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Improving Load Forecast in Prosumer Clusters
by Varying Energy Storage Size

Dejan Ilić, Stamatis Karnouskos, and Per Goncalves Da Silva

Abstract—Forecasting already plays a crucial role in the
current electricity grid as a key part of planning and energy
management activities. Its role will be pivotal in the envisioned
smart grid, as its stakeholders are expected to interact in real-
time. The amount of data to be considered e.g., from the smart
meters, will sky-rocket; however consistently accurate forecasting
will still be needed in order for the smart grid stakeholders to
make informed decisions and transact. Today forecasting efforts
concentrate on increasing the accuracy of algorithms, especially
by grouping energy producing or consuming entities such as the
prosumers. However due to the dynamic nature of the smart
grid, errors still remain as a result of dynamic and highly
volatile events. The usage of distributed storage (potentially
strategically positioned) that may exist in smart cities, such as
electric cars, aggregations of residential storages, small scale
industrial facilities etc., could be used in order to assist towards
achieving better forecasting accuracy for groups of prosumers.
The latter would enable them to participate in the new smart
grid offerings such as smart city level marketplaces with more
confident actions and strategies. We investigate here the role of
distributed storage in residential areas, as well as a mean towards
creating communities (groups) of prosumers that feature better
forecast energy behaviour.

I. INTRODUCTION

THE smart grid is a complex ecosystem of heterogeneous
entities that can interact via modern information and

communication technologies and benefit from the plethora of
information that it brings [1], [2]. Its realization will empower
advanced business services, offering to their stakeholders
desired services [3] such as near real-time information, as
well as new analytic services and applications. While opti-
mal management of the highly distributed alternative energy
resources that constitute the smart grid is sought, one has still
to consider the physical limitations imposed by the grid. As
supply and demand must be constantly in synchronization,
production can be ramped up or consumption can be scaled
down in order to maintain grid stability. Traditionally, the
grid is balanced through an almost centralized control of
the generation plants. Furthermore, in lieu of storage, the
grid relies on “spinning reserves”, generation plants that are
constantly on, waiting for signals from grid operators to inject
power into the grid. Because they are always on, their usage
is very costly. Although optimizing such a complex system
is already a challenge, complexity grows further due the high
penetration of Distributed Energy Resources (DERs). Some
DERs are outside the grid manager’s control e.g., Renewable
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Energy Resources (RES) which produce energy intermittently
[4].

Imbalance charges caused by load forecast errors may
result in high penalties, but these costs are reduced by high
aggregation of customers (and mitigation of costs). The lack of
large-scale demand elasticity pushes most of the responsibility
for balancing on the supply side. For stakeholders such as
prosumers to be active in the new capabilities the smart grid
offers, such as participation in smart city or neighbourhood
marketplaces [2], [5], consistently accurate prediction is con-
sidered a business advantage as then more effective strategies
can be formed. Today, with the Advanced Metering Infrastruc-
ture (AMI) in place, individuals can be included in the effort
towards providing value-added information to all stakeholders
[6]. Still, any forecasting algorithm would struggle to con-
sistently meet the high-precision for the load-forecasting of
an individual (e.g. a household). As such, forecast accuracy
becomes a significant factor for the realization of prosumer
Virtual Power Plants (pVPPs) [2], [7] from highly distributed
resources. Results from previous work [8] show that clustering
enables high prediction accuracy, even for a relatively small
number of prosumers (e.g., 100) within a cluster. However,
improving the prediction accuracy by clustering is not always
sufficient to achieve the required accuracy.

If a cluster of prosumers decide to create a pVPP, all the grid
imbalances (as result of the prediction errors) occurring within
the grid will lead to financial penalties. Therefore, all the
electricity injected into– or extracted from– the electricity grid
needs to be highly predictable within a cluster. The solutions
to improve the predictability are well known for the highly
volatile systems such as wind farms [9]. In a similar fashion,
in this work we investigate how energy storage mechanisms
can improve predictability of pVPPs. While significant on-
going work focuses on forecasting algorithms as such, we
here investigate how we can take advantage of the potential
existing distributed storage in order to improve the forecasting
of clusters. In this work we do not focus on any specific
aspects on the nature of the distributed storage which could be
composed of multiple heterogeneous resources such as fleets
of electric cars, residential storage, small industry storage (e.g.
supermarket refrigeration units) and generally any kind of
facility that could act like so. The work presented here focuses
on investigating how storage sizing impacts the predictability
and affects its behaviour.

