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Abstract—In the Smart Grid era fine-grained energy informa-
tion pertaining real world processes can be collected and may
reveal new insights if these can be analyzed in real-time. Energy
“Big Data” analytics can lead to a plethora of new innovative
applications and enhance decision making processes. However,
to do so, we need new enterprise tools and approaches that can
take into consideration the specifics of the energy domain and
offer high performance analytics on its raw data. In this work,
experiments are conducted to measure the performance of the
different levels of energy data aggregation. Thousands of smart
meters are aggregated, by usage of the collected energy readings
from a real-world trial. Using a selected dataset, the traditional
database system (row-based) performance is compared to the
emerging column-based approach in order to assess the suitability
for real-time analytics in such scenarios.

I. INTRODUCTION

The emergence of the Smart Grid [1] brings into foreground
a modern information-centric infrastructure [2] where a new
generation of innovative applications and services can be re-
alized. Due to the prevalence of networked embedded devices
[3], fine grained energy related data is expected to be collected,
resulting to huge amounts of information in minutes, or even
seconds, that can provide new insights. The acquisition of
this “Big Data” as well as its assessment within a business
specific context and extraction of information, preferably in
real-time, poses a grand challenge. As the real value creation
in big data is analytics [4], their high quality, effectiveness and
timely delivery may lead to significant competitive business
advantage.

Although there are several application domains, complex
infrastructure such as the emerging smart cities can benefit
from real-time analytics. There, monitoring of energy related
aspects is seen as an integral aspect of several key performance
indicators that are considered in decision making processes.
For instance analytics on the vast amount of energy data [5]
can lead to better prediction of energy customers [6] and
offer new energy-related services [7] both in residential as
well as in industrial [8] environments. Timely assessment and
understanding may lead to qualitative better decisions and
assist for instance city administrators to better run them. As
an example a smart city energy cockpit providing city-wide
information on energy usage and comparative analysis may
enhance empower city officials to take decisions towards better
energy management, CO2 reduction, dynamic RES integration,
EV charging, public infrastructure energy cost reduction, city
investment planning, simulation of “what-if” scenarios, etc.

To do so however, integration of multiple sources of data is
needed, and subsequently highly complex processing should
be applied e.g., at city, neighborhood, or even smart house or
building level.

Many of the enterprise systems are relying on the Online
Transaction Processing (OLTP) for their operations; however
the need for high-performance analytics has given rise to
separate specialized systems delivering Online Analytical Pro-
cessing (OLAP). When we drill down to real-time business
analytics, while also taking into consideration the drastic
performance improvements of in-memory systems, using an
in-memory column database has some profound implications
[9]. Independent of the row vs. column comparisons [10],
the performance of the (in-memory) column-based solutions
gained attractiveness as one is able to efficiently work in
analytical as well as transactional workload environments [11].

Today there are several open source e.g. MonetDB (www.
monetdb.org) [12] and commercial e.g. [13] column-based
databases. In this work we focus on smart metering data as-
sessment and do an assessment by using a traditional DB (i.e.
MySQL) including its in-memory variant, and an in-memory
column-based DB (i.e. MonetDB). Our aim is to assess some
aspects with respect to energy measurement aggregations by
using out-of-the box existing DBs without really diving deep
to their tuning which could yell some additional performance
benefits.

II. DATA PROCESSING

Several experiments were carried out measuring the aggre-
gation performance of smart metering data. For all of them,
we have used a real-world dataset acquired during the trials
of the NOBEL (www.ict-nobel.eu) project in 2012. The data
has been collected by an enterprise Integration and Energy
Management system (IEM) [7] and contains the cumulative
time series of smart meter energy readings. The meters have
an energy resolution of 1 kWh that is sampled in resolution
from 15 minutes to one hour (depending on the meter). Since
the resolution is 1 kWh many samples were constant and
therefore were removed from the raw data set to reduce the
overall amount. This has resulted in having measurements with
different time distances and are not available for every hour. As
aggregation of time series data needs regular time resolutions,
this implies that we need to use interpolation in order to
provide data that fulfills this requirement. Their removal not
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only reduced the size of the set, but as such the precision is
improved after an interpolation step.

