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ABSTRACT
The increased penetration of smart meters generates huge
amounts of fine-grained data, which may empower a new
generation of energy related applications and services. Sig-
nificant research efforts focus on the usage of such data to
mainly improve the business processes of the electrical grid
operators and provide some value added services to the end-
users. Forecasting has a prominent position as it is a crucial
planning step, and is mostly used to predict the grid load
through highly-aggregated data. However, with the dra-
matic increase on fine-grained data, new challenges arise as
forecasting can now also be done on much shorter and de-
tailed time-series data, which might provide new insights for
future applications and services. For the smart grid era, be-
ing able to segment customers on highly predictable groups
or identify highly volatile ones, is a key business advantage
as more targeted offers can be made. This work focuses on
the analysis and impact assessment of in the context of smart
metering data aggregation. A system to measure the impact
of aggregation is designed and its performance is assessed.
We experiment with measuring of the forecast accuracy on
various levels of individual load aggregation, and investigate
the identification of highly predictable groups.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of
Systems—Decision support ; G.3 [Probability and Statis-
tics]: Time series analysis; I.1.2 [Algorithms]: Analysis of
algorithms

Keywords
smart metering, smart grid systems, meter reading analysis,
forecast accuracy
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1. INTRODUCTION
Electricity injected into the grid needs to be constantly

balanced with the demand. An enabler towards achieving
this goal is prediction of future demand, which today is done
by aggregating large numbers of consumers and attempting
to predict their future consumption. The incurred costs of
these forecasting errors, e.g. balancing costs, are passed on
to the consumers via the electricity bill, thus shared homo-
geneously among all customers. With the introduction of
the Advanced Metering Infrastructure (AMI), better accu-
racy can be achieved as well as timely assessment of the
end-user’s production and/or consumption (prosumption).
With this improved communication between the stakehold-
ers, there are many efforts in the direction of Demand Side
Management (DSM) to further assist towards energy balanc-
ing, especially when we consider highly distributed systems.
However, is not always possible to eliminate or significantly
limit the prediction error [1], resulting in a certain level of
grid imbalance. This is a business opportunity for service
providers that can help, e.g. the Distribution System Op-
erator (DSO), with its grid balancing efforts. However, this
is still a high-cost activity, and especially in the envisioned
smart grid distributed systems, a more challenging issue to
tackle.

The stochastic behaviour of some customers that can’t be
relatively accurately predicted, may result in some cases to
extremely high balancing costs. As we drill down to smaller
groups of customers or even individuals, the more difficult
forecasting becomes when no additional information is pro-
vided. The prediction error varies for different load types,
for instance some appliances are highly predictable while
others have completely stochastic behaviour. The newly de-
ployed AMI may assist in this direction by providing a better
insight on the individuals in the context of both timing and
quality of information [10]. Smart metering data allows new
dimensions in analysis e.g. predictability level assessment
for any customer, or a group of them. It is important to un-
derstand that the focus does not necessarily have to be on
customers as such, but virtually any grouping (based on cer-
tain criteria e.g. location, economic, social etc.) of devices
or users being connected to the grid [7].

In the Smart Grid era, devices may be consumers or pro-
ducers of electrical energy (or both i.e. prosumer device).
In any case, if the predictability of a device is within some
limits, it is considered ”good-enough”, and one may cluster



it as part of a virtual ”predictable” group. The same holds
true for the prosumers owning these devices. Having pre-
dictable groups is important especially for the construction
of prosumer Virtual Power Plants (pVPP) [7], where their
usefulness is directly bound to understanding their poten-
tial contribution to the grid and the ability to control it.
If highly predictable, or highly volatile, groups are identi-
fiable (preferably in real-time), new business opportunities
for smart-grid stakeholders may arise. As an example, one
might try to ”normalize” the effects of volatile groups by
combining them appropriately, or by prioritizing the deploy-
ment of demand-response programmes.

2. BUSINESS ASPECTS
Given the high unpredictability of individual customers,

any forecasting algorithm would struggle to consistently meet
high-precision goals. This may have a significant impact on
the vision of the smart grid where individual prosumers buy
and sell energy based on their own predicted needs [6]. The
fear would be that any prediction error might result in false
trades and financial penalties e.g. due to imbalance caused.
The production side solves a similar problem through the
creation of Virtual Power Plants (VPPs), where the aggre-
gation of Distributed Energy Resources (DERs) into the vir-
tual equivalent of a large power station [12]. Such a coalition
allows them to potentially participate more cost-efficiently
on an electricity market. This concept was further refined [7]
for virtual communities at several layers e.g. per user, device
etc. In any case constructing highly predictable groups or
identifying stochastic prosumers (within pVPPs) is expected
to result in new business opportunities for smart-grid stake-
holders [8] and enable them to take better decisions.

