA) based
distributed large scale Process Monitoring and Control system. Aspects of integra-
tion, real-timeness, distributeness, event-based interaction, service-enablement etc.
are approached from different angles and some of the promising technologies are
analysed and assessed.

François Jammes, Bernard Bony, Philippe Nappey
Schneider Electric, France e-mail: francois2.jammes@schneider-electric.com,bernard.bony@
schneider-electric.com,philippe.nappey@schneider-electric.com

Stamatis Karnouskos
SAP, Germany e-mail: stamatis.karnouskos@sap.com

Armando W. Colombo
Schneider Electric & University of Applied Sciences Emden/Leer, Germany e-mail: armando.
colombo@schneider-electric.com,awcolombo@technik-emden.de

Jerker Delsing, Jens Eliasson, Rumen Kyusakov
Luleå University of Technology, Sweden, e-mail: jerker.delsing@ltu.se,jens.eliasson@ltu.se,
rumen.kyusakov@ltu.se

Petr Stluka
Honeywell, Czech Republic e-mail: petr.stluka@honeywell.com

Marcel Tilly
Microsoft, Germany, e-mail: marcel.tilly@microsoft.com

Thomas Bangemann
ifak, Germany e-mail: thomas.bangemann@ifak.eu

1

francois2.jammes@schneider-electric.com, bernard.bony@schneider-electric.com, philippe.nappey@schneider-electric.com
francois2.jammes@schneider-electric.com, bernard.bony@schneider-electric.com, philippe.nappey@schneider-electric.com
stamatis.karnouskos@sap.com
armando.colombo@schneider-electric.com, awcolombo@technik-emden.de
armando.colombo@schneider-electric.com, awcolombo@technik-emden.de
jerker.delsing@ltu.se, jens.eliasson@ltu.se, rumen.kyusakov@ltu.se
jerker.delsing@ltu.se, jens.eliasson@ltu.se, rumen.kyusakov@ltu.se
petr.stluka@honeywell.com
marcel.tilly@microsoft.com
thomas.bangemann@ifak.eu

Jammes et al.
4.1. Introduction

4.1 Introduction

Current industrial process control and monitoring applications are facing many chal-
lenges as the complexity of the systems increases and the systems evolve from syn-
chronous to asynchronous. When hundreds of thousands of devices and service-
oriented systems are asynchronously interconnected and share and exchange data
and information, i.e., services, for monitoring, controlling and managing the pro-
cesses, key challenges such as interoperability, real-time performance constraints,
among others, arise and need to be addressed.

The SOA-based approach proposed by the European R&D projects SOCRADES
and subsequently IMC-AESOP [12], is addressing some of those challenges. The
vision pursued is shown in Fig. 4.1; according to which the industrial process envi-
ronment is mapped into a “Service Cloud”, i.e. devices and applications distributed
across the different layers of the enterprise are exposing their characteristics and
functionalities as “services”. Additionally these devices and systems are able to ac-
cess and use those “services” located in the cloud [10, 13, 11].

 Cloud
 Service
 Integration

PLC

Services

MES

Services

GW / Mediators
for Legacy Devices

Services

DCS

Services

Next Generation
SCADA/DCS Systems

Ubiquitous
HMIs

Device

Services

SCADA

Services

ERP, CRM,…

Services

Fig. 4.1 IMC-AESOP Approach: a Distributed Dynamically Collaborative Service-oriented
SCADA/DCS System

The outcomes of the first set of industry technology investigations and pilot ap-
plications carried out according to the IMC-AESOP project vision [12, 13], reveals
four major challenges that may need to be addressed:

I Real-time SOA: Determine the real-time limits of bringing SOA inside the high
performance control loops of process monitoring and control (e.g. is it possible
to provide service-oriented solutions targeting the one millisecond performance
range?)

2

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.2. Internet Technologies for Industrial Automation

II Large scale distributed process control and monitoring system: Is it feasible to
dynamically design, deploy, configure, manage and maintain an open plant/en-
terprise wide system, with thousands of devices and systems operating under
process real-time constraints and still comply to ISA-95 (www.isa-95.com) and
PERA (www.pera-net) architectures ?

III Process Monitoring and Control Systems operating in an asynchronous mode,
e.g. Distributed event based systems: Which are the technological conse-
quences and limits of those asynchronous SCADA/DCS platforms when com-
pared to traditional implemented periodic systems? Is it possible to integrate
asynchronous and synchronous systems, e.g. for legacy system integration?

IV Service specification: Which methodology and tools are the most suitable to
identify and specify the semantics for interoperable (standard / common / spe-
cific) Web services based monitoring and control (from business process to
devices)?

In this work we present the results of the investigations and assessments per-
formed [8] to find some of the answers for those four guiding questions when tech-
nologies have to be selected and used in a Service-Oriented Architecture (SOA)
based Distributed Large Scale Process Control and Monitoring System. First we
present a description and assessment of the most suitable technologies for address-
ing the four challenges described above in the area of industrial automation. Sub-
sequently the results of the assessment synthesizing the technologies that are being
used to implement the IMC-AESOP approach are shown together with highlights
and some outlook for the future.

4.2 Internet Technologies for Industrial Automation

In regard of the four main challenges addressed in the introduction, several technolo-
gies have been identified as the major candidates for being used to develop such a
Cloud of SCADA-/DCS-Services. Establishing an exhaustive list was not looked for
(it would probably be impossible to achieve), but the major intention is to offer a
compilation/screening of suitable SOA-based technologies, selected following the
following main criteria:

• The technology trends reported in the most recent available publications in con-
ferences and journals;

• The technologies that are proposed as outcomes of on-going standardisation ac-
tivities;

• The potential industrial availability at short term either as open-source solutions
and/or supplied by the IMC-AESOP technology-provider partners;

• The originality and innovation associated to the technology;
• The potential use of a technology by the end-user industry.