Two different approaches for executing the data aggregation
step are considered for this work i.e.,

i) Interpolating the raw smart meter data of a specific
group and subsequently aggregating it: here the advantage
is flexibility on the required sampling resolution, since
the interpolation is done during runtime. Although, this
approach leads to reduced usage of storage, the disad-
vantage is that the individual smart meter interpolation is
done during runtime (for a selected group) that possibly
can lead to lower performance.

ii) Use pre-interpolated data and only execute the aggrega-
tion during runtime: the advantage may lie in skipping
the individual interpolation within a group, but this ap-
proach requires much higher storage. Additionally, the
flexibility is constrained by fixing the time resolution of
the interpolation. However, the aggregation simplicity in
runtime of the fixed resolution is expected to result in
better performance.

To clearly depict the difference between traditional and
emerging tools, we have used two open source DBs i.e.
MySQL which represents the traditional row-based domain
and the MonetDB representing the emerging column-based
world. MySQL can store smart metering data on the hard drive
and in memory, while the MonetDB by default stores all data
in memory. To show the benefits of the in memory storage over
the traditional solution InnoDB (hard drive) and in-memory
were compared (both are part of MySQL). The selection of the
InnoDB engine was due its caching algorithm of the frequently
accessed data. As cached data is kept in memory, time to
access the data can be reduced, but it still may require to
access some data located on the hard disk. The in-memory
storage engine by contrast, stores all the data completely in
memory and no access on the hard disk is required.

Based on the need for interpolating the raw data set and
the investigation of the smart meter grouping behavior, a
stored procedure for group interpolation is implemented for
the traditional solution. This procedure is invoked by a thin
client for a specified group (of numerous smart meters), the
time frame and the resolution of the interpolated series. The
boundary points, before the first and after the last data point,
are also required in order to calculate the entire interpolation
time frame. For simplicity reasons the algorithm is imple-
mented as the linear interpolation method. As such, within
the group interpolation procedure, every single device of the
group is interpolated individually and subsequently all the
smart meters are aggregated to a single time series. The
experiments conducted in section IV will help us understand
why the interpolation stored procedure was required, and how
it differs from a distinctive feature of column stores that can
apply aggressive data compression.

III. EXPERIMENTAL ENVIRONMENT

Our original dataset consists of 5032 different smart meter
devices and more than 3 million unique meter readings. For

the experiments, two subsets were created from the original
dataset; the first subset contains the data for only one month,
whereas the second subset is complete with about six months
of smart metering data. A detailed overview of the created
datasets is provided in Table I.

Table I
OVERVIEW OF THE TWO DATA SETS USED IN EXPERIMENTS

Set A (reduced) Set B (complete)
Device count 4 020 4 382
Days 30 (1 month) 170 (≈ 6 months)
Time resolution 15 minutes 15 minutes
Sample count 537 604 3 365 627
Sample % 4.6% 4.7 %
Samples per device 2 880 16 332
Interpolated count 11 581 620 71 571 206

As one can note in the table, the 15 minute interpolation will
significantly increase the total number of points. The original
sets will be referred to as A and B, while pre-interpolated sets
will be noted as A′ and B′. Furthermore, the set distributions
of the meter readings play a significant role in understanding
the experimental results. As duplicates and constant values of
energy readings were removed from the set beforehand, the
final set description was calculated based on percentage of
meter readings present in the set. More real meter readings
available in the set will result in less interpolated points (as
seen in section II). The set density of the calculated percentage
values are presented in Figure 1.
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Figure 1. Density of percentage of meter readings in the complete set

The described datasets (see Table I) are used for the
experimental purposes with both DBMS. In MySQL, the B-
Tree index for the device and timestamp columns was assigned
to the database table. The B-Tree index is appropriate for
the aggregation queries because they make use of bigger-than
and lower-than comparisons. The MonetDB creates indices
managed internally by the DBMS itself with the different
compression techniques executed automatically at many levels.
Since the selected DBMSs for comparison were running on
two different machines, certain impact of different hardware
composition can be expected to influence the presented results.
However, both machines featured the standard configuration



of the DBMSs, thus further optimizations can be realized (but
are beyond this work) in both cases which may provide better
results. The machine configurations are depicted in Table II.