Participating in a coalition is in the best interest of its
members [2]. Therefore, due to the potential for cost reduc-
tion of participating in energy markets, highly predictable
customers may join communities and participate on local
markets by buying and selling energy. Such groups can only
benefit most their users if they, as a total, have a highly
predictable behaviour upon which strategies for trading can
be build. That way users belonging to a highly-predictable
group may benefit from lower (overall) prices – rather than
always paying for individual imbalance costs. For instance,
if highly predictable groups can be created, their low pre-
diction errors may result in lower balancing costs than a
retailer’s (mostly static) service fees (as depicted in the Fig-
ure 1).
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Figure 1: A predictable group over perform re-
tailer’s service costs

Additional to the algorithmic forecasting, it is expected
that external factors, e.g. storage technologies, can assist

towards improving the prediction accuracy by, for instance,
adjusting the locally incurred imbalances to the expected
behaviour. One can expect that this may be done on a
building (or neighbourhood) level, which may assist towards
more predictable behaviours. However, this combined effort
is not further considered here and is left as future angle to
explore. Finally, the existence of a highly predictable group
is a key aspect to enable fully automatized brokerage agents
that act on the behalf of such a group in local energy markets
[6]. In such scenarios, the earliest the ”economical point” (as
depicted in Figure 1) is achieved, the better the benefits for
the end-users might be.

The process of identifying highly predictable customers
will also result in identifying the customers with a stochastic
behaviour. Similarly to the highly predictable groups, the
identification of highly stochastic customers and groups is
also important. Once these are identified several actions can
be realised e.g. try to move them towards a more predictable
behaviour by deploying demand-response programmes. This
is of key importance for an energy provider that is rolling out
such schemes and wants to prioritize the target groups and
his roadmap. Additionally, it may attempt to offer demand
side management programmes or even penalize the users
via more expensive tariffs. In this case, analytics can assist
towards user segmentation not only on their location but on
their actual behaviour as well.

3. SMART METER GROUPING
A traditional retailer’s business and internal cost benefit

analyses rely on the existence of large customer numbers,
where individual effects are absorbed by the overall group
behaviour. This is true due the mathematical behaviour
of time series aggregation, especially if aggregated time se-
ries hold similar patterns. A smart meter is denoted with
m ∈ M , where M is the set of N smart meters. If i is an
interval (e.g. 15 minutes), actual consumption of a m inside
an interval i is denoted as ymi ≥ 0. The forecast energy
load for the same interval is denoted as ŷmi ≥ 0. The energy
difference between forecast and actual consumption is cal-
culated as ŷmi − ymi , having surplus if positive or shortage if
negative.

Two types of aggregation are possible: One the one hand,
if the prediction is calculated before the aggregation step,
a perfect fit for aggregation of two meters mw and mz ex-
tracted from the set M , where w 6= z, if ŷmw

i − ymw
i +

ŷmz
i − ymz

i = 0 or having no prediction error. A perfect
example would be aggregating sin(t) and sin(t + π). On
the other hand, energy of any meter ymi may be aggre-
gated with any other m ∈ M for each interval i. The
resulting series can be further used for the calculation of
the aggregated prediction. This step produces a subset de-
noted as G ⊆ M of size n ≤ N , where n represents the
number of meters in the subset. The aggregation of any G
for one instance results is denoted as yGi =

∑
m∈G

ymi , while

the prediction ŷGi is calculated from the aggregated series
yG = {yG0 , yG1 , . . . , yGx , . . . , yGx+s−1}, where the series length
is denoted as s. The resulting prediction within the time
frame is denoted as ŷGX , where X = {x, . . . , x+ s− 1}, same
as for real data to compare yGX .

3.1 Applied Approach
The approach used in this work can be characterized as



some kind of brute-force method; the computational cycles
are used to build random groups, create forecasts for these
groups and measure the resulting forecast accuracy. The
steps in the grouping approach rely on random numbers.
The Monte Carlo method is used to build a group of ran-
domly chosen smart meters from the original set. The prob-
ability, independently of a group size, must be equally dis-
tributed in order to ensure comparability between all group
sizes. Thus, all time series have the same probability to be
chosen for a group.

