
Developing a Web Application for Monitoring and
Management of Smart Grid Neighborhoods

Stamatis Karnouskos, Per Goncalves da Silva, and Dejan Ilić
SAP Research, Karlsruhe, Germany

Email: {stamatis.karnouskos, per.goncalves.da.silva, dejan.ilic}@sap.com

Abstract—Significant effort is invested towards creating in-
novative applications for the emerging Smart Grid. However,
many of these efforts use the old modus operandi of the energy
domain providers i.e. offer of a monolithic application residing on
proprietary or provider-only data, with little thought about cross-
application collaboration and information exchange. However,
the future of Smart Grid applications resides on sophisticated
multi-channel applications that can rely on multi-source data and
Internet provided basic services that can be easily customized
for the specific end-user groups. Such a web application for
monitoring and managing a Smart Grid neighborhood, where
real-time energy monitoring, prediction and management of
energy trading takes place, has been realized and piloted. We
present here some of the key functionalities, as well as an
assessment of the application and its design decisions.

I. INTRODUCTION

The emerging Smart Grid [1] empowered by modern IT
technologies [2] is promising a more versatile and intelligent
network of collaborating actors that will eventually lead to
better utilization of its resources, better management and
of course will enable us to achieve goals such as energy
efficiency. Real-time monitoring and management are expected
to be the key issues that need to be tackled. As the complexity
increases, new tools tapping into the new infrastructure and its
services should provide better ways to manage it. As a result
numerous projects are launched in Europe [3] and worldwide.

The NOBEL project (www.ict-nobel.eu) targeted the better
management of Smart Grid neighborhoods (as depicted in
Figure 1) by using a common energy services platform named
enterprise Integration and Energy Management system (IEM)
[4] to interconnect the prosumers (producers and/or consumers
of energy) as well as various other stakeholders. IEM can
be accessed only via Internet provided services via multiple
channels such web and mobile. We have already designed and
implemented several energy services [4] in IEM such as: (i)
Energy Monitoring, (ii) Energy Prediction, (iii) Management,
(iv) Energy Optimization, (v) Billing, (vi) Energy Trading
(Brokerage) and (vii) other value-added services. Typically,
such services can be mashed up in order to provide key func-
tionalities for applications such as an energy portal, mobile
applications, and also a district monitoring and management
center.

An web application has been developed, indicated as
“Neighborhood Energy Management” in Figure 1, and called
NOEM. The application communicates over Representational
State Transfer (REST) style calls with the IEM, from which it

Smart City - Public Infrastructure

Concentrator

Smart Grid Neighborhood

Public Lighting

Management

Enterprise

Services
(IEM)

CRM ERP SCM

IoT Data Capturing
and Processing

IoT Data Capturing
and Processing

Marketplace

User

Management
Monitoring

Info Services Enterprise Applications

Billing

Asset

Management

Citizen Energy

Info

Neighborhood

Energy

Management

(NOEM)

REST

R
E

S
T

R
E

S
T

R
E

S
T

Brokerage

Agent

System

Energy

Management

System

REST

REST service based communication
over wired/wireless links (IPv4/Pv6)

NOBEL Project
Energy Services

Figure 1. Overview of the NOBEL project approach

acquires all relevant information and depicts them to the end-
user. NOEM has been greatly influenced from the outcome of
a prosumer survey [5] we conducted where some features were
identified. Both IEM and NOEM have been extensively tested
and used operationally in the second half of 2012 as part of
the NOBEL project trial which took part in the city of Alginet
in Spain. Data in 15 min resolution of approximately 5000
meters were streamed over the period of several months to the
IEM, while the IEM services were making available several
functionalities ranging from traditional energy monitoring up
to futuristic energy trading. NOEM was made available to
the local electricity Distribution System Operator (DSO) in
order to manage the Smart Grid neighborhood and get a
glimpse of potential future functionalities such as managing
energy trading at local level. However, we consider that other
stakeholders present in the Smart Grid era [6] such as Energy
Service Companies (ESCOs) as well as the envisioned ad-
hoc prosumer groups [7] or even standalone prosumers might
benefit from part of the functionalities provided by the NOEM.