Some key technologies identified include: DPWS, EXI, CoAP, REST, OPC-UA,
Distributed Service Bus, Complex Event Processing (CEP), Semantic Technologies.

3

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

www.isa-95.com
www.pera-net
https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.2. Internet Technologies for Industrial Automation

4.2.1 DPWS and EXI

DPWS is recognized as a very good SOA device level protocol profile. Among all
Web services protocols, it selects the most appropriate ones, such as WS-Discovery
and WS-Eventing above SOAP, for implementation in constrained embedded de-
vices. It provides capabilities such as interoperability, plug and play, and integration
capability. Several projects such as SOCRADES (www.socrades.net) and SIRENA
www.sirena-itea.org have demonstrated its capabilities. However, it does not pro-
vide alone real time performance in the millisecond range [6]. However, if we couple
DPWS with EXI (wwww3.org/XML/EXI), this performance target is achievable.

When looking at the real time challenge, the performance that is evaluated and
measured is defined as the time to send an event from one device application to an-
other remote device application on a local network. This is done taking into account
the time periods required to go through emitter and receiver stacks and to go through
the local network, in a one way asynchronous event transmission.

Fig. 4.2 DPWS / EXI Integration

In the example shown in the Fig. 4.2, two remote devices are connected by a
physical network (e.g. Ethernet). The first device is detecting a data change on one
of its physical inputs, and is sending this information through the network to the
second device, which then generates a corresponding physical output. Both devices
are using DPWS [4] in order to exchange the information, which provides all the
customer values of DPWS (interoperability, plug and play, integration capability).
They integrate inside the DPWS stack the EXI encoder or decoder capability in
order to add real time performance to the standard DPWS values.

After this exchange, the first device, when receiving an input change, will trans-
late this physical event into a DPWS / EXI network event, using the combined ca-
pabilities of the DPWS stack and of the EXI encoder, which was programmed or
configured according to the information schema. The second device, when receiv-
ing the network event, will decode the frame and transform it into an output change.

4

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

www.socrades.net
www.sirena-itea.org
wwww3.org/XML/EXI
https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.2. Internet Technologies for Industrial Automation

4.2.2 EXIP – EXI Project

The implementation of XML/EXI technology provides a very generic framework
for describing, implementing, and maintaining complex systems and interactions.
However, the usage of XML, even when used with a binary compressed representa-
tion, can result in a too high overhead for deeply constrained devices. Furthermore,
the application of complex schemas and WSDL descriptions can make versioning
difficult since the XML/EXI parsers might require updated grammars for optimal
performance.

In some cases, the use of a more simple data representation such as JSON and
SenML might be sufficient, especially for very low-cost sensors and actuators. How-
ever, the implementation of different data representation techniques between the re-
source constrained devices and more capable systems requires service gateways that
convert these data formats. Using service gateways and mediators introduces com-
plexity in the provisioning and maintenance of the systems. In such scenario, it is
beneficial to use EXI all the way down to the sensor and actuator devices.

Although the EXI format is designed for high compression and fast process-
ing, its deployment on deeply constrained devices such as wireless sensor nodes is
challenging due to RAM and programming memory requirements. The EXIP open
source project [14] is providing efficient EXI processing for such embedded devices.
The EXIP prototype implementation is specially designed to handle typed data and
small EXI messages efficiently as this is often required in process monitoring and
control applications for sensor data acquisition.

The EXIP project also includes a novel EXI grammar generator that efficiently
converts an EXI encoded XML Schema document into EXI grammar definitions.
These grammars are then used for schema-enabled processing which provides a
better performance than schema-less mode. This grammar generator enables the
use of dynamic schema-enabled processing in constrained environments as the EXI
encoded XML Schemas are much lighter to transmit and process. The use of EXI
representation of the schemas is possible because the XML Schema documents are
plain XML documents and as such they have analogous EXI representation.

Working with the EXI representation of the XML Schema definitions brings all
the performance benefits of the EXI itself i.e. faster processing and more compact
representation. The use of different XML schemas and even different version of
these schemas at run time is challenging. For that reason, an important future work
investigation is the support for XML Schema evolutions in the SOA implementa-
tions.

Another important aspect is the definition of EXI profile for implementation
in industrial environments that will guarantee interoperability and optimal perfor-
mance of the EXI processing. This profile must specify what options should be used
in the EXI headers and how the schema information is communicated between the
devices and systems.

The main results of the performed evaluation of EXI show that:

5

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.2. Internet Technologies for Industrial Automation

• The use of EXI provides significant reduction of the exchanged mes-sage sizes.
Compression ratios up to 20-fold may be obtained for some types of messages.
Although the experiment has been performed on a high-speed wired Ethernet
network, it is also expected that low-bandwidth networks such as those found in
wireless sensor networks would also strongly benefit from the use of EXI.

• Performance improvements are less significant: only an improvement by a fac-
tor of 2 has been measured. This is due in part to the inherent complexity of
EXI, which is computation-intensive, but also to the overhead of the underly-
ing message exchange protocols (HTTP and SOAP in the experiment). Further
experiments using more efficient protocols, such as a simple TCP protocol or
the new CoAP protocol, could demonstrate that EXI is also relevant for high-
performances applications.

