
Assessment of an Enterprise Energy Service
Platform in a Smart Grid City Pilot

Stamatis Karnouskos, Dejan Ilić, and Per Goncalves da Silva
SAP Research, Karlsruhe, Germany

Email: {stamatis.karnouskos, dejan.ilic, per.goncalves.da.silva}@sap.com

Abstract—The emergence of the Smart Grid promises a new
generation of innovative applications and services that are based
on the fine-grained information acquired almost in “real-time”
from the underlying infrastructure. To realize this vision, (open)
platforms providing access to the smart meter data as well
as potential management and value-added functionalities are
needed. These will offer basic energy services that can be
commonly used by application developers. We depict here our
assessment from implementing and operating such a platform in
a pilot that took place in Spain in 2012, and draw some lessons
learned that affect their design and performance.

I. INTRODUCTION

The emerging Smart Grid [1] implies new roles for all
involve stakeholders that now span the value chain in the
energy domain. These will increase in number [2] and di-
versify with the aim to deliver, among other things, a wide-
range of better or new value-added applications and services,
which may not feasible or make business sense today. Towards
this goal, numerous projects investigating multiple facets of
the Smart Grid were launched [3]. However, most of the
solutions developed start either from the scratch or tackle a
significant part of the of the value chain i.e. from smart meter
installations, smart meter reading, task-specific data analysis,
proprietary applications etc. The later is also a result of the
ongoing wars among the stakeholders who try to dominate
the area, as well as the non-existence of a common open
platform, upon which more sophisticated modular services and
applications can be built [4].

Common tasks for all Smart Grid approaches such as
analytics on vast amounts of raw data, are not practical if
done individually; on the contrary, what is wanted is access
to specific results of processing on that data that are highly
customized and tailored to application’s needs. To this end
we expect that platforms, potentially hosted in the cloud, with
the capabilities of operating on “Big Data” in a very timely
manner will emerge and serve the multitude of envisioned
applications and services. With this context in mind, we
have designed and operated in a pilot such an open energy
services platform i.e. the Enterprise Integration and Energy
Management System (IEM) [5] as depicted in Figure 1.

The main aim of our approach was towards enabling
lightweight Internet accessible energy services for thin clients
over multiple channels, thus lowering the development costs.
As seen in Figure 1, there are several architecture parts e.g.,
the device layer, the middleware, the enterprise services and
end-user mash-up applications. In a smart city, numerous

Energy Portal

(web Browser)

Mobile Application 

(Smartphone)

Neighborhood 

Energy 

Management

(NOEM)

Prosumer

Device

Information 

Concentrator

Prosumer

Operator

ManagementMonitoring

Analytics

Optimization Billing

Brokering

Information

Prediction

Security 

Manager

Policy and 

credentials

R

Business 

Data 

Manager

R

Metering Data
Customer 

Profile

Prediction

Models

Brokering 

Strategies

Optimisation

Strategies

Tariffs and

Billing

Enterprise Integration and Energy 

Management System (IEM)

Mashup 

Applications

Smart Grid Devices

Public Services

Marketplace

R

Smart 

Meter

R

Figure 1. Overview of the IEM architecture [5]

embedded devices may connect directly or indirectly (e.g. via
gateways) to the services provided by the IEM. On the IEM
service layer, one can mash up services to provide customized
functionalities for various applications, such as an energy
portal (e.g. accessible via web browsers), mobile applications,
or a neighborhood energy management center (NOEM). Fur-
thermore, enterprise services process the collected data and
provide advanced functionalities such as validation, analytics,
and business context specific processing.

The web services offered by the IEM platform were de-
signed for high performance and use the Representational State
Transfer (REST) architecture style, thus simplifying the imple-
mentation and integration of thin clients accessing them. The
REST adoption imposes some architectural style selections,
e.g. client-server separation of concerns, stateless interactions,
uniform interfaces and a layered system. As also depicted in
Figure 1, several services have been realized in IEM such as:
Energy Monitoring, Energy Prediction, Management, Energy
Optimization, Billing, Energy Trading (Brokerage) and other
value-added services.

IEM (as well as NOEM) have been extensively tested and
used operationally in the second half of 2012 as part of the
NOBEL project pilot which took part in the city of Alginet
in Spain. Data in 15 min resolution of approximately 5000
meters were streamed over the period of several months to the
IEM, while the IEM services were making available several
functionalities ranging from traditional energy monitoring up
to futuristic energy trading. The results presented here, stem
directly from the pilot assessment, while in parallel We report
in this work some of our experiences during design and im-
plementation, as well as the assessment of the pilot operation
of IEM.