II. MONITORING AND MANAGEMENT WITH NOEM

The NOEM application design and its functionalities were
developed in order to provide a tool to monitor as well as
manage Smart Grid neighborhoods. Some challenges faced
were coupled with the need to be able to visualize real-
time monitoring of various key indicators including energy
production & consumption, prediction of energy usage, CO2,
energy trading volume, brokerage market management activi-
ties, energy optimization, customer communication etc. just to

www.ict-nobel.eu

name a few. The NOEM provides several functionalities that
depend on the IEM services. It acts as a demonstrator of the
real IEM capabilities while it targets mostly the administrator
of the envisioned neighborhood infrastructure.

The NOEM web application can be loaded by any web
browser and is divided into eight functional areas: Overview,
Monitoring, Management, Prediction, Brokerage, Optimiza-
tion, Billing and Customer communication. Each functional
area is accessible through its own tab, with the exception of
the customer communication, which is accessible by clicking
on the envelope icon located on top of the tabs. Most of the
functional areas follow a simple pattern with an asset navigator
on the left hand side, and the operational area on the right-
hand side. The asset navigator allows the user to choose assets
like: device, customer, group, etc. while the operational area
displays the types of operations the user can effectuate on the
asset. For instance, in the “Monitoring” tab, the user can select
a device and view its current and historical demand/supply.

Overview: The “Overview” tab gives a high level view
of the energy production and consumption by aggregating
all device measurements. It also provides some additional
information about the generation mix used to produce the
electricity in the grid. The overview can also provide historical
values by using the “start time” and “end time” dates located
on top of the overview chart. Its usefulness is to provide a
high level view for the Smart Grid neighborhood with the
main KPIs at place.

Figure 2. The “Overview” tab showing total demand, CO2 and energy mix

Monitoring: The primary motivation of the monitoring
view is to provide a high resolution report on energy pro-
duction and consumption of the prosumer. The energy moni-
toring of NOEM also includes alarms (event monitoring) and
notification capabilities. The navigator is in a tree format and
can be used to select a particular group, customer, or device
to be viewed; in addition search-as-you-type functionality has
also been embedded to ease searching of specific customers,
ids, meters etc. The NOEM application calls the relevant IEM
services to present the required data. It provides the capability
of monitoring the total demand reported by all the meters
(Figure 2) as well as the demand and supply reported by
individual meters. Furthermore, additional metering data, that

is, voltage, active power, reactive power, frequency, current
and power factor, can be viewed. This data can be queries
for specific time periods using the available controls. NOEM
also allows users to set thresholds for devices, customers,
and groups in the form of power (W) or energy (kWh). If
the customer’s, devices, or group’s consumption exceed the
threshold, an alarm could be sent to the user.

Figure 3. The “Monitoring” tab showing a customer’s daily demand profile

Energy Brokerage: Energy trading is one of the key parts
of NOEM as it is used also during the pilot to monitor and
manage user’s energy trades. The brokerage view in NOEM
allows operators to manage several aspect of the participants
in the NOBEL electricity marketplace [8]. Functionalities
include monitoring of all market activities, overview of all
market orders in a time frame, or in a particular time slot,
visualization of information such as the trading price and total
volume for selected time slots (in time window), as well as
the last price curve and volume curve for each time slot.
Operators also use this to control several aspects of the market
itself e.g. the market participation for customers based on
their capability of participation, or even disabling/invalidating
customer activities e.g. trades. Additionally, market operators
can manage the brokerage agents used by the participants for
automatic trading. The “Market” view (Figure 4) allows the
user to view current and historical market prices and traded
volume. The “Order Book” view allows the user to inspect the
order book (the current buy and sell orders) for a particular
trading timeslot. Similarly the “Transactions” view enables a
full list of transactions that occurred in the timeslot including
info on price, quantity, transaction time, buyer participant id,
seller participant id, the buy order id, and the sell order id. The
“Market Participants” view allows the user to select a customer
(or multiple customers) and enroll into or remove them from
the market. The “Agents” view shows a table with all of the
automated trading agents in the IEM along with information
about the customer on whose behalf they are trading and the
management capabilities for that agent.