II. BUSINESS RELEVANCE

Predictability plays a pivotal role to any strategic or business
decisions the smart grid stakeholders will take. Advanced al-
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gorithms may not be sufficient to achieve the required forecast
accuracy to economically sustain the costs of imbalances of a
stakeholder. Meaningful integration of VPPs [10], especially
as we face significant increase in complexity for smart grid
management due the high penetration of DERs is sought.
Their forecast accuracy is improved simply by aggregation of
numerous DERs into the virtual equivalent of a large power
station. The same can be applied to prosumers, as it is in their
best interest [7], [11], where their aggregation can allow new
business opportunities.

Acting together they can become predictable as a virtu-
ally created cluster [12], accurate even for small number of
prosumers within a cluster [8]. As predictability converges,
distributed storage is identified as a mechanism to further
improve it [4]. Its application is well known in wind farm
prediction scenarios [9] to meet the expected (or reported)
behaviour. This work considers the impact of distributed
storage that may be available in various forms within a smart
city and its impact on the predictability of virtual clusters. With
fine-grained information coming from the smart grid, one can
further analyse the associated costs of the predictability in such
clusters.

If highly predictable clusters can be created, understanding
the costs of their lowest prediction errors may result to costs
lower than retailer’s (mostly static from a point on) service
fees (as depicted in the Figure 1).
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Figure 1. A predictable cluster may outperform a retailer (lower service costs)

Additionally predictability is the key aspect to enable fully
automatized brokerage agents to act on behalf of such cluster.
In such scenarios, the earliest the “economical point” (as
depicted in Figure 1) is achieved, the better the benefits
for the end-users might be. Similarly, predictable clusters
can participate in a more cost-efficient way on an electricity
market. Better forecasting coupled with a pVPP allows even
residential prosumers to potentially participate more cost-
efficiently on an local electricity markets [2], [5]. From the
increased predictability benefit also participants of Demand
Response (DR) programs, as once load can be reported in
advance, DR effectiveness does not need to be approximated
[13], but rather directly measured. Hence it is in the benefit
also of the infrastructure managers e.g., DSO to have larger
clusters of prosumers (e.g., pVPPs) that would have the
necessary footprint (due to the high number their members) to
assist in critical situations by adjusting their load. However,

benefits are not only on the grid management side but also for
the participants of a pVPP.

III. FORECAST ACCURACY IN A CLUSTER

The introduction of smart meters has led to fine grained data
acquisition. The impact of smart metering data aggregation on
load forecasting [8] shows that a rapid increase in predictabil-
ity could be achieved even for smaller clusters of consumers
e.g. 160 smart meters. One of the forecast algorithms applied
in that work is the Seasonal Naı̈ve (SN) which uses values
from previous day (season) as the forecast value for the current
day [14]. Since the SN algorithm was demonstrated to be good
enough when compared with the (more sophisticated) Holt-
Winters exponential smoothing algorithm [8] for our dataset,
it was also chosen for this work.

Following the same reasoning as discussed in [8], the real-
world data of the NOBEL (www.ict-nobel.eu) project trial is
used to measure predictability of individual smart meters. The
original data set is filtered in order to acquire a high number of
smart meters with the highest number of measurements (more
then 50%). The resulting set M had N = 3564 smart meters
without sampling interruption from 15-Aug-2012 to 15-Sep-
2012 (31 days in total). Figure 2 shows the individual MAPE
distribution for each smart meter of the set M .
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Figure 2. Individual prediction accuracy of the set is poor

As expected, only few smart meters resulted in being highly
predictable, while some demonstrate very stochastic behaviour.
Overall, the individual load forecast of M resulted with a high
error measured in an average MAPE of 47.35. In order to
improve their predictability, different aggregation levels were
analysed. Aggregation is done by randomly selecting n smart
meters from M into a cluster G ⊆ M , without repetitions.
The time-series data for each smart meter is then aggregated
to produce a single time-series (for measures of 15 minutes
intervals) for the cluster. The experiment is repeated 50 times
for every cluster of size n, denoted as Gn, with an incremental
step of 20 for the spectrum n = [20, 400] . The box plot
in Figure 3 shows how MAPE of M converges as the SN
algorithm is applied to time series growing values of n.

