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Abstract Today energy load forecasting is used by retailers to predict their
future energy needs and address them in cost-effective ways. However, with
the prevalence of the smart grid, accurate forecasting is becoming increasingly
important, as the stakeholder base expands and differentiates by transforming
to active prosumers who make their own forecasting and take advantage of the
new smart grid capabilities for addressing excess or shortage of energy. For in-
stance, they can benefit from participation in demand-response programs, or
more futuristic such as local energy marketplaces. To take advantage of such
opportunities, controllable energy signature in order to gain predictability is
of key importance. We present here an empirical approach towards under-
standing how the predictability of a stakeholder can be improved through the
availability of variable storage. The guiding question is to investigate the rel-
evance of capacity sizing for absorption of the intra-day forecast errors. The
increase of variable storage in existing facilities such as that offered by the
presence of electric vehicles in a building’s charging stations, poses new po-
tentially cost-effective ways that facility managers can consider in the effort
to maintain control of their infrastructure’s energy signature. Here we show,
in a step-by-step approach, how intra-day energy forecast errors of a building,
impact the overall capacity variation required to absorb them, and how proper
storage shaping can assist. Although the approach is empirical, the same steps
may be applied in other similar cases.
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1 Introduction

Forecasting plays a pivotal role in facility management processes, strategic
planning, and business strategy. Its implications range from technical aspects,
where the quality of service has to be guaranteed, to business aspects, with
impact on budget, strategy and other enterprise goals such as efficiency, sus-
tainability, corporate social responsibility etc. Increasing technology usage in
modern buildings [1] enables innovative approaches to be engaged that provide
accurate behaviour of the energy signature of a building [2].

The increase in dynamic usage of the building’s resources makes the goal
of a predictable behaviour challenging [3]. Being able to predict accurately
the energy signature may benefit not only internal facility management pro-
cesses, but also empower visionary scenarios of the smart grid, where buildings
can be active participants within city-wide energy management schemes such
as demand-response and future energy markets [4, 5]. The latter may act as
an enabler for new business opportunities for facility managers including the
emerging roles of the smart grid stakeholders [6], and benefit potential opti-
mization at more global level and not only on the specific facility in question.

Today, due to the limited communication among the grid stakeholders (e.g.
grid managers and consumers), their multi-level aggregation is used to reduce
imbalances of inaccurate load forecasts [7]. However, with the emergence of the
smart grid and its detailed monitoring offered [8], one can work on fine-grained
data and better understand individuals and their impact to the forecasting
process, such that benefits of having them predictable can be assessed [9].
In some examined cases, using aggregation to improve forecast accuracy was
found to converge rapidly [10]. In addition storage technologies were identified
as a key enabler to a rapid convergence of a cluster [11].

The behaviour of stakeholders and accuracy of their forecast plays a pivotal
role in the required storage capacity that would be needed to balance the excess
or shortage of energy over time. As it can be seen in Figure 1, the difference in
energy consumption of a commercial building indicates that same accuracy in
peak times will need more storage capacity to absorb errors. Using on premise
available energy storage, could help towards enhancing its predictability, such
that “sufficient accuracy” is achieved [12].

As storages already play a key role in future energy management scenar-
ios [13], their technological limitations are already well known [14]. In this
work we propose a simple method to estimate storage capacity needs required
to absorption the induced errors. While we don’t really consider any specific
storage technology here, we have in mind that many battery-based approaches
are still expensive for most grid storage applications [15]. Hence we stay at high
level with respect to the actual storage characteristics, and benefit that our
approach can also be applied with existing assets, such as a fleet of company
electric cars [2]. The interest on the later is that (i) will be available in high
numbers in the future and are still company-owned assets whose management
can be realized together with the facility management goals, and (ii) they
offer a variable storage capability depending on their availability and usage
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patterns. With that in mind, it is expected that capacity need to absorb fore-
casting errors will significantly variate within the intra-day intervals.

We approach this use-case in an empirically, depending on the smart meter-
ing data of a commercial building and in a step-by-step way we incrementally
show its applicability. We aim at understanding how important is storage ca-
pacity for the absorption of forecasting errors especially in the highly volatile
intra-day energy loads. Once the impact is understood, one may use such
knowledge to propose “solution shapes”, i.e. timeline of the quantity of stor-
age needed to improve prediction of stakeholders. The evaluation will show a
case where different shaping of the storage can significantly reduce the overall
capacity needed. The actual impact of a specific technology as well as other
side-effects on business or financial aspects are left for future work.