For every experiment the series length s is fixed f.g. in
this work is s = 96 and represents one day in 15 minutes
intervals. Still, every smart meter m ∈ M contains time
series y and is indexed as mj , where j ∈ [1, N ]. Once the size
n ≤ N of the subset G ⊆M is determined, G gets populated
by random smart meters drawn of mj out of M , without
replacement. Then m ∈ G are aggregated in yG, which
is used for calculating ŷGX . Finally (one or more) accuracy
comparison measurements between the two time series, yGX
and ŷGX , are stored as result of the experiment.

3.2 Forecasting Algorithms
Energy load forecasting is influenced by several factors,

the most fundamental of which is the length of the predic-
tion horizon. The focus of this work is forecasting the next
day load, categorized as the short-term forecast [3, 13] as
its horizon is between one and seven days. Besides the fore-
cast horizon, methods can be additionally categorized by
considering seasonality. We have used smart meter energy
readings, and selected the time series forecasting methods
as they use only historical data of a variable for prediction
[4]. The approach is to reveal the internal structure (e.g.
seasonality, trend) by using statistical properties of the time
series. Due to their robustness and implementation sim-
plicity, time series forecasting methods are popular in short-
term load forecasting. The most commonly used approaches
are auto-regression or exponential smoothing models [4].

For this work, the exponential smoothing forecasting method
was chosen mainly for its robustness e.g. the method of Holt-
Winters (HW). Exponential smoothing shows good forecast
performance in empirical studies and outperforms more com-
plex methods [15]. In order to compare experiments of fore-
cast models, a näıve forecast method was used. Since energy
load data is highly seasonal data, the Seasonal Näıve (SN)
algorithm was chosen. The principle behind the SN method
is the usage of values from the previous season (e.g. day,
week) as forecast value for the current season [4]. For ex-
ample, the forecast value for Monday is equal to the last
observed value for Monday.

3.3 Accuracy Measurements
Using historical values (that were used to build the fore-

cast model), historical data must be used and compared
against the predicted values. This is important to evaluate
the forecasting accuracy [4]. Therefore, the available his-
torical observations are split into a training- and a test-set.
The training-set (before yGx ) is used to fit the forecast model,
while the test-set (yGX) is used for comparison against the
predicted values ŷGX . As forecasts of different scales must be
compared, the Mean Absolute Percentage Error (MAPE) is
chosen due its scale-independence. MAPE estimates the fit
of a model by expressing its accuracy as a percentage, the
advantage of which is that it is not fixed to a specific unit.

Therefore, arbitrary models can be compared regardless of
the unit of their values or their level. The MAPE is calcu-
lated as the sum of the absolute errors, normalized by the
actual value [5] i.e.:

MAPE(G) =
100%

s

∑
i∈X

|ŷGi − yGi |
|yGi |

for the number of intervals within the season s. The major
disadvantage of this error metric is that the MAPE has no
upper bound, as there is only a lower bound, which is zero.
Due to this missing upper bound, extremely high values for
certain time series distort the comparability of the MAPE.
Especially for the case of a small denominator yi, the MAPE
tends to infinity.

4. SYSTEM DESIGN

4.1 System Requirements
Designing a system to deal with the envisioned processing

may suffer from data exchange and data fetch latency (due
to the large amount of data). In addition it must offer flex-
ibility regarding the data sources, forecast algorithms and
measurement components. The overall system performance
is required to be in strong correlation with the data set size.
For small number of smart meters (N), a high performance
may not be of key importance. However, in real-world sce-
narios, demand for high performance is inevitable. Such
scenarios tend to involve thousands (or millions) of smart
meters in M [9]. Of course the frequency of meter readings
ym, ∀ m ∈ M , is also a significant factor. Following the ap-
proach presented in the section 3.1, one can imagine how the
computational requirements grow based on large value of N ;
The greater the N the longer it will take to fetch and aggre-
gate meter readings of G ⊆M . It is therefore of paramount
importance to have efficient data acquisition mechanisms in
order to retrieve all the data into the system and to write
results back.