The figure confirms that aggregation level n increase brings
rapidly M to its MAPE convergence, while stochastic be-
haviour of the individuals diminishes by clustering. Slightly
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Figure 3. Clustering effect on the prediction accuracy (MAPE)

higher values of MAPE are not a surprise, since SN algorithm
introduces errors for three days per week (Saturday, Sunday,
Monday) and has no trend component applied (while it is
important in selected period due the temperature drop). How-
ever, having low MAPE values are not critical for evaluation
in the following sections, while being able to compare the
predictability convergence of different data set is.

Although the number of smart meters within the cluster is
relevant to business analysis, values are not comparable to
different use cases. For example, the average consumption
of a household in Spain may be different from an average
household in Germany. Having said that, this work proposes
to extend analysis by measuring comparable units i.e., the
impact on predictability by clustering is therefore measured
by average power consumption 〈P 〉.

The analysis of the average power distribution of the indi-
viduals showed that no individual consumes more than 2kW
within M , while the set resulted with the mean of individual
average power of 〈PM 〉 = 0.33kW . Since every cluster is
made by random selection from M , it is expected that an
average cluster power 〈PG〉 is in direct dependence of 〈PM 〉.
Therefore, the average power of a cluster can be approximated
by its size as 〈PGn〉 = 〈PM 〉 ∗ n. Figure 4 depicts the same
results that Figure 3 does, where every cluster G is presented
by its measured (not calculated) average power 〈PG〉.

As expected, the behaviour depicted clearly represents the
behaviour of Figure 3, while results on Figure 4 are now
comparable to other sets. This representation did not only
offered comparability, but now one can also approximate
absolute value of the energy error Ee of a cluster∣∣EG

e

∣∣ = MAPE(G) ∗ 〈PG〉

Although the average power representation holds additional
information, the representation via cluster size (Figure 3)
brings forward the business information. As an example, its
business relevance can be as simple as costs to be paid for
every smart meter connected to the electricity grid. As this
information can be included in evaluation of the economic
sustainability of a cluster, both types of figures are found to
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Figure 4. The prediction accuracy in a cluster is impacted by its power
requirements

convey a key message towards the realization of pVPPs.

IV. ENERGY STORAGE SYSTEM REQUIREMENTS FOR
ACCURACY IMPROVEMENT

Different RES also imply the usage of different techniques
to maintain their predictability e.g. wind farms can brake
turbines from spinning if power exceeds a generation set-
point. However, due the wind unpredictability their set-point
needs to be set low, where predictability is high enough (since
turbines can be stopped). Once turbine starts braking, until
fully stopped, its potential to produce energy is wasted. For
that reason, wind farms try to improve their business by
applying different types of storage [4].

Since the unpredictability of wind farms can be improved by
a storage component, the same methodology can be applied
to create the predictable clusters. The forecast improvement
by clustering, presented in the section III, is expected to be
further improved by adding a storage component. Here we
investigate the potential improvement by simulating a storage
components of varying size, with no storage efficiency or
control applied. Therefore, the actual energy load El (positive
or negative) applied to the storage component, for every point
within a cluster time series (i.e., intervals of 15 minutes) can
be described as

El =


0, if Ee > 0 & ESOC = Emax

0, if Ee < 0 & ESOC = Emin

Emax − ESOC , if Ee ≥ Emax − ESOC

Emin − ESOC , if Ee ≤ ESOC − Emin

Ee, else,

where Emin and Emax are storage capacity limits and ESOC

is its current state of charge. The described component is then
used to carry out multiple simulations and measure the impact
of different storage sizes on reduction the forecast errors Ee.
In other words, as ESOC has cumulative characteristics, every
interval simulation of a cluster where Ei = |Ee| − |El| > 0 is
considered as load imbalance. Every simulation is repeated 50
times for every cluster size n and every storage size, where
storage capacity c is calculated individually for each cluster
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G as
c(G, s) = 〈PG〉 ∗ 24 ∗ s,

where s is used for defining percentage of cluster’s average
daily energy usage. Finally, a cluster of size n and storage size
s is denoted as Gn

s . Figure 5 visualize the results of simulations
for storage sizing s = [0%, 16%] in power of 2, to show how
MAPE is affected by both improvement methods.
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Figure 5. Measuring impact of a storage to improve prediction accuracy of
clusters

The simulation results confirm that the storage increase
results in faster convergence and reduction of MAPE. For
s > 0% we see that smaller storage has a much higher impact
on the predictability improvement, than bigger ones. As an
example, for n = 200 there is a noticeable average MAPE
reduction for first 2% increase by

MAPE(G200
0 )−MAPE(G200

2 ) = 3, 5%,

than the second increase

MAPE(G200
2 )−MAPE(G200

4 ) = 1, 3%.