2 Energy Signature of a Commercial Building

Electricity consumers have different consumption patterns, and for commer-
cial buildings one can witness significant variations over workdays, weekends
and holidays as seen in Figure 1 and Figure 2. Both figures are derived from
smart metering data of a commercial building collected throughout 2011 in the
region of Baden-Württemberg, Germany. The building has 139 offices, mainly
used between 08:00–17:00, with total measured consumption of approximately
2.7GWh for 2011.
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Fig. 1 Heatmap of energy consumption of a commercial building

In Figure 1 data for 5 weeks is depicted; however we can already notice
the variations during the day and especially near noon. Such variations repeat
continuously over the entire year. Figure 2 provides a clearer view on the
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average daily power for both, workdays and weekends. As expected there is
significant difference in building’s average power needs based on day of a week.
In particular, the average demand for workdays is ≈ 340 kW and ≈ 210 kW
over the weekend. On daily average, workday consumption is 56% greater than
weekends, resulting to (a yearly consumption over workdays) 4 times greater
than the total weekend consumption. This is important to notice, due to the
potential of improving the building’s predictability over the weekdays where
storage sizing needed can drastically variate.
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Fig. 2 Daily average power for workdays and weekends

Such significant differences on the behaviour, will result in a separation
to different sets. The main set D containing all days, will be divided to two
subsets, Dw and De for workdays and weekends respectively. Additionally, a
significant consumption variation is expected from high intra-day variations,
what also can be noticed in Figure 1. To better understand its impact, a view
of the average daily 15-minute intervals over the two created datasets is shown
on Figure 3.

The curve depicted shows the impact of building’s processes for preparation
of the workday, and the impact of employees arriving at the office as well as
the actual usage of it during office hours. The drop seen is also expected
after the leave of employees from the facilities and conclusion of other tasks
(cleaning, maintenance etc.) which lead to an almost minimum operational
level after approx. 21:00 (which is where the two curves of weekdays and
weekends converge). The observation on the intra-day load difference between
the two sets (Dw and De) is expected to give an initial answer to how capacity
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Fig. 3 Average power (kW) per interval averaged over entire year

need variates based on the load. Although the empirical analysis in this work
involves only the load of a specific commercial building, the same methodology
may be followed also in other use-cases.

3 Predictability Assessment

Although several forecast approaches [16, 17] could be applied to the con-
sumption data collected from the building, we decided to use the Seasonal
AutoRegressive Integrated Moving Average (SARIMA) model, which can be
used to predict electricity demand [18]. The weekly seasonality is considered
and 4 seasons are used to train the model. The days of January 2011 were not
predicted, and therefore are not included. To differentiate, the subset of days
of the original set D (without January) is noted as D′.

Energy consumption is represented as series of intervals n (in this case of
15 minutes) and the series length is denoted as l. The actual energy consumed
within an interval is denoted as y[n] ≥ 0, where n ∈ [1, l]. The consumption
forecasting is made for a short-term horizon, in particular for one day (l = 96),
and the forecast interval is denoted as ŷ[n] ≥ 0. Forecast accuracy is usually
measured by Mean Absolute Percentage Error (MAPE), however in this work
we primarily focus on the absolute energy difference between forecast and
actual consumption (which is responsible for the storage sizing later discussed
in section 4). If a forecast error (in kWh) of an interval is calculated as w[n] =
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ŷ[n] − y[n], the total absolute error over one particular day is calculated as

wtot =
l∑

n=1
|w[n]|.

The building’s energy signature highly depends on the usage pattern e.g. by
the employees who are active during the week but absent during the weekends.
By using the SARIMA model, the forecast error wtot for the building was
evaluated and Figure 4 visualizes the wtot for different weekdays in D′

w and
D′

e over the entire year. This result can be considered as an initial clue to the
relevance of the available capacity on daily basis.
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Fig. 4 Daily absolute energy error on weekdays over the entire set

As it can be seen, forecast errors over workdays (D′
w) result in a higher

error. Greater consumption over the workdays (as indicated in Figure 2), cor-
relates to greater absolute forecast errors in Figure 4. We have to note that
although some samples of the two datasets resulted in a greater forecast error,
it is hard to identify the exact origin of the error in those particular samples.
One may attribute these to the potentially stochastic behaviour of the employ-
ees e.g. such as vacation period, or working outside the office hours. However,
in the effort of identifying the source of forecast errors we should consider also
the behaviour from Figure 3; hence some analysis need to be applied for the
forecast errors. In Figure 5 one can see the intra-day effect of every 15 minute
interval n, averaged over the workdays 〈|w[n]|〉D′

w
and weekends 〈|w[n]|〉D′

e
.