Other requirements we considered focused on engineering
aspects e.g. building an extensible system that will enable
future enhancements (extensions). For that purpose two
key interfaces are defined: Firstly, an abstraction is made
on the used forecasting methods, as is expected to have new
algorithms in future, and secondly another abstraction is
made on the measurement algorithms. As a result one can
implement and plug-in other algorithms, extending existing
ones or realizing new functionality. As an example, one may
easily implement an accuracy metric to calculate the total
cost of the prediction error. This can be done by calculating
the energy error (in Wh) ∀ i ∈ X and multiplying with the
contracted balancing prices (per Wh, ∀ i) to calculate costs.

4.2 System Architecture
Based on the aforementioned requirements, an architec-

ture is derived consisting of the components depicted in
Figure 2 in Fundamental Modeling Concepts notation (www.
fmc-modeling.org). The user interacts with the comparison
application which includes functionalities such as time series
comparison, accuracy metrics and group building. The me-
tering data as well as the results are maintained in a DBMS
(Database Management System). The main component is
TimeSeriesComparison and it communicates (time-series)
and coordinates all the other components.
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Figure 2: Components of the system architecture

The requirement concerning the flexibility of different data
sources is addressed by using a designated layer for data
reading/writing processes. As shown in Figure 2, the data
layer consists of several Data Access Objects (DAO) com-
ponents for data provision and storing. Three different DAO
interfaces were designed i.e.: RealDataDAO, ForecastDataDAO
and ResultDataDAO. The RealDataDAO interface is responsi-
ble for providing the real smart meter (aggregated) mea-
surements to compare against the forecast. These forecasts,
which are the results of forecasting algorithms over real me-
tering data, are provided via the ForecastDataDAO. Its key
purpose is to aggregate all the real metering data of a G and
executes prediction algorithm in order to retrieve ŷGX for en-
tire X. Once time-series are available, their comparison cal-
culation occurs within the component AccuracyMetric and
its result (e.g. MAPE) is written over the ResultDataDAO

interface. Every result contains the application configura-
tion, the group constellation, the used forecast algorithm,
the results of the accuracy metrics.

4.3 System Performance
Key performance aspects of the system were measured at

selected measurement points that were chosen only for pos-
sible bottlenecks that could impact thus execution time for
fetching the real and forecast data. While raw real data is
directly fetched (and aggregated) from the storage, for pre-
diction the R environment in combination with the fore-

cast package was used. The package provides various im-
plementations of forecasting methods, mainly from the do-
main of time series forecasting, out of which HoltWinters

and snaive were used. For the random number genera-
tor the Mersenne-Twister algorithm was used [11]. This
generator is used for drawing n smart meters from M for
group G. Since there is no implementation of the Mersenne-
Twister in standard Java libraries, the open source library
Colt (acs.lbl.gov/software/colt/) was used.

One would expect to have bottlenecks on the data ex-
change, but all the processing (aggregation) of the real data

and forecast data is made internally in the components. This
results in exchanging only one final time-series of aggregated
meter readings for a specific group. As all time-series aggre-
gation is done inside the components, the data exchanged
in between the components are yGX and ŷGX . Thus, size data
exchanged is independently of the group size n, but only on
X.

For the evaluation of the system performance, the HW al-
gorithm was used. Since the SN algorithm uses previous day
as prediction, it is expected to have twice the execution time
for real data fetching. Its execution time resulted in linear
growth in relation to group size n and it can be approxi-
mated as 0.02 ∗ 2n seconds per one group. The HW forecast
of one day s = 96 for any G require four weeks (4 ∗ 7 ∗ s) of
historical data (for every m ∈ G) to predict one day ahead
(s). Fetching time for prediction data also resulted in lin-
ear growth with dependence on n. However, it is important
to notice that HW algorithm requires fetching of an aggre-
gated training-set (4 weeks) which is followed by execution
of the actual forecast algorithm. Total execution can be ap-
proximated as 0.12 ∗ n, resulting in total (0.02 + 0.12) ∗ n
seconds per one group. Due this limitation, the groups for
this evaluation were limited to a group size of n ≤ 160.

The MySQL implementation shows a linear growth in ex-
ecution times in correlation to the size of a group. Although
all measured time components increase linearly with increas-
ing group sizes, the slope of the individual components dif-
fers. While the Real Data component reveals a small slope,
the comparison one shows a higher slope. As an example,
the average of ≈ 15 seconds is needed to perform a single
comparison run for n = 140. As a result, one can use such
a linear trend to determine approximated execution time
of the complete experiment i.e. 100 comparison runs for
n = 150 will take ≈ 30 minutes for the HW algorithm. Fi-
nally, this numbers are fully dependent on the data set size
and is expected to grow if total number of meters or meter
readings grow.