4.2.3 CoAP

In the era of lightweight integration especially of resource-constraint devices with
web technologies, a new application protocol is proposed within the Internet En-
gineering Task Force (IETF) i.e. the Constrained Application Protocol (CoAP)
[2, 21]. CoAP provides a method/response interaction model between application
end-points, supports built-in resource discovery, and includes key web concepts
such as URIs and content-types. CoAP also easily translates to HTTP for seamless
integration with the web, while meeting specialized requirements such as event-
based communication, multicast support, very low overhead and simplicity for con-
strained environments.

Application

Request/Response
Messages

UDP

6LoWPAN

Co
AP

Application

HTTP

TCP

IP

Traditional Web
Integration Stack

Constrained Device
Integration with CoAP

Fig. 4.3 CoAP lightweight integration vs. the heavy HTTP integration

As depicted in Fig. 4.3, CoAP relies on UDP instead of TCP that is used by
default for HTTP integration. UDP provides advantages for low overhead and mul-
ticast support. CoAP is REST centric (supports GET, POST, PUT, DELETE), and

6

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.2. Internet Technologies for Industrial Automation

although it can be used to compress HTTP interfaces it offers additional functional-
ities such as built-in discovery, eventing, multicast support and asynchronous mes-
sage exchanges. From the security point of view several approaches are supported
ranging from no-security up to certificate-based one using DTLS. IANA has as-
signed the port number 5683 and the service name “CoAP”.

Within the IMC-AESOP project, CoAP is mainly considered for being used to
get access to extremely resource constraint devices, e.g., a temperature sensor, a
wireless sensor node, etc. Moreover, the devices may also be mobile and rely on a
battery for their operation. These distributed devices would probably be used mostly
for monitoring and management, while their integration may enhance the quality of
information reaching SCADA/DCS systems.

4.2.4 OPC-UA

One of the challenges in process industries is the interoperability between the sys-
tems and devices coming from numerous vendors. This has been addressed by using
open standards, enabling devices from different vendors to understand each other.
One of the widely accepted standards is OPC (OLE for process control). However,
after the years of its use, some limitations of this standard have been evident. This
was the reason why OPC Foundation started to work on the new standard – OPC
Unified Architecture (OPC-UA) [16].

OPC-UA main improvements over the classic OPC include the following:

• Unified access to existing OPC data models (OPC DA, OPC HDA, OPC A/E,
etc.)

• Multi-platform implementations
• Communication and security (OPC has been based on COM/DCOM)
• Data modelling

While the communication, security and interoperability features make OPC-UA
great candidate to be used in SOA based applications, it is its data modelling capa-
bilities that enable to build a service oriented process control systems [24]. OPC-UA
provides means to access not only the data from the process systems, but also se-
mantic information that is related to the data, like models of the devices that are pro-
viding this data. Such models are built by defining Nodes (described by attributes)
and Relations between the Nodes.

An information model contains definition of types, from simple to complex, and
also instances of such types. The information models are organized and ex-posed by
address spaces. In an existing implementation, multiple information models can be
defined, for each level on the process there can be a different model of the process
entities, however these models can share some information and usually are syn-
chronized. With growing penetration of OPC-UA to the processes and its features
that have been designed with Service-Oriented Architecture in mind, it is clear that
OPC-UA will become a solid part of service oriented distributed control systems.

7

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

4.3 Technology Combinations and Advanced Concepts

Apart from the basic technologies, we take a closer look to efforts for their conver-
gence and provision of more advanced functionalities for future industrial automa-
tion systems.

4.3.1 The Embedded Service Framework (ESF)

ESF is a redesigned, rewritten and extended version of the DPWSCore stack, which
is available at http://forge.SOA4d.org. The goals of this new version are:

• To bring the power of recent Web-oriented technologies to embedded devices
utilizing service-oriented and REST architectures.

• To hide complexity from developers, through code generation and high-level
APIs.

• To support a large range of applications, from basic Web applications to complex
Web services applications, featuring mechanisms such as network discovery and
event publishing.

• To support a wide range of platforms, from mono-threaded (or OS-less), deeply
embedded devices (e.g. wireless sensors) to complex multi-threaded applications
running on large devices, workstations or enterprise servers.

Fig. 4.4 ESF modular architecture

The main features of the ESF include:

8

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

http://forge.SOA4d.org
https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

• Support of standard IPv4 and IPv6-based transport protocols: TCP, UDP, TLS.
Support for additional protocols such as 6LoWPAN and DTLS is also planned.

• Support of standard message encodings: besides XML, which is used in several
standard messaging protocols, ESF also supports XOP/MTOM, used to trans-
port binary data in SOAP messages, EXI, a standard binary format for XML
well-adapted to low-bandwidth networks, and JSON, a popular format used in
particular in browser-based applications.

• Support of several messaging protocols, including HTTP, SOAP (directly over
TCP or UDP or combined with HTTP) and SOAP extensions such as WS-
Addressing. Planned additions include WS-Security and WS-ReliableMessaging,
or CoAP, a draft IETF standard designed for REST applications over 6LoWPAN,
but also usable over standard IP networks.

• A set of infrastructure services for network discovery of devices and services,
metadata exchange, event publication and subscription or resource management.
These services allow the implementation of standard profiles such as Basic Pro-
file (1.1 and 2.0) and Devices Profile for Web services (DPWS), or of resource
management frameworks such as WS-Management or ad-hoc solutions based on
the REST paradigm.

• A configuration mechanism allowing developers to select the appropriate com-
ponents from the above list for their applications.

The set of technologies, profiles and frameworks shown in the diagram is not ex-
haustive: the ESF is extensible and may be used to implement other popular profiles,
such as UPnP or ONVIF. Application development on top of the ESF combines ac-
cess to the runtime library through the ESF API and use of generated code (as shown
in). Both client-side and server-side applications may be developed, both sides being
often combined in devices capable of peer-to-peer interactions.