Table II
OVERVIEW OF THE TWO EXPERIMENT MACHINES

Machine 1 Machine 2
DBMS MySQL MonetDB
Storage type row store column store
Storage engine InnoDB/in-

memory
in-memory

IO latency local, < 1 ms local, < 1 ms
CPU 2 x Core2Duo

E8400 (3 GHz)
4 x Intel Core i7
860 (2.8 GHz)

RAM 4 GB 8 GB

Although the presented machines in the table should not
make significant impact to process the defined datasets, possi-
ble overheads still need to be considered. These overheads are
expected to be eliminated (to certain extent) in the assessments
that follows. Since the overall execution time is correlated
to the number of devices, that significantly increases, the
execution time per device will be mostly impacted by small
group sizes. If the number of smart meters within a group is
small, the division with overall execution time will show low
performance results. This (constant) overhead will however
disappear for larger groups as the overhead is shared among
all devices in the group composition.

IV. AGGREGATION PERFORMANCE

Aggregation of the energy reading may be performed with
multiple approaches as mentioned in section II. The first ap-
proach executes aggregation on the original measurements that
contain no constant readings of energy. As already explained,
this approach requires individual interpolation of the smart
meters in order to be aggregated. The aggregation in the
second approach is done on the pre-interpolated data, which
actually requires more storage space, but the aggregation
operation approximates to the weight of the regular GROUP
BY statement of SQL. In this section, performance of both
approaches is evaluated by the aforementioned DBMSs on
data sets of different sizes. The results of the experiments are
always referring to the time frame of one month (i.e. Sept.
2012), thus are independent of the selected set.

A. Interpolation and aggregation

If sampling of energy readings of smart meters is not made
on equal frequency, or if samples are lost, the sampling fre-
quency needs to be adjusted. The original datasets, presented
in section III, have the distorted samples of energy readings
collected from the smart meters. As such, the aggregation step
will require data (of interest) to be interpolated at runtime.
Once raw data is collected (by submitting an SQL query to
a DBMS), the individual interpolation is executed and the
aggregation step is performed. The performance results of
those complete operations is presented as the execution time
in relation to the group size for the two different MySQL
engines. However, the relevance of the overhead as explained

in section III should be noted as can be witnessed in all
experiments, and resulted in higher execution times for all
small groups e.g. of less than 50 devices.

For the InnoDB case, the experiences are conducted on
the reduced and complete set, respectively set A and B. A
performance comparison is made by the count of rows in the
table, thus the storage size required, to be processed by the
MySQL DBMS instance. Their comparison will offer a better
understanding of how the execution time differs, when data
sets of significant different sizes are stored on a hard disk.
The interpolation algorithms presented in section II are used
for both sets and the results are shown in Figure 2.
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Figure 2. Execution time for interpolation and aggregation with the MySQL
InnoDB engine

The execution time per device decreases with a higher
group size for both datasets. However, one can also witness
that the performance of the InnoDB engine suffers from the
increase in the dataset size. This execution difference does
not scale linearly with the size of the set, since the size of the
set B is more than 6-fold. Still, because hard disk access is
too expensive, one can immediately notice how performance
suffers from the overhead for smaller group sizes. Finally, one
can conclude that both scenarios continuously converge to the
constant execution times per device as the group size increases.

The same experiment is also conducted with the MySQL
in-memory engine. In contrast to the InnoDB engine, where
performance of hard disk I/O operations must be considered,
the in-memory engine stores the complete data set in memory.
As for InnoDB, experiments here also use the stored proce-
dure interpolation algorithm (as explained in section II), and
Figure 3 shows the runtime results of numerous experiments.

One can see the slight performance drop of the algorithm
running on the complete set B. A significant convergence rate
can be also noticed, in comparison to InnoDB, even for very
small group sizes. However, it is interesting to see that the
InnoDB engine for set B. performed almost equally to the in-
memory engine on the reduced set A. Since these results show
that the runtime is not significantly affected by the dataset size,
further analysis is conducted.

Although comparable results with in-memory and InnoDB
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Figure 3. Execution time for interpolation and aggregation with the MySQL
in-memory engine

engine for the experiments on the reduced set A can be
witnessed, the experiments on the complete set resulted in
performance degradation. The interpolation procedure of the
InnoDB engine dropped for approximately 20 ms, while in-
memory engine suffered only a drop of approximately 2 ms
(between set A and B). The difference of few milliseconds is
significant on a scale of thousands of devices within a group.
As depicted on Figure 4, the distance is expected to further
increase if a lager dataset is used.
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Figure 4. Execution comparison of the interpolation and aggregation

One can conclude that the in-memory engine performed
better for all group sizes, while the InnoDB suffered ap-
proximately 10-fold more than the in-memory engine by the
increase of the set size. Although the execution times in
InnoDB keep decreasing for the bigger groups, the focus on
very large groups (e.g. beyond 4000 devices) is not considered
in this work. As a result, one can conclude that even for
the better performing engine, the aggregation will still take
approx. 60 seconds for a group of 1000 devices. In real
world applications, such analysis may require much higher
performance, especially in near real-time systems. In seek for
a solution with better performance, and more efficient usage of

the available resources [14], further experiments are conducted
as these are demonstrated in subsection IV-B.