Every increase in capacity follows the same behaviour, until
capacity increase seems to be of minor importance e.g.,
average MAPE improved only for

MAPE(G300
14 )−MAPE(G300

16 ) = 0, 25%.

Finally, results confirm that a small cluster with a storage
component can have the forecast accuracy of an approx. 4
times bigger cluster (without storage). For example, clusters
of size n = 60 with s = 2% are expected to average around
MAPE(G60

2 ) = 9, 89%, while clusters of n = 300 with
no storage average around MAPE(G300

0 ) = 9, 67%. Such a
small difference (0, 22%) is only possible due the fact that
predictability converges much faster with storage increase,
while same difference without storage equals to

MAPE(G60
0 )−MAPE(G300

0 ) = 5, 67%.

Understanding how different s affects the imbalance Ei of a
cluster, is crucial towards realization of pVPPs. Simulations of
different storage sizing will lead to evaluating quantitatively
the impact on the imbalance reduction (that is relevant for
further economical analysis). For this purpose, the trend lines
on Figure 6 depict values obtained from the same experiment
of Figure 5, but the trend lines show how load imbalances

are reduced by average cluster power and applied storage.
For visualization purposes, the points depicted only show the
imbalances provoked by the simulations without any storage
(s = 0%) and the trend line offers quantitative approximation
of provoked electricity imbalances.
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Figure 6. Absolute forecast error (kWh) in dependence of the cluster average
power (kW ) and available storage capacity

The increase of s also has a saturation point, where further
storage expansion would not make any significant improve-
ment. Figure 6 shows how improvement for storage sizes close
to s = 16% progress almost in parallel. Although this may
depend on the algorithm prediction (in this case SN), one
should expect even faster saturation if more robust algorithms
are applied. Hence the economical significance of the storage
needs to be evaluated as at some points its further expansion
will not significantly impact the predictability of a pVPP.

We can see that capacity has a critical impact, even if this
corresponds to a minimum percentage of the daily energy
usage. It is important to mention that prediction algorithms
play a key role here. The simplicity of the SN algorithm
can assist towards understanding the importance of storage.
Even with storage availability, it is important to keep the
positive prediction error as close as possible to the negative
error in order to keep ESOC of a storage in the middle of its
capacity. One way is to keep ESOC in the middle is the storage
control, which has much higher impact than capacity increase.
It is already shown that storage can be used more efficiently
through control [15]. In order to meet optimal storage sizing,
the same type of simulation needs to be executed with different
strategies for storage control. Every case individually (e.g.
neighbourhood of interest) needs to be simulated to understand
how different s affects its individual imbalances Ei.

V. REAL WORLD VERIFICATION

Although the pVPP concept may be appealing, the creation
of a highly predictable one is challenging. Not all the clusters
are equally predictable, therefore selection of a reliable one
is highly relevant for this work. A potential constellation of a
cluster is to include prosumers with a physical proximity to a
storage unit. For demonstration purposes, a cluster of the real
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electrical grid prosumers is selected to represent the pVPP; this
is depicted Figure 7 as a polygon that identifies the cluster.

Figure 7. Clustering prosumers in a GIS-aware system by physical proximity

The selected cluster contains 186 smart meters with average
power consumption of 〈P 〉 = 63, 74kW and its MAPE
is measured to be 11, 43. Its predictability is considered to
average from entire set of the NOBEL trial. Within the clus-
ter, individual power consumption averages around 0, 34kW .
Individual MAPE from all the prosumers is as well measured
with an average of 49, 75. As one can immediately notice,
predictability within the cluster is almost 5 times better, then
individual average. If measured in kWh for the same period
defined in section IV, the total energy consumed from the clus-
ter is approx. 47, 4MWh. If loads are predicted individually,
the absolute prediction error results in 23, 5MWh (49.6%),
while the cluster had an error of only

∑
Ei = 5, 6MWh

(11,8%). Considering a storage the cluster accuracy can be
further improved as we will see at the second stage of the
analysis.