5. EVALUATION
The evaluation experiments reveal the grouping impact

on the forecasting accuracy, and how the group accuracy de-
pends on the accuracy of its individuals. We have used real-
world data from the NOBEL (www.ict-nobel.eu) project
which runs a trial with Spanish consumers. This original
data set is filtered in order to acquire a high number of
smart meters without any invalid measurements. The re-
sulting set had N = 1974 smart meters without missing, or
faulty, meter readings from 03 March 2011 to 09 June 2011
(98 days in total). As metering data was collected within
the project trial, it was discovered that set had 2.8% of the
15 minute resolution and 97.2% had the 1 hour resolution
of the metering data of 1kWh precision. In order to keep
unique resolution, devices with resolution of 1 hour were
linearly interpolated to 15 minutes.

The process described in the section 3.1 is repeated using
this set. In the case of the HW method, the chosen sea-
sonality was within-week seasonality. Using a weekly season
achieved best forecast accuracy in preliminary experiments,
which is also reported in [14]. For the SN forecast, a within-
day seasonality was used, which means that the observations
of the last day are the predicted values for the next day. This
configuration depicted a superior forecast accuracy in pre-
liminary experiments. Finally both algorithms use historical



data to predict a specific date i.e. Tue 07 June 2011.

5.1 Grouping Impact on Accuracy
Grouping hides the stochastic behaviours and their im-

pact. However, today with the fine-grained smart metering
data offered, we can make detailed analysis on the impact of
such stochastic behaviours on the overall accuracy. To un-
derstand their affect, an experiment was executed 100 times
for every n in the spectrum n = [1, 180], which was split
into 4 sub-intervals. The first subinterval was n = [1, 25]
by an incremental step of 1 (25 groups steps in total); the
second n = (25, 50] by a step of 5; the third n = (50, 100]
by a step of 10; and the fourth n = (100, 180] by a step of
20. Figure 3 shows the result of the experiment where the
average MAPE (y-axis) per group size (x-axis) is shown for
both HW and SN algorithms.
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Figure 3: Grouping effect on the prediction accuracy
(MAPE)

As expected the forecast accuracy increased with an in-
creasing group size, showing bigger improvement for smaller
group sizes while showing lower improvement for larger group
sizes. Interestingly, the results also revealed that the sim-
ple forecast method (SN) performs almost identically to the
more complex one (i.e. HW). However HW depicted a slightly
better accuracy for all group sizes, having 〈MAPE(G160)〉M <
5% already at the group size of n = 160. Further exper-
iments conducted revealed that a lower variance of series
yG∀G is the reason of the accuracy improvement rate. The
same experiment within the winter season, where variance of
the meter readings is higher, depicted slightly lower improve-
ment rate. This experiment resulted in 〈MAPE(G160)〉M ≈
8% for the HW method. Still, both experiments depicted a
similar trend in the increasing improvement rate.

Achieved results triggered further investigation for the
competitiveness of the two selected algorithms. In order
to validate the resulting behaviour, additional experiments
were conducted. As shown in Figure 3, it was decided to fix
n for comparison within a rolling-time window (other days
of the week) to cross validate. Group size of n = 50 was cho-
sen as greater n resulted in slighter accuracy improvement.
Thus, one-day ahead was predicted 100 times (and therefore
with different G) for every day of the week. The results for
Tuesday 07 June 2011 are depicted in the Figure 3; however
now a rolling-time window allow us to move along the rest
of the weekdays, the results of which are shown in Figure 4.

The results depicted in Figure 4 show that the HW algo-
rithm performed better for all days, as its 〈MAPE(G50)〉M
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Figure 4: Example where SN algorithm fails to pre-
dict next day (n = 50)

range varies in between range of 8−10% for all X. Although
SN was comparable to HW from Tuesday to Friday, its fore-
cast accuracy degraded for Saturday, Sunday and Monday.
Such behaviour was expected due the fact that energy data
actually contains two seasons, daily and weekly. Since SN
predicts day-ahead (e.g. future 96 instances of 15 minutes)
using data of one day-before (i.e. previous 96 instances), one
can expect that customers (residential or commercial) be-
have differently on Saturdays in comparison to Fridays. As
an example, load characteristics of a commercial customers
usually change drastically over non-working weekend days.