Fig. 4.5 Application development with ESF

9

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

On the server side, two paradigms are supported:

• The service-oriented paradigm: based on the abstract definition of a service inter-
face, through a WSDL document, the code generator produces a service skeleton
ready to be plugged in the ESF service container. The role of the developer is to
provide the implementation of the service operations, and to configure the ESF
runtime with the required protocols. ESF makes it easy to publish simultaneously
the same services using different protocols, in order to extend the reach of those
services to a wide range of clients.

• The resource-oriented paradigm: the ESF provides a resource manager that al-
lows developers to register resource implementations, and that provides remote
access to those resources through REST or Web services protocols.

On the client side, code generation is used to produce service stubs, which can
be used by the application to invoke remote service operations or resource access.
The configurability of the ESF protocols allows clients to access a wide range of
devices.

In order to use EXI while guaranteeing the same level of interoperability as XML,
several approaches can be considered:

• Use of a globally shared configuration: in stable and managed environments, it
is possible to deploy the same set of XML schemas in the server and all clients.
This single EXI configuration is then used to encode and decode all exchanged
messages. This approach has the drawback of being slightly less efficient, as the
set of global elements which is used to encode a given message is larger than
needed. On the other hand, it simplifies the configuration of the server and the
clients.

• Use of out-of-band information to select the appropriate EXI configuration: on
the server side, it is possible to use external information, such as the HTTP re-
quest URL (e.g. when using SOAP-over-HTTP) or the network listener port (e.g.
when using SOAP-over-UDP) to select the appropriate EXI configuration. A typ-
ical deployment configuration would use different HTTP endpoints for different
services and SOAP bindings, and associate to each endpoint the minimal set of
XML Schemas needed to parse the incoming EXI messages.

• Use of EXI options: EXI provides an in-line header mechanism which allows ad-
ditional data to be communicated to the EXI processor before it starts decoding,
among which a Schema ID. By defining a system-wide naming mechanism for
EXI configurations, it is possible to use this solution to dynamically select the
appropriate configuration to be used for a given message. This approach has the
drawback of slightly increasing the message size, as the Schema ID is systemat-
ically embedded at the beginning of each message.

10

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

4.3.2 Fusion of DPWS and OPC-UA

As OPC-UA and DPWS have a large set of similarities, it is possible to build a com-
mon stack compliant with both standards where the two technologies can benefit
from each others. A component implementing the convergence between OPC-UA
and DPWS for embedded devices has been prototyped as described in Fig. 4.6.

This component includes in particular:

• The OPC-UA stack developed in ANSI C language by the OPC Foundation and
which supports the UA binary profiles defined by the OPC-UA specification.

• The DPWS stack for implementing the Web services profile of OPC-UA.

The architecture of the component makes it possible to change the different libraries
of the UA stack to decide which protocol should be supported or not. For this pur-
pose, the server application doesn’t need to be changed; only the XML Configura-
tion file must include the good endpoint.

Another goal of this component is to provide a dual interface (i.e. DPWS + OPC-
UA). The DPWS and the OPC-UA interfaces are sharing the same data, managed
by a Node Manager which contains the implementation of an OPC-UA enabled data
model, also called address space.

UA Stack

DPWS Stack UA Stack

Server

Client

API

Endpoint

API

Client

API

Endpoint

API

TCP Binary

Callbacks

Service

Types

Server

API

Custom

DPWS

Services

Node

Manager

Select

HTTP(s) SOAP XML

UA

Services

API

Client

Switch

Server

Application

Fig. 4.6 Fusion of OPC-UA and DPWS Architecture

11

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

The stack itself mainly consists in the OPC-UA and DPWS parts and a unified
API between the server or client application and the stack. The key parts are:

• OPC-UA part: Contains the marshalling and de-marshalling code for the UA bi-
nary protocol (over TCP). It also contains the standard definitions, data structures
and data types for OPC-UA (some parts are partly used in the DPWS part to get
a binding between DPWS and OPC-UA).

• DPWS part: Contains the marshalling and de-marshalling code for the UA SOAP
XML protocol (over HTTP and HTTPS) and for the implementation of other
service operations based on DPWS (Custom DPWS Services).

• Server API: Represents the interface to the server application to react to incoming
messages from a client requested over the different service operations.

• Endpoint API: Represents the interface for the server application to manage end-
points (Create, Open, Close, Delete, . . .).

• Endpoint API for DPWS part: Represents the interface for the DPWS stack to
manage endpoints (internal API). The design is related to Endpoint API of the
final stack which can be called from outside.

• Client API: Represents the interface for the client application to use service op-
erations for the communication with a server.

• Client API for DPWS part: Represents the interface for the DPWS stack for using
the supported client operations (internal API).

• Service Types: Responsible to call the correct callback function in the server ap-
plication concerning the called service operation from a client. More information
about the service types is given in the following chapter.

The following features have been implemented and tested, showing that the
DPWS stack can be used for implementing a HTTP/HTTPS profile for an OPC-UA
stack and that the resulting component can expose both an OPC-UA and a DPWS
interface:

• Communication over HTTP SOAP XML profile is working
• Communication over OPC TCP Binary profile is working
• Communication over HTTPS is working
• Server can be used to deploy a predefined XML data model description for a

device
• Custom Web services can be discovered and called in conformance with the

DPWS specification

The DPWS / OPC-UA prototype has demonstrated promising benefits for sys-
tems with a large number of devices in particular when the data exposed by the
devices are heterogeneous. In the following we consider a system including a client
application and a set of devices or sub-systems where all communicating entities are
implementing a converged stack with DPWS and OPC-UA: DPWS brings the capa-
bility for the client application to discover dynamically a large amount of devices.
We have tested that at least 1000 devices can be discovered at the same time.