II. DATA QUALITY ASSESSMENT

One of the key problem areas we were faced with, was that
of data quality. High quality data sets are important as they
impact all other dependent services such as energy prediction,
grid problem identification, energy trading etc. Data may be
validated against multiple criteria, e.g. values are expected
to be within some limits, check of the syntax, correct time-
stamping, duplicate detection, etc. Additional time-stamping at
the time of acquisition can be realized in order to enable value-
added services such as calculation of metrics such as delays
from generation to storage and subsequently integration in the
calculation of Key Performance Indicators (KPI).

Trial lifetime 
(Sep-Nov 2012) 

M
et

e
r 

ID
 (a

p
p

ro
x.

 4
5

0
0

 m
et

er
s)

 

Infrastructure 
outfall 

Concentrator 
outfall 

Concentrator 
outfall 

Concentrator 
outfall 

Meter 
outfall 

Functional 
meter, taken 

offline for 
some days 

Example of 
mostly 

functional 
meter 

Example of 
functional 

meter 

Example of 
functional 

meters 

Figure 2. Smart meter readings heatmap for the pilot period

Data processing enables working with the data that is either
already stored or is flying in (stream data). This implies
data adjustment, e.g. it might be necessary to normalize
data, introduce an estimate for a value that is missing, re-
order incoming data by adjusting timestamps. Also several
calculation functions, e.g. operate on two or more data streams
and apply mathematical functions on their composition, as well
as transformation are envisioned, e.g. an incoming data stream
can be converted on the fly (such as temperature values are
converted from ◦F to ◦C), or repackaged in another data model
etc. However, during the pilot the data quality assessment had
the biggest effect on the forecasting of the individual user
behavior, especially as this formed the basis for being able to
trade electricity online (i.e. buy or sell energy).

In Figure 2 an overview of the three month pilot against
the density of data (number of meter readings) received by the
IEM is depicted. Some strictly “red” areas indicate problems
in the infrastructure, e.g. fallout of a concentrator, delayed
or missing data etc. If this heatmap is plot in “real-time”
it may assist the energy acquisition stakeholder to identify
potential problem areas and initiate response mechanisms
to investigate the real reasons, e.g. meter communication
problems, infrastructure congestion, malformed data, security
problems (such as data replay, reconfiguration) etc. One can
also follow the behavior of an individual meter or groups of

meters (information concentrator) and their performance in
delivering the required data in the expected quality.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20000

40000

60000

80000

100000

120000

140000

160000

N
u

m
b

e
r 

o
f 

sm
a

rt
 m

e
te

rs

N
u

m
b

e
r 

o
f 

m
e

te
r 

re
a

fi
n

g
s

Time

(Left axis) Total readings

At least one reading

at least 50% of readings

Figure 3. Overview of the accumulated received meter readings per day

Figure 3 depicts a quantitatively representation of the col-
lected data on IEM, analyzed on daily basis. Similarly to
Figure 2, events like infrastructure fallout can be identified,
but we also get a quick view on the overall smart metering
behavior and the load (e.g., number of smart metering events,
number of meters reporting measurements etc.) on the IEM
side. Being able to map real-world events to the visualized
data may provide interesting correlations. For instance, a key
event shown is the infrastructure fallout for some days (6-10
Oct 2012), where all meters did not report any data. Although
in this case we could trace back the problem in a server
failure during a weekend that was followed by a Spanish
bank holiday, one can use such metrics to assess multiple
aspects such as infrastructure resilience, quality of information
provided, etc., that may impact the deployment and operation
of future Smart Grid services.

Figure 3 depicts the total count of received meter readings
per each day, and we note that the number of received readings
follows (as expected) the number of smart meters, indicating
that the average number of received meter readings per smart
meter, is quite stable. On the right vertical axis the number of
smart meters with at least one reading per day is shown, and
we realize that even though a high number of smart meters
was live (and was expected to deliver meter readings), still
an overall low number of them was received. As we see
in Figure 3 73% of all smart meters have delivered more
than 50% of readings during a day. Still, for some days
(excluding the infrastructure fallout), additional analysis on
the data revealed that all meters had less than 50% of readings
delivered to IEM. This was especially visible before the total
infrastructure fallout (which could indicate a warning sign for
such events).