User and Asset Management: The “Management” tab
is used for SCRUD (Search, Create, Read, Update Delete)

Figure 4. The “Market” view depicting traded volume and prices

operations on groups, customers, users, and devices. Addition-
ally, security aspects such as roles and permissions can also
be managed here. Once a particular asset is selected, all of
its information will be displayed, Devices also have location
information attached to them; this enables the operator to view
the device’s location on a map with some asset information
integrated. A key aspect is also the support for the creation
of dynamic groups (of assets, users etc.) used for monitoring
purposes or realization of the envisioned prosumer virtual
power plants (pVPPs) [7].

Prediction: NOEM enables users to update the demand or
supply prediction for individual customers, devices, or groups.
Prediction can be used by the customers and operators to help
with their electricity planning and trading activities. The “Pre-
diction” tab is used in a similar way as the “Monitoring” tab.
A group, customer, or device is selected and the standard time
controls are used to specify the period over which to predict
that asset’s consumption, production, or aggregation. Once a
prediction is made, the table on the right-hand (Figure 5) side
can be used to correct any prediction errors e.g. based on
human intelligence.

Billing: NOEM offers a real-time billing view for utility
customers. Operators can introduce and assign new tariffs
(possibly energy pattern optimized) to their customers, what
can be also considered as contracting a customer. Since NO-
BEL realizes a neighborhood electricity marketplace, market
transactions are also reflected in the unified bill, containing
energy provider charges and market activity results i.e. money
earned or to be paid based on sells/buys on the marketplace. In
this way NOEM offers a tool to avoid the “bill-shock” at the
end of a longer period and gives better control to the customers
as any time they can be aware of their current bill and make
their plan for the future.

Optimization: Using the available infrastructure, flexibility

Figure 5. Modifying the demand prediction of a customer

management may offer additional business advantages. Al-
though energy may be traded directly on a marketplace, in
some cases direct bilateral negotiation may also take part.
Some generic functionality towards this has been realized [9].
The “Optimization” tab allows users to negotiate with third
parties in order to get them to behave in a particular way.
For instance, if a retailer has bought too much energy in
a period, and has no way of on-selling it, it could engage
with the public lighting system and pay it to turn on or
increase lamp brightness in order to avoid potentially more
expensive penalty fees [9]. Here users can be enrolled as
demand response participants. Once a participant is selected,
the user can request the participant’s initial offer for either
consumption, or production. That is, what the participant is
willing/able to do to increase production or consumption,
and how much it would cost to behave in this way. The
user can then update the behavior curve, and submit this
as a counteroffer to the participant. The participant can then
counter with another offer. This negotiation continues until the
user accepts a participant’s offer.

Customer Communication: The NOEM front-end applica-
tion depends on the interaction with the information services
from the IEM. Operators are able to directly interact with
the customers and capable of messaging groups or individual
customers. In our prototype the customer communication
button allows the sending of text messages which are depicted
on the mobile device or as e-mail. The bilateral direct commu-
nication of customers and operators has the ability to eliminate
telephone center costs by enabling the user to create automatic
tickets in the provider’s system as well as receive customized
offers.

III. NOEM DEVELOPMENT ISSUES

A. Framework selection

The NOEM application makes use of the REST services
provided by the IEM, which use Google Protocol Buffers
(GPB) messaging format. One of the main design decisions is
NOEM should not rely on local dependencies with the IEM,
and that for instance it could be hosted on a different machine.
Therefore, the NOEM would only have access to the API

offered by the IEM services, and it could not use any back-
channels, for instance, direct access to the database storing the
IEMs data etc.