The discovered devices have then to expose their data to the client application.
Even if the semantics of the data exposed by all the devices are heterogeneous, the

12

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

data can be individually mapped on the generic meta-model of OPC-UA. This can be
done through proprietary mappings or preferably by mappings already specified and
validated by the OPC Foundation (OPC-UA companion standards). For the OPC-
UA enabled client application, the result is that it can understand the data exposed
by all the devices. This client application may be either a completely generic OPC-
UA application, in which case it will understand the data with a limited semantic
level, or the client application may be more aware of the domain semantic (either
proprietary or defined in OPC-UA companion standards).

4.3.3 Distributed Service Bus

Web service based technologies investigated so far at device level (DPWS, OPC-
UA, etc.) rely mainly on point to point communication models, which do not favour
the system scalability. The “Service Bus” approach aims at decoupling service con-
sumers from service producers in the industrial process control system. Large scale
distributed systems can benefit from a Service Bus type middleware architecture as
the bus acts as a broker between the numerous service consumers/providers, avoid-
ing a potentially huge number of point to point connections.

Fig. 4.7 Using the Service Bus as Common Abstraction Layer

The Service Bus middleware (depicted in Fig. 4.7) is based on a distributed ar-
chitecture in order to share information between all middleware instances. In other
terms, devices and systems handled by an instance of the Service Bus are exposed
through a normalized data model and this information is shared with the other in-
stances.

Legacy systems can also benefit from service bus architecture as the bus acts as a
gateway between legacy systems and IMC-AESOP SOA systems. This service bus
is therefore the natural place for adding a semantic layer on top of legacy services.
Thus, the bus provides an abstraction of technical devices and services into business
oriented/domain specific services descriptions.

13

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

Fig. 4.8 Distributed Service Bus Architecture

Fig. 4.8 gives a functional view of the distributed service bus and illustrates how
it hosts some of the services identified in the IMC-AESOP architecture study, for
instance:

• Gateway functionality through a variety of connectors;
• Registry as a central repository for IMC-AESOP services;
• Code/configuration/model repository (not implemented yet);
• Event broker for true loose-coupling between event producers and consumers;
• Security services;
• DNS service;
• Historian/logger;
• Time service for time synchronisation between IMC-AESOP services;
• Native interface (Web services) to higher level information systems (MES/ERP. . .).

The modularity of the service bus allows adding protocol connectors and ap-
plication modules, in order for instance to manage various devices and services.
Such management operations are applied through a common abstract layer. The
distributed architecture of the Service Bus allows a management operation to be
routed to the adequate Service Bus instance handling the targeted device or service.
Therefore, the distributed architecture of the Service Bus and the common interface
through the abstract layer both enable the management of large scale systems.

The Service Bus implementation is currently available in C and Java languages.
The C brick can be embedded in devices with constrained resources, it requires
around 200 KB of Flash memory and 50 KB of RAM with all connectors/mod-
ules included. The Java brick requires obviously much more resources and will run
on more powerful devices able to run a Virtual Machine. This is the gateways and
controllers that can be found in typical process control systems. The Java imple-
mentation relies on the OSGi Framework “Felix” (felix.apache.org). OSGi is an

14

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

felix.apache.org
https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

SOA-based modular framework which implements a dynamic component model. It
also provides dynamic lifecycle management for its modules which can be started,
stopped, updated without an application reboot. This capability is particularly inter-
esting for high end Service Bus instances, where new modules and connectors can
be deployed at runtime.

The Service Bus provides several set of management operations which can be
applied to devices and services. Device Management capabilities include adding/re-
moving/discovering devices, getting/setting configuration and status. Typical ser-
vice management includes start/stop/reset of services, getting/setting configurations
and status. The device and service management operations are accessible through
both SOAP and REST interfaces.

The distribution among Service Buses is also handled through an internal DP-
WS/SOAP interface. This DPWS interface handles the mutual discovery between
Service Bus instances thanks to WS-Discovery.

Time synchronisation relies on the IEEE 1588 PTP (Precision Time Protocol)
protocol running on all Service Bus instances. Time synchronisation is a strong re-
quirement for events timestamping and correlation. Events logging is implemented
based on the standard syslog protocol, which allows to aggregate events from all
Service Bus instances on a central repository. This is particularly useful for corre-
lating system events, for root cause analysis for instance. This capability has been
used in particular in use case 1, providing useful insights on system behaviour.

Cyber-security was not at the heart of the IMC-AESOP project so only a minimal
support was provided through the Service Bus component. This includes user au-
thentication through HTTP basic authentication and a simplified Role Based Access
Control (RBAC) applied to each service call. Practically, only admin users were able
to invoke services from the Service Bus.

The Service Bus can handle large-scale distribution by relying on its connectors
distribution. Each connector exposes Devices and Services in a common abstract
way. Moreover, information from the abstract layer is actually exchanged between
all instances of the Service Bus. Such distribution allows any application to interact
with the real devices/services transparently through a common interface which is
provided by any Service Bus instance.

4.3.4 Complex Event Processing (CEP)

Throughout the last years, Complex Event Processing (CEP) [15] has gained con-
siderable importance as a means to extract information from distributed event-based
(or message-based) systems. It became popular in the domain of business process
management but is now being applied in the industrial monitoring and control do-
mains. It is a technology to derive higher-level information out of low-level events.
CEP relies on a set of tools and techniques for analysing and handling events with
very low latency. The feature set for CEP spans from event extraction, sampling, fil-

15

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

tering correlation and aggregation to event enrichment, content based routing, event
compositions (and not only limited to these).