As both Figure 2 and Figure 3 depict, being able to assess
the quality of acquired data is key into understanding the
infrastructure as well as if any future application operation
could be supported or what aspects need to be enhanced to do
so. In our case, many of the smart meter “failure” to deliver
the expected number of meter readings could be traced back to



extensive testing and reconfiguration of the infrastructure and
the meters themselves. This had no impact on the real-world,
as billing is the only service currently offered live in the city
and any subsequent and even delayed meter reading has the
accumulated value of energy consumption. However, this had
an impact on our pilot services such as energy prediction and
indirectly on the trading. It is clear that high quality of data
and their timely assessment can provide a much accurate view
on what is happening in the grid, and assist with a wide range
of value added services.

III. IEM SERVICE ASSESSMENT IN PILOT

All of the IEM services have been implemented as Java
REST services deployed in a Glassfish 3.1 Application Server
(glassfish.java.net) and are accessible over both IPv4 and IPv6.
The business data is stored in a mySQL DB (www.mysql.com).
Specialized analytics and statistics are realized mostly on R
language (www.r-project.org). All communication with the
IEM is done over an encrypted channel i.e. HTTPS and a secu-
rity (with role-based authorization and authentication) frame-
work is in place based on Apache Shiro (shiro.apache.org). Ad-
ditionally for performance reasons, all services interact using
Google Protocol Buffers (code.google.com/p/protobuf/) which
offer a highly efficient binary format. The implementation of
the IEM constitutes of approximately 39,000 source lines of
code (SLOC) implemented in Java.

A. IEM Service Request Analysis

The IEM services are implemented following the REST
paradigm and hence can be accessed via the standard methods
GET, POST, PUT, DELETE. Figure 4 depicts all requests
made to the available services per group as these are shown
in the architecture (Figure 1) The POST method for Moni-
toring services (or RESTful create) was the most popular, as
expected, since smart meter data has been streamed to the
monitoring services. Interestingly the Billing service had a
lot of POST requests, but further analysis revealed that this
was due to the contract creation and their assignment to the
customers (configuration for all customers) during the begin
of the pilot.

18	  

98	  

608	  

26	  

6873	   7943	  
13343	  

61092	  

18647	  

696	  

8229	  

21705	  

105	  

5	  

857	  

271957	  

75	  

355	  

6507	  

283	  

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

Billing	   Brokerage	   Info	   Management	   Monitor	   Op=miza=on	   Predic=on	  

N
um

be
r	  o

f	  r
eq

ue
st
s	  (
lo
g	  
sc
al
e)
	  

Services	  

DELETE	  

GET	  

POST	  

PUT	  

Figure 4. Overview of service categories invocation for different methods

Requests during the pilot were made by three distinctive
applications as shown in Figure 1, i.e. an energy portal and
a mobile application via which mostly prosumers interacted,

as well as the IEM management application (i.e. the NOEM)
via which the administrators of the local utility interacted.
All the service categories depicted a high number of requests
for the GET method. From overall observation of Figure 4
one can conclude that Management, Brokerage, Monitor and
Billing services were the most popular ones. Further analysis
revealed more detailed info on their exact usage pattern. For
instance the increased Management requests can be traced
back to the authentication process during the log-in stage of
the application(s) etc.

389619	  

22945	  

3661	  

144	  

3089	  

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

Successful	   Unknown	  request	   Security	  issue	   Missused	  service	   Server	  error	  

	  N
um

be
r	  o

f	  r
es
po

ns
es
	  (l
og
	  sc

al
e)
	  

Response	  classifica6on	  

Figure 5. Overview of service response classification

A service invocation as depicted in Figure 1 does not
imply that the invocation was always successful. The IEM
services return a wide variety of HTTP codes such as suc-
cess (200,201,204,412), unknown (404,405), security issue
(401,403), misuse (400,406,409) and server error (500), so
that the service invokers can act accordingly. Figure 5 provides
an overview of the classified responses during the pilot, and
for instance we can see that more than 92% of successful re-
sponses were returned. The “Server error” results were approx.
0.7%, which is surprisingly low considering the complexity
of the services and the server load. Of interest was also the
results of the “Misused service” classification, which revealed
that even for mandatory API adjustments done during the pilot,
new functionality could be easily integrated to the applications
with minimal effort. We attribute this to the incremental
development style as well as the extensive and up to date
documentation provided to the developers.