No reliably maintained JavaScript library for GBP could
be found, as such, the decision was made to implement the
NOEM using a J2EE (Java Enterprise Edition) framework, as
opposed to creating a webpage using HTML or HTML5 with
JavaScript to make the service calls to the IEM. By using an
enterprise application framework, the server could handle the
service calls through a REST library and the messages could
be de/serialized using the official GPB library supplied by
Google. Thus leaving the framework in charge of the business
logic and rendering.

Given the requirements for the NOEM application, e.g.
charting and geolocation, the chosen framework would need
to easily support all required functionalities either natively
or through third party libraries built for the chosen frame-
work. Additionally, it would need to facilitate development
by natively supporting widgets such as trees, tables, lists, text
fields, text areas, pop-up windows, and so on. Furthermore, it
would need to easily support localization, to allow the user to
choose between different languages. While several frameworks
were looked at as possible candidates, two stood out: Eclipse
RAP (Remote Application Platform: www.eclipse.org/rap) and
Apache Wicket (wicket.apache.org).

Eclipse RAP is based on Eclipse RCP (Rich Client Plat-
form). A RAP application can be thought of as RCP applica-
tion that is deployed on a server and accessed through a web
browser. The general look-and-feel is the same, and in fact, a
RAP application can be converted in to an RCP application
with minor modifications. Meaning that, should there be a
need, a desktop version of the NOEM application could be
created. However, after our initial tests, it was found that
there was a steep learning curve associated with the platform,
and that even simple tasks were quite hard to achieve and
involved many lines of code. Additionally, at least at the time,
there were not many third party libraries for RAP that easily
supported Google Maps (for the geolocation) and charting.
What was found was either cumbersome to use, or visually
unappealing or lacking in features.

Apache Wicket, provides a fairly simple framework. Views
are implemented as HTML files, and the matching elements,
with their business logic, is developed directly in Java. The
UI aspect of Wicket is closely related to Java Swing (Java’s
desktop GUI framework), in which we already had some
experience. Furthermore, there were many third party libraries
to choose from, which add additional functionality in an
easy to integrate and use manner. For these reasons, Apache
Wicket was chosen as the underlying framework for the
implementation of the NOEM application.

B. Implementation

Architecturally, the NOEM application is separated into
different areas: Data Access Objects (DAO), model objects,
custom widgets and tabs as depicted in Figure 6. The DAO
layer is responsible for making the calls to the IEM services

and translating the responses into the model objects used by
the application. The model objects contain the information to
be presented to the user by the widgets. A few reusable custom
widgets were created, generally in the form of a collection
of standard widgets. For instance, the navigation widget used
in many of the functional areas of the NOEM application
combine a tree widget with a set of buttons at the top.

Figure 6. NOEM implementation layers

A tab represents a functional area in the NOEM (e.g.
Overview, Monitoring, and Management). Each tab aggregates
the functionality directed at a particular task. For instance, the
“Monitoring” tab has all the necessary controls for selecting a
particular customer/device/group and browsing their current
and historical energy demand/supply, as well as the other
measurements supplied by the meters (e.g., voltage, active
power, and reactive power). The tab panel was implemented
as a wicket object called AjaxTabbedPanel. This means that
the user can switch between tabs without the feeling that the
whole page is being reloaded. In hindsight, this was a poor
design decision. While it was good for user experience, it
meant that the whole application is basically one page. This
made analyzing the access logs very difficult, as each tab does
not have its own distinguishable URL.

The custom navigation widget relied mainly the tree view,
which presented a hierarchical view of the devices, customers,
and groups. Ultimately, this was also a bad UI decision. Given
the large numbers of devices and customers (around 5000),
presenting all of these entities became very time consuming,
as the server response (on the NOEM side) consisted of a
large number of entities encoded in HTML (for rendering
in the browser), which took a long time to download and
render. In order to mitigate this, the server settings were
changed to compress the responses (minimizing the download
time). Additionally, a cache layer was created on the NOEM,
making it faster for it to server the browser with the necessary
content, by not having to go to the IEM for every request. This
increased the complexity of the NOEM since the cache needed
to be managed. It might have been better to adopt a different
UI approach, and also augmenting the relevant IEM services
with paging. This way, a small number of entities could be
requested and rendered. As more are needed, the pagination
on the IEM services could be used to request the next set of
entities.