As depicted in Figure 5, the time of the day highly impacts the difference
in quantity of the forecasting error (in kWh). At the begin (of the averaged
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Fig. 5 Absolute forecast error averaged over intervals to identify intra-day origin of the
error

series) workdays and weekends have a comparable forecast error, however the
error wtot for the midday of workdays increases significantly. On a closer look,
we can identify that some intervals of workdays have 3-fold or 4-fold greater
errors than other intervals. Although we can not clearly identify the source of
the error, we can see the correlation of it with the employee working hours (and
potentially other processes that relate to them). This intra-day variation of the
error is expected to impact the variable storage requirement. This coincides
with what we concluded from the quantitative daily variation in Figure 4.
Hence it will be further investigated in section 6.

4 Analysis Approach

Uncertainty of the prediction algorithm applied in section 3, affects the prop-
agation of the forecast error to the storage capacity demand and need to be
considered for variable sizing. Others identified similar behaviour [19], however
due to the availability of the real-world data from section 2, the storage that
would be sufficient can be directly measured (a posteriori).

The difference between the forecast and actual consumption is noted as
w[n]. A positive value indicates a surplus, and a negative one a shortage. A sim-
ple cumulative function of individual forecast errors from each interval n ∈ [1, l]
is used as the estimation method. Figure 6 represents an example of estimat-
ing the storage capacity ce as from the sum of w[n] for one day. The actual
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Fig. 6 Determination of an ideal storage capacity to address errors of a daily prediction

distance between the function extremes is used as the indicator. If a set of cu-

mulative forecast errors is presented as wcum = {w[1],
2∑

n=1
w[n], . . . ,

l∑
n=1

w[n]},

then the estimated storage size is calculated as ce = max(wcum)−min(wcum).
This method returns the optimal sizing for each day individually. The ap-
proach shortly depicted here is further used for the investigations described in
section 5 and section 6.

5 Storage Capacity Estimation

The evaluation of the building data observed in section 2 is done according to
the storage estimation approach presented in section 4. One day of the original
energy consumption is represented as l = 96 of 15 minute intra-day intervals
and for the following experiments the same resolution is used. The forecast
model is trained with four weeks of meter reading data of the same interval
resolution under the constraints already discussed in section 3.

Figure 7 depicts an initial indication on estimated storage size (and their
average), for each day from the two considered datasets. There, one can see
the variation in storage needs imposed by the weekdays. The weekend dataset
D′

e had clearly lower consumption (as shown in Figure 2) and understandably
result in a lower storage requirement ce. The average estimated storage for
workdays is approx. 〈c〉D′

w
≈ 475kWh, requiring almost double the storage in

comparison to 〈c〉D′
e
≈ 305kWh. Although is not straightforward in Figure 7,

one can still see that the average required storage capacity 〈ce〉D′
w

is covering
approximately 95% of the estimated storage size 〈ce〉D′

e
. The resulting average

estimation from Figure 7 is the second clue of the needed variable capacity.
The percentage of daily energy consumed and the estimated storage size

also need to be better understood, in order to understand the storage’s impact
to predictability. Based on the results obtained from Figure 7, the estimated
capacities of both sets are represented by the cumulative density function in
Figure 8. If results are observed as percentages, the mean estimated storage
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Fig. 7 Storage size estimation for consumed energy (within a day)

size is covered with only 6, 4% of workday and 5, 5% of weekend consumption.
Interestingly most of the forecast error is covered with a storage size of 10%
of the individual daily consumption. Approximately 92% of the forecast error
in D′

e can be covered by the capacity of 10% the consumption, while the
capacity of 14% the consumption covers entirely the incurred error. Workdays
are ≈ 83% covered by ce sizing 10% of daily consumption. With 15% of the
consumption, 97% of the set can be covered. Finally with storage equaling to
18% of daily consumption, the entirely generated error can be absorbed.