Since the Monte Carlo approach was used in previous
experiments, in particular for results shown in Figure 6, no
information on achieved imbalance reduction of a cluster is
shown by applying different sizes of the storage. Figure 8
demonstrates not only how much reduction of energy imbal-
ances due prediction error is achieved, but also the progress
of the cluster’s MAPE by expanding storage capacity.

Figure 8 shows that linear increase in the storage size,
is not followed by linear improvement of the MAPE for
the selected period. Without having linear improvement of
MAPE, reduction in energy deviations are expected to behave
the similarly. Depicted reduction in imbalances needs to be
considered in an economical evaluation of a cluster, as costs
of the storage capacity may exceed value of it savings.
For comparison, 2% of the cluster’s daily average energy
consumption is equal to battery capacity of approx. 2-3 electric
cars. In this simulation, the real energy load from consumers
participating in the NOBEL project’s field trial have been used.
However, what is not easily measurable is the performance of
a forecasting algorithm used for the simulation evaluation. As
one can imagine, the better the algorithm, the less storage
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Figure 8. Capacity increase is reducing the cluster prediction error

for its imbalances is required. A simple algorithm like SN
is sufficient to show impact of the storage, and especially the
distribution of the storage requirements if no limits are applied.
Figure 9 depicts the density function of the cumulative energy
error Ei for the selected cluster.
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Figure 9. Consecutive error highly related to error in between the forecast
and actual load

Higher peaks in Figure 9 identify density functions of the
prediction with the bigger storage sizes. In fact, such a peak
identifies that due the insufficient storage capacity, the cumu-
lative error of Ei reached the certain point, but it was more
stable at that point than the distributions with the lower peaks.
Figure 9 also shows a high deviation towards requirement for
the positive storage capacity. Since energy loads in general
have high correlation to the environmental temperature, the
selected time frame for the experiment has a continuous load
drop (due to the reduced usage of air-conditioning) and the
selected SN algorithm considers trends, we see a growing
capacity requirement. Such forecasting errors need to be
carefully understood in the context of the storage requirements
and how they can be reduced by controlling the storage.
Furthermore, realization of a pVPP will require simulations
over longer time periods (one or more years), in order to
guarantee that most direct and indirect indicators affecting the
load prediction algorithms are measured for a different storage
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sizes, before final decision on its size is made.

VI. CONCLUSION

Improving predictability might be of key importance to-
wards realizing pVPPs and empowering their market-driven
activities, as consistently accurate forecasts will form the
basis for any strategies to be followed in these interactions.
Although reducing forecast errors by clustering prosumers
[8] can be achieved, prediction algorithms are still sensitive
to smaller levels of aggregation. The potential availability of
distributed storage in smart cities e.g., electric car fleets, small
industry storage capabilities etc. may be used to enhance the
forecasting within a prosumer cluster (pVPP).

Predictability of a virtual cluster, being enhanced by apply-
ing storage of different sizing, is to be measured. Its impact
is therefore further investigated on a real world example,
where physical proximity to a storage unit is identified as
potential case for creation of a pVPP. Once a cluster (pVPP)
is created, storage systems of different capacity are considered
in the simulation. The experiments carried out show that the
improvement of the prediction accuracy is highly (exponen-
tially) impacted by adding storage. Interestingly, forecasting
accuracy of such clusters displays rapid increase even for small
storage capacities e.g., that match a low percentage of the
total cluster’s average daily usage. It was concluded that it is
not a random effect, but rather applicable to any cluster of
prosumers.

In this work the high impact of the storage has been
demonstrated, even for a simple load forecasting algorithm.
Although we identified the high importance of the equipping
a pVPP with a storage unit, additional work need to be
done for the economical assessment. For simplicity no storage
controlling (which further improves storage efficiency [15])
was considered here, nor efficiency of a specific storage tech-
nology. In future one should evaluate impact on both technical
and business level, which is expected to be significant. Finally,
more sophisticated forecasting algorithms should be applied
and apply usage if direct and indirect indicators to improve
the load prediction [12].
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