The DAO layer was separated into interfaces and their
implementation. In this way, the NOEM application could be
easily modified to be used with different methods of acquiring
the data, for instance, a DAO implementation for getting the
data directly from the database could be created, or it could
be adapted to be used with a completely different set of

www.eclipse.org/rap
wicket.apache.org

web-services (as long as they could supply the same type
data). For the current implementation, the Jersey Client API
(jersey.java.net) was used for the communication between the
NOEM and the IEM. The Jersey Client API is tailor made
for communicating with REST services, and simplified this
process immensely.

The NOEM development process was generally smooth, and
at the end the code base consisted of approx. 26,000 source
lines of code. Because the UI is organized hierarchically
(like HTML), it can sometimes be difficult to get the widget
information it needs, because it needs to traverse several layers
of the hierarchy before reaching the relevant UI element.
This sometimes leads to unnecessary message passing between
objects that can complicate the implementation, and more
importantly the maintenance and bug fixing effort.

The main third party libraries used where wiquery-
highcharts (github.com/hielkehoeve/wiquery-highcharts) and
wicketstuff’s Google Maps V2 (github.com/wicketstuff/core/
wiki). The wiquery-highcharts is a charting plug-in based
on the Highcharts library (www.highcharts.com) that provides
easy integration of Highcharts charts into Wicket application.
The provided charts are visually appealing. However, the plug-
in, did not provide full support for all Highchart features,
such as adding a second y-axis (for multiple time series
of different units). In contrast, integration into the project
was fairly easy and displaying and updating the charts was
also straightforward. Wicketstuff’s Google Maps V2 plugin
provides Wicket with support for the Google Maps API. This
plug-in was a challenge to get working, and ultimately we
only managed to get it to work in the Firefox browser. At the
time however, it was the only available Google Maps plug-in
that we could find.

To conclude, given the requirements for the NOEM applica-
tion and the limitations imposed by the IEM services, namely
GPB, Wicket was probably the right framework. However,
there were some questionable decisions regarding the UI com-
ponents used that led to an increase in complexity. Wicket is a
widely used framework for web applications, thus it has a big
community and many projects augmenting its functionality.
While using external plug-ins sometimes led to problems in
their successful integration in the project, these problems were
overcome and they provided most of the required functionality.
However, ultimately, it would have been better if the IEM
services supported plain standard messaging formats just as
JSON and XML. This way, the NOEM application could
have been developed as a web-page, with all the service calls
being done by the browser itself through JavaScript and AJAX.
Additionally, a wider selection of APIs would be available for
use (in terms of charting, maps, and perhaps others), making
the development somewhat easier.

IV. TRIAL PERFORMANCE AND USAGE

NOEM was live in the city of Alginet, Spain, in 2012 where
it was used in monitoring and managing data from approx.
5000 users. Although this was a parallel setup to the existing
infrastructure (for research purposes), live access to the data

generated was possible and hence several functionalities could
be tested. The NOEM application visualizes data retrieved
from the IEM through its REST service API. The retrieved
data must then be deserialized, processed and formatted for
presentation on the browser. In order to evaluate the response
time of the NOEM, the response times for requests directed at
the NOEM were extracted from the access log file to produce
a “response time duration curve” that shows the percentage of
requests for which the response times were above a particular
threshold. Requests to the NOEM application cover everything
from retrieving data from the IEM, to browser requests for any
other element responsible for presenting the retrieved data and
other UI elements, for instance, images, JavaScript files, CSS
files, and HTML files. Some of these might maybe very quick
to serve and might skew the response time duration curve.