B. Aggregation on pre-interpolated data

In contrast to the experiment depicted in subsection IV-A,
the aggregation here is made over pre-interpolated data. The
distorted samples of energy readings within the original data
sets (A and B) are pre-interpolated (A′ and B′) for each smart
meter individually; hence now all the smart meters have the
same sampling frequency (as this is stored within the DBMS).
Pre-interpolation has some disadvantages such as fixing the
sampling resolution and increasing the storage requirements,
however it is expected to improve performance by reducing
the aggregation time needed.

For the experiments carried out here, the sampling reso-
lution was fixed to 15 minutes and contains a much higher
count of sampling points, as shown in Table I. Via this
preprocessing step, the interpolated data can be aggregated
directly by executing a simple SQL query i.e. a GROUP
BY statement. The performance of the complete operation is
presented in form of the execution time with respect to the
group size (for both MySQL and MonetDB). Similarly to the
previous experiment, the relevance of the overhead explained
in section III is included in all the experiments.

First the MySQL case is considered for both DBMS engines
(InnoDB and in-memory) and compared to the reduced set A
and complete set B. However, for the in-memory experiments
the complete set of pre-interpolated meter readings could not
fit the available physical memory of the machine. Still an
assumption can be made, from the previous results of the in-
memory experiments, that the execution time will not differ
significantly in case of bigger data sets. Figure 5 depicts results
of these experiments.
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Figure 5. Execution time for the pre-interpolated data with the MySQL

Although the InnoDB shows an exponential performance
improvement for higher group sizes for both sets, if compared
to the results from subsection IV-A, we conclude that it faced a
drastic drop in the performance. Obviously, these results show
once more that the performance of the InnoDB engine is highly
penalized by the size of the dataset. The in-memory engine



shows exactly the opposite behavior, at least for the reduced
pre-interpolated set A′. Interestingly the engine performed
very good for all group sizes, especially if compared to the
results of previous experiments (depicted on Figure 4). From
these experiments one can conclude that the in-memory engine
performed a lot faster, because the high-cost access time to the
hard disk do not incur. As an indicative example, the execution
time for group sizes of 1000 with the InnoDB is approximately
60 ms, while for the in-memory engine resulted in only 1.5
ms.

Due to the superior performance of the in-memory engine,
it was decided to experiment with an in-memory column based
DBMS i.e. the MonetDB, and conduct the same experiments.
In contrast to the in-memory case of the MySQL experiments,
the MonetDB solution has no problem storing reduced and
complete datasets in memory. A distinctive feature of column
stores is the application of aggressive data compression. In this
way, one can use compression and some extra CPU cycles
in order to fit the entire data set into the physical memory
(what was not possible with the MySQL in-memory engine).
The results of these experiments are depicted in Figure 6 for
execution time per device.
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Figure 6. Execution time for pre-interpolated data with MonetDB

The performance of the MonetDB was much better when
compared to the in-memory performance of the row-based
MySQL. As an example, the performance of interpolation and
aggregation of 1000 smart meters (on Figure 4) is ≈ 60ms,
while for this experiment we can see that it is 60-fold faster
(≈ 1ms). The size of the datasets had a minimal impact
on the performance, although the size of the data set B′ is
more than 6 times larger than the set A′. For both sets a
fast convergence rate can be seen for group sizes greater than
1000, while the performance for the group sizes less then
1000 had a certain drop in performance. It is expected that
the performance improvement rate is actually the software
overhead, also being affected by the decompression time (as
discussed in section III).