The results of this experiment leads to the conclusion, that
the forecast accuracy improvement by grouping is not a ran-
dom effect. However, it is remarkable that the SN algorithm
performed almost as good as HW for all the other weekdays
(for this data set). Since the HW method depicted greater
accuracy it was selected for identifying the key accuracy in-
dicators.

5.2 Key Accuracy Indicators
We have shown that the forecast accuracy improvement

by grouping is not a random effect. It was shown that the
SN algorithm failed to predict correctly for Saturday, Sun-
day and Monday, even when they were aggregated within
a group of 50. Obviously many devices within such group
in 100 runs resulted in higher MAPE for Saturday than for
Tuesday. However, one can generally expect that grouping
impact is improved if every individual has a good prediction
(or lower MAPE(G1)) on its own. In other words, grouping
two predictable smart meters will result into a lower MAPE
than two unpredictable ones.

To confirm this assumption, an experiment is conducted
where the MAPE for every smart meter is calculated individ-
ually using 4-weeks of historical data to predict Tuesday (07
June 2011). Figure 5 shows the cumulative density function
of the HW method in dependency of the resulting MAPE
values.

The median of this data set resulted to a MAPE of 36.06%
and is assumed to be an indicator for creation of groups
with greater and smaller forecast accuracy. If the hypothe-
sis holds true, one would be able to create ”good” and ”bad”
groups from the individual prediction accuracy. Using the
median value from the figure 5, the time series with MAPE
lower than 36.06% were considered as devices in the ”good”
predictability set (A ∈ M), while the remaining were con-
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Figure 5: Cumulative density function built from
every device in the set

sidered as devices for the ”bad” predictability set (B ∈ M).
To confirm the hypothesis, the same experiments from the
section 5.1 were conducted for both sets (A and B) individ-
ually. Figure 6 shows progress of the original set M and the
derived sets.
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Figure 6: Impact of grouping using good(A) and
bad(B) predictable sets

Noticeably, both sets followed the exponential improve-
ment of the original set with a slight offset. However, the
results of this experiment revealed that creating groups out
of good/bad time series, based on the individual forecast
accuracy, proved the prior hypothesis. The set A showed
better accuracy (〈MAPE(G160)〉A ≈ 4, 09%) than the set B
(〈MAPE(G160)〉B ≈ 5, 93%), concluding that the hypothe-
sis was correct if empirical results of the depicted experiment
are considered.

5.3 Summary
Two different forecast methods were used to demonstrate

and to compare the impact on the forecast accuracy by time
series aggregation. Interestingly, results showed competi-
tiveness between simple and robust algorithms. The com-
plex algorithm HW (requiring 4 weeks of historical data)
used, slightly over-performed the simple one SN (that re-
quires only the previous day). However, this was not always
the case. Since SN showed much worse performance for some
days of the week, HW method (with best overall forecast ac-
curacy) was used in further experiments. The method was

used to show that groups with better and worse prediction
accuracy can be built out of the individual prediction re-
sults. Thus the empirical results shown that the individual
forecast accuracy is an indicator of the group prediction ac-
curacy. Furthermore, this assumption was proved to be true
independently of the used forecast algorithm.

6. CONCLUSIONS
The experiments conducted in this work revealed that

improvement of the prediction accuracy by smart meter-
ing data aggregation is not a random effect. The results of
the experiments show how accuracy progresses along within
larger group sizes, as well the impact of the individual pre-
diction accuracy. High predictability might be of key im-
portance in future energy systems and the realisation of pro-
sumer virtual power plants, which effectively group different
prosumers and based on their behaviour can derive market
trading strategies that may lead to lower costs. If forecast
algorithms can be used to accurately report electricity loads
in advance, one may preform better production scheduling
and thus avoid high balancing costs. Additional improve-
ment of group predictability (e.g. by using an electricity
storage system) may allow for the existence of fully auto-
mated energy brokering [6].

For the numerous experiments conducted, we hardly con-
sidered any system landscape options e.g. high performance
machine clusters or advanced computational techniques e.g.
parallelism, database calibration or data pre-processing. In
the future one may expect that huge smart metering data
sets will require greater performance and more advanced sys-
tem landscapes may be required. Furthermore, data analysis
can be used to predict the accuracy improvement rate (of a
forecast method) by grouping, prior to building such groups.
Such knowledge may reduce computation time needed to
find groups constellations of certain predictability, without
intensive data fetching. The business implications of these
result can vary from a better understanding of clustered user
behaviour, to decision making of prioritization in demand-
response and demand side management programmes.
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