As it can be seen in Figure 7, the NOEM generally
performed well with roughly less than 5% of response times
being above 1 sec. Generally variability on response time can
be expected as some of the requests can be quite resource
and computationally intensive, such as requesting interpolated
time-series data for long time periods (e.g., 3 months) or large
number of groups (e.g., 1000 customers). The longest recorded
response time was of about 5 min (300975 ms). This was
unusually high, with the next highest being about 1.5 min
(88747 ms), and occurred while trying to login to the NOEM.
Given the duration of the response time, we think it is likely
the login attempt occurred while the server was starting up and
the server probably tried to handle the request while waiting
for the NOEM sub-components to start-up.

Figure 7. Response time duration curve for NOEM requests (log scale)

From the usage perspective, we wanted also to see which
functionalities were mostly used in NOEM. In order to extract
the tab usage statistics, it was necessary to extract from the
access log the IEM service categories (e.g. monitoring, man-
agement, optimization, etc.) that were called by the NOEM. It
was not possible to look at the requests made to the NOEM
directly, as due to the usage of the AjaxTabbedPanel, the URLs
generated by Wicket for the NOEM application generally
unintelligible. However, by looking at the IEM service calls
made by the NOEM, a suitable estimation can be made,
since each tab basically groups the functionality offered by a
particular IEM service category. For instance, the “Overview”
and “Monitoring” tabs make use of the monitoring services;
the “Management” tab makes use of the management services,
etc. The results are depicted in Figure 8, where the number of
requests by service category and type of request are shown.

jersey.java.net
github.com/hielkehoeve/wiquery-highcharts
github.com/wicketstuff/core/wiki
github.com/wicketstuff/core/wiki
www.highcharts.com

The type of request refers to the CRUD operation the request
targeted.

Figure 8. Overall NOEM usage by function and data operation (log scale)

As it can be seen, acquisition operations had the highest
request counts across all service categories, particularly moni-
toring (i.e. viewing current and historical customer demand
data), and management (i.e. viewing customer/device/group
information). All other operations had fairly low request
counts. This is possibly due to the fact that inserting customer
and device information, which would likely yield the highest
count amongst creation requests, was done outside the NOEM
using dedicated custom tools (since manually entering the
information for over 5000 customers, and their devices, would
be too cumbersome).

The usability of the NOEM was also evaluated during the
trial, more specifically each tab (i.e., overview, monitoring,
management, prediction, brokerage, optimization, billing, cus-
tomer contact) functionality was assessed for (i) usefulness
and (ii) perceived speed. All tabs got the highest rating for
speed with exception of the prediction which heavily relied
on massive data analysis and hence could be quicker if more
optimizations and potentially a dedicated high performance
server were in place. For usefulness most functions were
rated as excellent (overview, monitoring, billing and customer
contact), while the newer functionalities such as management,
prediction, brokerage and optimization got average values. The
later however was partially biased as one should get a deep
understanding of the theoretical aspects e.g. of the market,
before proceeding with the operational part of brokering or
energy optimization. Understandably also the management
functions although rated as useful, in a real system they are
expected to be integrated with existing systems and not as a
new system that requires a steep learning curve. Concluding,
it is crucial to co-innovate and closely collaborate with end-
users when new innovative functionalities are developed, in
order to assure that end-user concerns are integrated in user-
friendly functionalities which will lower the learning curve
and enhance the user experience.

V. CONCLUSIONS

Developing a web application for the market-enabled Smart
Grid neighborhood has been a interesting experiment where
we had to balance among real-world requirements, needs of
futuristic functionalities such as energy trading, technology-
driven decisions, user-friendliness and the wish to use open
source technologies. Developing Smart Grid web applications

made evident the need to rely on common energy services
provided by the infrastructure or other stakeholders that will
enable the developers to focus on offering sophisticated func-
tionalities rather than implementing the whole value chain.
This is more critical if one considers smart city wide monitor-
ing, management and value added services e.g. as envisioned
within the SmartKYE (www.SmartKYE.eu) project. Hence as-
pects such as interoperability, and standardized data exchange
formats are a must [10]. As most of the devices used for
visualization will be mobile ones, special considerations need
to be made when developing applications for them in order to
get proper performance [11].