Fig. 4.9 Complex Event processing mechanism in a SOA-Infrastructure

Originally CEP systems were created at enterprise systems; therefore, most of
available systems are providing tools to define queries and to manage and adminis-
trate the system. Some of them are providing concepts for scalability and resilience.
In contrast, nowadays, we can observe a trend to move CEP closer to the place where
the data is born to enable early filtering, aggregation and resampling capabilities. In
that way it will become possible to write or define a query and distribute it seamless
cross a distributed setup in a way to reduce network traffic and save bandwidth.

Normally, complex events are created by abstracting from low-level events. The
processing of events is expressed within a specific language in terms of rules. Un-
fortunately, the set of features and the way to express the rules differ from platform
to platform. CEP engines are able to process events up to 100,000 events/sec. This
clearly depends on the complexity of the rules. Normally the limitation is set by
the connection to the external environment, such as extraction of events from input
sources or the limitation by the bandwidth of the network.

So far, there is no unified way to express rules (or queries) over streams of events.
Thus, it makes sense to wrap a CEP engine (Fig. 4.9) within a service with well-
defined endpoints. The endpoints are technology agnostic and define the operations
and data to be processed while the CEP service itself is responsible for transforming
the data/messages to its internal event format. On the output side consumers can
subscribe via WS-Eventing so that notifications can be sent via SOAP messages
as well (see Fig. 4.8). This approach enables the integration [7] with specifications
like Device Profile for Web services (DWPS) and OPC Unified Architecture (OPC-
UA), which are the most suitable solutions for implementing a SOA since both
specifications include eventing mechanisms.

Two kinds of CEP are expected to be provided in future industrial systems:

16

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.3. Technology Combinations and Advanced Concepts

• CEP as a service: When we are saying service, it means that this can either be
realized as a service running locally on a server or the same concept still holds
for a service running in the cloud and on top of cloud technologies.

• Embedded CEP: This is a concept of a lightweight CEP using concurrent reac-
tive objects (CRO) model guaranteeing execution of CEP queries in an efficient
and predictable manner on resource constrained platforms and offering a low-
overhead real-time scheduling.

By enabling event processing mechanisms IMC-AESOP is also considering the
convergence of scan-based and event-based mechanisms. This is achieved by sup-
porting pull- or push- models [22]. The services can either send events (active) to
the CEP service or there is a mediator which pulls data form services (passive) and
sends this data. From the CEP service this looks like an active data service provider.
On the output side results are pushed to registered consumers.

4.3.5 Semantic-driven interaction

Enabling interoperability of the service specifications and data models is a key tech-
nological challenge that SOA systems are aimed to resolve. The full interoperability
requires that the syntax and semantic service descriptions are well defined, unam-
biguous and enable dynamic discovery and composition. Thus far, most if not all
SOA installations are enabling pure syntax interoperability with little or no sup-
port for standard based semantic descriptions. The use of structured data formats
only partially resolves the problem by supplementing the exchanged data with meta-
information in the form of tags and attributes in the case of XML/EXI for example.
The tag names are ambiguous and usually insufficient to describe the service func-
tionality in full.

Applying application level data model standards is often a remedy as the syntax
to semantics mapping is predefined. Example of such standard is Smart Energy
Profile 2 that clearly states the physical meaning of the tag names and structures
defined for the service messages in the domain of energy management. One problem
when complying with such standards is that they are almost always domain specific
which requires mapping of the semantic descriptions from one standard to all others
in use.

Another approach is to define generic semantic data model that is applicable to
wide range of use cases. The initial investigation highlighted the Sensor Model Lan-
guage (SensorML) [20] as a promising specification for generic semantic descrip-
tion of sensory data. However, the complexity and size of SensorML specification
limit its use to more capable devices. Small scale experiments with a number of
sample SensorML messages showed that even EXI representation will not be suf-
ficiently small to fit a battery powered wireless sensor nodes that have low-power,
low-bandwidth radios.

Another possible specification for sensor data is the Sensor Markup Language
(SenML) [9]. It has a very simple design that is consistent with RESTful architec-

17

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.4. Discussion

ture and is targeted at resource-constrained devices. An initial evaluation of SenML
revealed that it meets the requirements for hardware utilisation but there are areas
that are too much simplified and insufficient to describe the data in the details re-
quired by the applications. An example of such limitation is the precision of the
time stamping of the sensor data – SenML allows for up to seconds resolution that
is not enough for many industrial use cases. To overcome this limitation, we had to
use a custom generic data representation that is reusing many of the design choices
in SenML.

4.4 Discussion

DPWS, coming from the IT world, is the most applicable set of Web services proto-
cols, to be used at the device level. Combined with EXI, it provides real capabilities
in the range of the millisecond, following the technology assessment made by the
project. OPC-UA, coming from the industrial world, is also a set of Web services
protocols, compatible with DPWS, and providing a data model enlarging the seman-
tic capabilities of the solution. CoAP can be used for wireless sensor networks. It
can also be combined with EXI. This is still work in progress with major impact in
the future once the technology matures.

The Service Bus and the CEP solution are technologies providing the large scale
and migration capabilities, combining and processing information coming through
DPWS, OPC-UA or legacy protocols, in order to manage large-scale event-based
systems. A suitable combination of the six technologies described above is able to
provide solutions meeting the four critical questions and challenges expressed in the
introduction.