A few estimations showed a greater capacity requirement, as depicted in
Figure 7 for both sets. Their origin should be more closely investigated prior
to taking any decisions in a real-world storage deployment. The continuous
distance increase between the two datasets can also be noticed and its origin
will be further investigated in section 6.

6 Variable Storage Capacity

Many factors can impact the efficient capacity sizing, including the accuracy
of a forecasting algorithm. In the case discussed in this work, the usage of
the SARIMA algorithm resulted in the higher accuracy (in comparison to
the Seasonal Näıve algorithm evaluated in [10]). However, we are aware that
further improvements may be made by tweaking of the parameters or further
processing statistically the data set, which however are seen as the core of this
work. Although SARIMA resulted with an average MAPE of 8.2%, the high
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Fig. 8 Distribution of the estimated storage from daily estimations

propagation of the forecast errors had a significant impact on the resulting
estimations. As such, the extracted ce from the applied estimation method
should be observed through its efficiency as depicted in Figure 9. The re-
usage average (of the daily estimated storage) resulted similar for workdays
〈wtot

ce
〉D′

w
≈ 169% to that of the weekend 〈wtot

ce
〉D′

e
≈ 152%. Figure 9 shows

low re-usage for most of the samples, while certain days did result in a high
re-usage rate, e.g. 250%.

Since reusing of storage capacity was identified as low (in Figure 9), the
origin for the storage requirement due to absorption of the forecast errors
gains importance. Identifying how the error propagates within a day, will help
to better understand the role of the variable storage shape over time. The
absolute forecast error presented in section 3 may also lead to definition of
an adequate shape. Some instances in Figure 5 resulted in greater forecast
errors, but it is not clear how they mostly propagate to the resulting storage
estimations ce. Hence, the estimation method discussed in section 5 is used
on intra-day intervals, in order to assess their individual impact to the overall
storage estimated in the day they occur.

Based on the slope variation in Figure 3, it was decided to estimate the
requirements cxe for six intra-day intervals (4-hour each). The impact of each

interval (x ∈ [1, . . . , 6]) is calculated as
cxe
ce

, where cxe and ce occur during the
same day. Such impact is evaluated for all days (for both D′

w and D′
e sets) and

depicted in Figure 10. As it can be seen, certain intra-day intervals have much
higher impact than others, e.g. as high as threefold impact. For evaluation
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Fig. 9 Per day efficiency of the daily estimated storage in absorbing the forecast error by
its re-usage

of the workday dataset, the estimated capacities ce are mostly inflated by
midday intervals, in particular from 08:00–12:00, 12:00–16:00, and 16:00–20:00
intervals. The results depicted in Figure 10 assist towards understanding the
storage distribution relevance on intra-day basis. Therefore, the continuous
dynamic adjustment of the storage availability [19] should be considered even
for intra-day intervals.

Comparing Figure 7 and Figure 10 we can conclude that requirements
for storage sizing can be further reduced if the total capacity of a storage
is properly distributed. These two figures suggest further focus on key intra-
day intervals of a variable storage to absorb the error. To further investigate
this, the capacities available within the intra-day intervals variate over time,
respecting the overall shape of the variable storage. As such, the D′

w set is used
to validate the hypothesis, where integrals of shapes presented in Figure 11
equal to the each other. If the capacity shape functions are indicated as ci[n]
and cj [n], dependency is described as:

l∑
n=1

ci[n] ≡
l∑

n=1

cj [n] ∀i, j, (1)

for all the intervals of a day, where i and j are the shape identifiers. The shapes
for the variable storages hereby are selected as: (i) constant, (ii) identified peak
and all intervals from Figure 10, and (iii) finally the actual error measured
in Figure 5 for D′

w. It should be noticed that the capacity shapes ci[n] are
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percentages and their final sizing is based on the total variable capacity c. For
example, the constant shape will always have c value, while the peak function
will either have 0 kWh or 2 ∗ c kWh available for an interval n.
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To measure the efficiency of the each storage shape proposed in Figure 11,
the methodology detailed in [11] is adopted for charging and discharging be-
haviour. Hence charging/discharging efficiency of a specific storage technology
is not considered and w[n] is absorbed if the storage can absorb it (based on its
state of charge). A variable storage introduces an increased complexity of unit
management, in particular towards estimating the connection and disconnec-
tion State of Charge (SOC) of an individual asset [20], which is not addressed
in this work. SOC cannot be treated individually (based on an asset), and if
n1 < n2, the overall SOC of the storage is expressed as