ACKNOWLEDGMENT

The authors would like to thank for their support the
European Commission, and the partners of the EU FP7
projects SmartKYE (www.SmartKYE.eu) and NOBEL (www.
ict-nobel.eu) for the fruitful discussions.

REFERENCES

[1] X. Yu, C. Cecati, T. Dillon, and M. Simões, “The new frontier of smart
grids,” Industrial Electronics Magazine, IEEE, vol. 5, no. 3, pp. 49–63,
Sep. 2011.

[2] R. Katz, D. Culler, S. Sanders, S. Alspaugh, Y. Chen, S. Dawson-
Haggerty, P. Dutta, M. He, X. Jiang, L. Keys, A. Krioukov, K. Lutz,
J. Ortiz, P. Mohan, E. Reutzel, J. Taneja, J. Hsu, and S. Shankar, “An
information-centric energy infrastructure: The berkeley view,” Sustain-
able Computing: Informatics and Systems, 2011.

[3] V. Giordano, A. Meletiou, C. F. Covrig, A. Mengolini, M. Ardelean,
G. Fulli, M. S. Jiménez, and C. Filiou, “Smart Grid projects in Europe:
Lessons learned and current developments 2012 update,” Joint Research
Center of the European Commission, JRC79219, 2013.

[4] S. Karnouskos, P. Goncalves Da Silva, and D. Ilic, “Energy services for
the smart grid city,” in 6th IEEE International Conference on Digital
Ecosystem Technologies – Complex Environment Engineering (IEEE
DEST-CEE), Campione d’Italia, Italy, Jun. 2012.

[5] P. Goncalves Da Silva, S. Karnouskos, and D. Ilic, “A survey towards
understanding residential prosumers in smart grid neighbourhoods,” in
The third IEEE PES Innovative Smart Grid Technologies (ISGT) Europe,
Berlin, Germany, 14–17 Oct. 2012.

[6] European Commission, “SmartGrids SRA 2035 – Strategic Research
Agenda: Update of the SmartGrids SRA 2007 for the needs
by the year 2035,” European Technology Platform SmartGrids,
European Commission, Tech. Rep., Mar. 2012. [Online]. Available:
http://www.smartgrids.eu/documents/sra2035.pdf

[7] S. Karnouskos, “Demand side management via prosumer interactions
in a smart city energy marketplace,” in IEEE International Conference
on Innovative Smart Grid Technologies (ISGT 2011), Manchester, UK,
Dec. 5–7 2011.

[8] D. Ilic, P. Goncalves Da Silva, S. Karnouskos, and M. Griesemer, “An
energy market for trading electricity in smart grid neighbourhoods,” in
6th IEEE International Conference on Digital Ecosystem Technologies
– Complex Environment Engineering (IEEE DEST-CEE), Campione
d’Italia, Italy, Jun. 2012.

[9] S. Karnouskos, D. Ilic, and P. Goncalves Da Silva, “Using flexible
energy infrastructures for demand response in a smart grid city,” in The
third IEEE PES Innovative Smart Grid Technologies (ISGT) Europe,
Berlin, Germany, 14–17 Oct. 2012.

[10] J. Bryson and P. D. Gallagher, “NIST framework and roadmap for
smart grid interoperability standards, release 2.0,” National Institute of
Standards and Technology (NIST), Tech. Rep. NIST Special Publication
1108R2, Feb. 2012. [Online]. Available: http://www.nist.gov/smartgrid/
upload/NIST Framework Release 2-0 corr.pdf

[11] N. C. Zakas, “The evolution of web development for mobile devices,”
Queue, vol. 11, no. 2, pp. 30:30–30:39, Feb. 2013.

www.SmartKYE.eu
www.SmartKYE.eu
www.ict-nobel.eu
www.ict-nobel.eu
http://www.smartgrids.eu/documents/sra2035.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf

	Introduction
	Monitoring and Management with NOEM
	NOEM Development Issues
	Framework selection
	Implementation

	Trial Performance and Usage
	Conclusions
	References