The acquired results are further analysed to cherry-pick
the best ones. Obviously, the in-memory engine performed
far better than InnoDB, thus it was selected for the overall
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Figure 7. Execution time comparison for the pre-interpolated data per device

comparison that is depicted in Figure 7. It is evident that the
MySQL execution time decreases up to a group size of 200
and then starts growing, while the MonetDB execution time
continuously decreases and converges to the execution time
of less then 1ms per device. We witness that the MySQL in-
memory engine exceeds the MonetDB performance for smaller
group sizes, but limited only to the reduced pre-interpolated set
A′. However, even though the MonetDB resulted in expensive
execution times for smaller groups, it performs significantly
faster for bigger group. For future industrial and business
applications exactly these large groups are the main point of
interest, and hence constitute our main focus.

C. Overall Comparison

The experiments conducted for both defined scenarios de-
pict how the aggregation performance is affected by the vari-
ous storage technologies as well as the potential pre-processing
of data such as the pre-interpolation. The analysis of the
experiments revealed that pre-interpolation of data has sig-
nificant impact on the performance boost. The column based
DBMS (MonetDB) proved powerful by storing reduced and
the complete dataset entirely in memory, while the traditional
DBMS (MySQL) had severe limitation in our experimental
environment. Still, the MySQL in-memory engine over per-
formed MonetDB for smaller groups, while MonetDB showed
continuous improve even after over performing MySQL.

To get a better understanding of the performance benefit of
both solutions, the total execution time needs to be compared
from the best of breed DBMS cases. The total execution time
(in seconds) of experiments on the reduced pre-interpolated set
A′ are shown inFigure 8. The high performance improvement
realized by the MonetDB even for bigger groups (as shown
in Figure 6), leads to increase of the gap between the overall
performance between the two DBMSs. Although overall Mon-
etDB performed better for the experiments of bigger group
sizes, Figure 8 depicts how the total execution time increases
for the bigger groups (however at a much lower rate than
MySQL).

These experiments can be used as a rule of thumb towards
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making an informed decision for solutions running in different
environments. Depending on the performance requirements
and data, one can select configurations that fit the business
objectives. Hence for a highly limited environment, one needs
to consider the performance limitations if the interpolation
is executed at runtime. However, if high performance is
required, one should focus on the pre-interpolated data sets as
these assist towards removing the performance penalty (time)
needed for the interpolation step. Pre-interpolation of data
sets can be scheduled more flexibly for historical data (e.g.
whenever server capacity allows it), as such action leaves only
the real-time data to be analyzed. Additionally even in real-
time, one could consider other aspects such as parallelization
of pre-interpolation as well as processing of the data which
could yell higher performance.

V. CONCLUSION

We have demonstrated the performance aspects of time se-
ries aggregation by using a traditional row-based DB (MySQL)
and in-memory-column based approach (MonetDB). The nu-
merous experiments reveal the overall performance superiority
of the in-memory column based approach. We also propose to
pre-interpolate data (if possible) for high performance, since
the execution times may be better e.g. 60-fold as indicatively
shown in the experiments depicted in this work.

The vision of integrating real-time analytics into modern
applications such as a smart city energy cockpit, clearly
points out to the need of being able to do high-performance
processing of energy related data. Similar cases could be made
for more industrial scenarios such as energy analytics within a
factory [8]. Apart from the steps on grouping and interpolation
that we have described here, other aspects need also to be
considered such as the guarantee of a high quality dataset.
The latter implies checks for data consistency, validation
against domain-specific rules, potential transformations etc.
all of which may need to be made on-the-fly as data gets
streamed into the enterprise systems. To this end, we will
expect to further work in the future towards integrating real-
time analytics in smart city applications and evaluating them

under real conditions. The latter due to increasing privacy,
security and business concerns may imply to also experiment
with encrypted queries [15] and assess their usage in massive-
data real-time analytics.
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“SAP HANA database: data management for modern business applica-
tions,” SIGMOD Rec., vol. 40, no. 4, pp. 45–51, Jan. 2012.

[14] S. Karnouskos, P. Goncalves da Silva, and D. Ilic, “Assessment of high-
performance smart metering for the web service enabled smart grid
era,” in Proceedings of the second joint WOSP/SIPEW international
conference on Performance engineering, ser. ICPE ’11. New York,
NY, USA: ACM, 2011, pp. 133–144.

[15] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query processing,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 85–
100.

www.SmartKYE.eu
www.ict-nobel.eu
www.ict-nobel.eu

	Introduction
	Data Processing
	Experimental Environment
	Aggregation Performance
	Interpolation and aggregation
	Aggregation on pre-interpolated data
	Overall Comparison

	Conclusion
	References