After some initial assessment and taking into considerations the operational con-
text of IMC-AESOP, we have come up with a synthesis of the most promising
technologies (depicted in Table 4.1), which are being used to implement the IMC-
AESOP prototypes:

Table 4.1 Technologies and Challenges

Technologies Real-time Management of large scale Event-driven Semantics
DPWS X X
OPC-UA X X
CoAP X X
EXI X X
Service Bus X
CEP X

A closer look among some of the Web services based technologies and their
performance [11] reveals several aspects. Although DPWS is already available and
supported by several devices in multiple domains, we can clearly see that in its

18

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
4.5. Conclusions

standard form it has a significant impact on computational and communication re-
sources. Hence devices that may consider this stack, should be usually devices that
are on the upper scale with respect to their resource availability. REST and CoAP are
designed for much more lean environments and as we see these are a much better
fit for resource constrained devices e.g. in comparison to DPWS [18]. Additional
combinations of DPWS with compression techniques however could remove this
barrier [17].

REST and CoAP approaches are more lightweight (from CPU and memory util-
isation) and more user-friendly implementation-wise, and therefore could empower
even simple sensors to take part in the “Cloud of Things” [11]. On the cloud side,
since we do not have significant resource problems, any of the stacks can be used,
but maybe for scalability reasons the lightweight REST might also be preferred,
unless some specific functionality is needed, e.g. WS-Discovery from the DPWS
in order to dynamically discover embedded devices and their services. Further cus-
tomisations may enable hybrid approaches such as SOAP over CoAP [19]. Addi-
tionally ongoing work e.g. in EXI [3] may also enable better performance when
combined with the XML based approaches.

OPC-UA is not a real-time protocol, but is designed rather to gather information
about the transferred data with the occurrence time stamp and distribute that infor-
mation on demand [4]. OPC-UA services are designed for bulk operations to avoid
roundtrips, something that increases the complexity of the services but greatly im-
proves the performance [16]. Nevertheless, the balance between functionalities and
performance needs to be per scenario investigated, especially due to the multiple
other aspects the OPC-UA brings with it as already analysed.

Although the initial tests [11] are not conclusive and offer only a notion of per-
formance, there are several other issues that need to be investigated and which may
be of critical importance, depending on the application domain targeted. Security is
an issue, and the impact has not been investigated here as we considered only HTTP
calls. The impact also of HTTP pipelining as well as new future Internet HTTP-
modified networking protocols like SPDY [1] and HTTP Speed+Mobility [23] that
offer reduced latency through compression, multiplexing, and prioritisation need
to be assessed. Additionally, other issues such as excess buffering of packets may
cause high latency and jitter [5], and this may have significant impact on network
performance, which might be a show-stopper e.g. for time-critical applications.

4.5 Conclusions

We have attempted to tackle four major critical questions that arise as key when tech-
nologies have to be selected and used to implement a Service-Oriented Architecture
(SOA) based distributed large scale process monitoring and control system. After
compiling and assessing a set of technologies, a subset of them has been selected
and used by the IMC-AESOP consortium. It is important to call the attention to
the fact that the selected technologies, are either already available from open-source

19

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

https://www.springer.com/gp/book/9783319056234

Jammes et al.
References

sites or they are still under development by some of the IMC-AESOP technology-
provider partners.

Following the assessment of the prototype implementations, which refined the
technology evaluation and investigate other challenges in implementing SOA-based
cross-domain infrastructures, e.g. cloud of services generated from the virtualisation
of different systems like manufacturing, smart grid, transportation, etc. the experi-
mentation results have shown that technological choices made are quite promising
for next generation SCADA/DCS systems:

• For real-time SOA, EXI, the binary XML format, makes a lot of sense for wire-
less interconnections, in particular for CoAP based data exchanges even though
CoAP does not support true real-time capabilities in the current design. The ben-
efit of EXI compression is also less obvious for wired SOAP based Web services.

• Proposing a dual OPC-UA/DPWS stack can facilitate the management of large
scale distributed systems by building a bridge between industrial automation and
IT worlds.

• A SOA middleware like the proposed Distributed Service Bus can ease the inte-
gration and interoperability of heterogeneous technologies in the plant.

Acknowledgment

The authors would like to thank the European Commission for their support, and the
partners of the EU FP7 project IMC-AESOP (www.imc-aesop.eu) for the fruitful
discussions.

References

[1] Belshe M, Peon R (2012) SPDY Protocol. IETF Internet-Draft, URL http://
tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

[2] Bormann C, Castellani AP, Shelby Z (2012) Coap: An application protocol for
billions of tiny internet nodes. IEEE Internet Computing 16(2):62–67, DOI
http://doi.ieeecomputersociety.org/10.1109/MIC.2012.29

[3] Castellani A, Gheda M, Bui N, Rossi M, Zorzi M (2011) Web Services for the
Internet of Things through CoAP and EXI. In: Communications Workshops
(ICC), 2011 IEEE International Conference on

[4] Fojcik M, Folkert K (2012) Introduction to opc ua performance. In: Kwiecień
A, Gaj P, Stera P (eds) Computer Networks, Communications in Computer
and Information Science, vol 291, Springer Berlin Heidelberg, pp 261–270,
DOI 10.1007/978-3-642-31217-5_28, URL http://dx.doi.org/10.1007/978-3-
642-31217-5_28

20

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

www.imc-aesop.eu
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://dx.doi.org/10.1007/978-3-642-31217-5_28
http://dx.doi.org/10.1007/978-3-642-31217-5_28
https://www.springer.com/gp/book/9783319056234

Jammes et al.
References

[5] Gettys J, Nichols K (2012) Bufferbloat: dark buffers in the internet. Commun
ACM 55(1):57–65, DOI 10.1145/2063176.2063196, URL http://doi.acm.org/
10.1145/2063176.2063196