SOC[n2] =
SOC[n1]c[n1] + a(c[n2]− c[n1])

c[n2]
, (2)

where state at n2 is inherited by its previous condition (at n1) and forecast
error is added. As the SOC per unit is not available, the variable a is intro-
duced for the overall SOC over time. For the cases in this work, variable a is
considered as

a =

{
50%, c[n2] ≥ c[n1]
SOC[n1], otherwise.

Following this setup, every shape from Figure 11 is evaluated individually for
the entire day and the resulting MAPE is averaged to understand its over-
all impact. With Equation 1 one can directly compare efficiency of different
shapes (to address errors of a forecast algorithm) only by varying the over-
all storage capacity c. In the following experiment c is set as a percentage of
the average daily consumption. Hence, 2% of storage capacity is calculated as
c = (2.7GWh/365) ∗ 0.02 ≈ 145kWh. By considering the D′

w set and other
values of c, the verification of the assumption for the proposed shapes is illus-
trated in Figure 12.

Although the peak shape had a fast convergence rate, it converges towards
a MAPE > 0%. This was somehow expected, as many intervals in the shape
had ci[n] = 0% of the total capacity c. The constant storage resulted in high
drop for low capacities, while almost linear drop is noticed for c ≥ 4%. The
interval based capacities had a slightly better performance, however the shape
of capacity from Figure 5 was highly efficient. The impact of having the ca-
pacity distributed as absolute energy error (or “aeerr” in the figure) may pose
as a reliable indicator of where the focus should be on the effort to improve
efficiency of a storage. It is critical to note the indications of Figure 12, where
even the slightest variation of the capacity distribution provoked a significant
improvement to the overall performance. As an example, in Figure 12 it can
be seen that the MAPE for c = 6% of the “aeerr” case approximates a MAPE
of c = 14% for the constant case. In this example the difference of 8% results
in significant capacity size i.e. of c = (2.7GWh/365) ∗ 0.08 ≈ 580kWh. There-
fore, Figure 12 can provide critical hints towards the efficiency assessment of
a variable storage (e.g. if capacity of connected EVs is considered), or how it
should be sized on its intra-day requirements.
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7 Conclusions and Future Work

As existing buildings are getting equipped with the more stochastic energy
generation and consumption assets such as solar panels, EVs etc., the forecast
accuracy will play an increasingly important role in taking informed business
decisions. Understanding the errors in the energy signature prediction of a
facility is important for taking actions to reduce and measure their impact [9].
Doing so may result on business advantages and enable better cost-managing
measures, participation in demand-response programmes, or even new business
opportunities in the envisioned smart grid era such as energy trading.

We have presented here an approach that focuses on understanding prop-
agation of the forecast error, and its role in estimating storage capacity re-
quirements. The SARIMA model is used to investigate an efficient storage
distribution to absorb the propagating forecasting errors. It is shown how the
dynamic behaviour provokes higher errors, and assessed in a step-wise manner
how the deployment of (variable) storage could assist towards absorbing them.
We have not explicitly identified the nature of this storage, i.e. if it is static
or dynamic, as this will depend on the available assets (e.g. existence of EVs),
strategic decisions, sustainability goals, economic analysis and other factors
that are outside of the scope of this work.

Although an empirical approach is provided, tools could be developed to
automate the steps and adjust it to the characteristics of the individual in-
frastructure. Hence, the development of intelligent algorithms considering not
only impact on the technical side, but also on the business one, seem promising
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towards developing sustainable strategies and managing future energy infras-
tructures as an ecosystem [2]. Identification of case-specific patterns may lead
to potentially better estimation of storage requirements and the role existing
and future company assets.
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10. D. Ilić, P. Goncalves da Silva, S. Karnouskos, and M. Jacobi, “Impact assessment
of smart meter grouping on the accuracy of forecasting algorithms,” in Proceedings
of the 28th Annual ACM Symposium on Applied Computing (SAC), ser. SAC
’13. New York, NY, USA: ACM, 2013, pp. 673–679. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480491
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