[6] Hilbrich R (2010) An evaluation of the performance of dpws on embedded
devices in a body area network. In: Advanced Information Networking and
Applications Workshops (WAINA), 2010 IEEE 24th International Conference
on, pp 520–525, DOI 10.1109/WAINA.2010.93

[7] Izaguirre M, Lobov A, Lastra J (2011) Opc-ua and dpws interoperability for
factory floor monitoring using complex event processing. In: Industrial Infor-
matics (INDIN), 2011 9th IEEE International Conference on, pp 205–211,
DOI 10.1109/INDIN.2011.6034874

[8] Jammes F, Bony B, Nappey P, Colombo AW, Delsing J, Eliasson J, Kyusakov
R, Karnouskos S, Stluka P, Tilly M (2012) Technologies for SOA-based dis-
tributed large scale process monitoring and control systems. In: 38th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2012), Mon-
tréal, Canada.

[9] Jennings C, Shelby Z, Arkko J (2013) Media types for sensor markup language
(SENML). Tech. rep., IETF Secretariat, URL http://tools.ietf.org/html/draft-
jennings-senml-10

[10] Karnouskos S, Colombo AW (2011) Architecting the next generation of
service-based SCADA/DCS system of systems. In: 37th Annual Conference
of the IEEE Industrial Electronics Society (IECON 2011), Melbourne, Aus-
tralia.

[11] Karnouskos S, Somlev V (2013) Performance assessment of integration in the
cloud of things via web services. In: IEEE International Conference on Indus-
trial Technology (ICIT 2013), Cape Town, South Africa

[12] Karnouskos S, Colombo AW, Jammes F, Delsing J, Bangemann T (2010) To-
wards an architecture for service-oriented process monitoring and control. In:
36th Annual Conference of the IEEE Industrial Electronics Society (IECON-
2010), Phoenix, AZ.

[13] Karnouskos S, Colombo AW, Bangemann T, Manninen K, Camp R, Tilly M,
Stluka P, Jammes F, Delsing J, Eliasson J (2012) A SOA-based architecture for
empowering future collaborative cloud-based industrial automation. In: 38th
Annual Conference of the IEEE Industrial Electronics Society (IECON 2012),
Montréal, Canada.

[14] Kyusakov R, Eliasson J, Delsing J (2011) Efficient structured data processing
for web service enabled shop floor devices. In: Industrial Electronics (ISIE),
2011 IEEE International Symposium on, pp 1716–1721, DOI 10.1109/ISIE.
2011.5984320

[15] Luckham DC (2001) The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA

[16] Mahnke W, Leitner SH, Damm M (2009) OPC Unified Architecture. Springer
[17] Moritz G, Timmermann D, Stoll R, Golatowski F (2010) Encoding and com-

pression for the devices profile for web services. In: 24th IEEE International

21

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

http://doi.acm.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
http://tools.ietf.org/html/draft-jennings-senml-10
http://tools.ietf.org/html/draft-jennings-senml-10
https://www.springer.com/gp/book/9783319056234

Jammes et al.
References

Conference on Advanced Information Networking and Applications Work-
shops, WAINA 2010, Perth, Australia

[18] Moritz G, Zeeb E, Prüter S, Golatowski F, Timmermann D, Stoll R (2010) De-
vices Profile for Web Services and the REST. In: 8th International Conference
on Industrial Informatics (INDIN), Osaka, Japan.

[19] Moritz G, Golatowski F, Timmermann D (2011) A lightweight SOAP over
CoAP transport binding for resource constraint networks. In: Mobile Adhoc
and Sensor Systems (MASS), 2011 IEEE 8th International Conference on, pp
861 –866, DOI 10.1109/MASS.2011.101

[20] OCG (2007) Sensor Model Language (SensorML) Implementation Specifica-
tion. URL http://www.opengeospatial.org/standards/sensorml

[21] Shelby Z (2010) Embedded web services. Wireless Commun 17(6):52–
57, DOI 10.1109/MWC.2010.5675778, URL http://dx.doi.org/10.1109/MWC.
2010.5675778

[22] Tilly M, Reiff-Marganiec S (2011) Matching customer requests to service of-
ferings in real-time. In: Proceedings of the 2011 ACM Symposium on Applied
Computing, ACM, New York, NY, USA, SAC ’11, pp 456–461, DOI 10.1145/
1982185.1982285, URL http://doi.acm.org/10.1145/1982185.1982285

[23] Trace R, Foresti A, Singhal S, Mazahir O, Nielsen HF, Raymor B, Rao R,
Montenegro G (2012) HTTP Speed+Mobility. IETF Internet-Draft, URL http:
//tools.ietf.org/html/draft-montenegro-httpbis-speed-mobility-02

[24] Trnka P, Kodet P, Havlena V (2012) Opc-ua information model for large-
scale process control applications. In: IECON 2012 - 38th Annual Conference
on IEEE Industrial Electronics Society, pp 5793–5798, DOI 10.1109/IECON.
2012.6389038

22

This is a preprint version, which may deviate from the final version which can be acquired from https://www.springer.com/gp/book/9783319056234

http://www.opengeospatial.org/standards/sensorml
http://dx.doi.org/10.1109/MWC.2010.5675778
http://dx.doi.org/10.1109/MWC.2010.5675778
http://doi.acm.org/10.1145/1982185.1982285
http://tools.ietf.org/html/draft-montenegro-httpbis-speed-mobility-02
http://tools.ietf.org/html/draft-montenegro-httpbis-speed-mobility-02
https://www.springer.com/gp/book/9783319056234