Table I
OVERVIEW OF MOBILE DEVICE ACCESS TO IEM

Android Version Google Play IEM
2.2 (Froyo) 10.3% 28.27%
2.3.x (Gingerbread) 50.8% 45.88%
3.x (Honeycomb) 1.6% 0.37%
4.0 (Ice Cream Sandwich) 27.5% 17.89%
4.1 (Jelly Bean) 6.7% 7.59%

Figure 1 reveals that one of the end-user applications noted
as “Mobile Application” was accessing the IEM. This app
was implemented for Android (version 2.2+) smartphones and
hence capable of running in a wide variety of mobile devices
and tablets. Every call to IEM revealed the nature of the mobile
device behind the call (acquired via the HTTP headers). Table I
depicts the different versions of android devices identified
during the pilot accessing the IEM services, and compares
them to the worldwide statistics as these have been measured

glassfish.java.net
www.mysql.com
www.r-project.org
shiro.apache.org
code.google.com/p/protobuf/


in Google Play (developer.android.com/about/dashboards/) in
Dec 2012. The Gingerbread version was used to almost half of
requests, which is in line to the world-wide statistics obtained
by Google Play. The second ranked Froyo version is three
times over the Google Play reported distribution, however this
may be attributed mostly to the fact that many of the devices
available for testing and demonstration were Froyo devices.
Interestingly enough, even the latest version of Android is
depicted i.e. Jelly Bean, which indicates the existence of some
tech-savvy end-users that upgraded their mobile devices such
as tablets and mobile phones as soon as the OS version
was available (for Jelly Bean July 2012). Such analytics on
the data, can provide new insights and help the application
developers understand the user base, their devices’ capabilities
and also obtain indicators about the user himself (e.g. if s/he
is a tech savvy one and will try out the latest advanced
applications).

B. IEM Server load and DB Analysis

During the pilot, the IEM which provided the services for
all applications in NOBEL was hosted in an online server farm
(virtual machine) in Germany. The configuration was moderate
i.e. a dual-processor multi-core machine, 8 GB RAM and
150GB disk space. The server was reachable only via HTTPS
running on port 443, and behind the enterprise firewall. Overall
the CPU usage was moderate with some minor exceptions.
During the pilot, much of the time the server had been
idle, indicating at first that potentially less horsepower would
also be enough. However a more intense usage of the IEM
services, e.g. by increasing number of simultaneous users or
queries operating overwhelmingly on historical data, would
increase the CPU requirements significantly. On the memory
side however, we witnessed that 8GB of RAM were used
almost to the limit, and such multi-faceted functionalities as
the IEM provides, especially the ones that do analytics, require
more available memory to perform efficiently.

51.64%	  

21.51%	  
25.50%	  

0.19%	   0.80%	   0.20%	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

Pe
rc
en

ta
ge
	  o
nf
	  to

ta
l	  s
iz
e	  

meter_energy_reading	  
meter_other_reading	  
meter_reac;ve_energy	  
energy_genera;on_mix	  
market_order	  
market_transac;on	  

Figure 6. Overview of the six most space consuming DB tables

The IEM server heavily relied on the MySQL database
in order to hold all pilot data with a total of 6.1 GB of
hard disk space spread over approximately 40 different tables.
Since the pilot features more than 5000 consumers (and even
more distinct smart meters), the values on Figure 6 are shown
in percentage to the total DB size. Interestingly Figure 6
reveals that 98.65% of the space was dedicated to the meter
readings i.e. energy reading, levels of reactive energy and other
relevant readings (such as Voltage, Power, etc.). Using these

percentages one can estimate DB requirements for a future
large-scale solution, as well as get a notion where good design
decisions are required, e.g space- and performance-wise.

For the SQL queries executed during the pilot i.e. Create,
Read, Update and Delete (CRUD) operations, as expected
the biggest part is devoted to storage of data, as well as
acquiring information from the DB. Since the combined tables
for smart meter measurements are responsible for the DB size
(as shown in Figure 6), it is not surprising to see that over
53% were SQL INSERT and over 44% were SQL SELECT
queries. However, the transmission of data relevant to the
queries reveals interesting aspects. Approx. every SELECT
query resulted in average to almost 7 times more data than
INSERT; more specifically 8.58GB was exchanged in total
with an average SELECT of 4880 bytes and an average
INSERT weight of 710 bytes.

From the data analysis so far, we can consider that a real-
world system implementing the functions offered by IEM
should be able to handle increased incoming load while the ac-
tual outgoing load depends on the end-user application request
rate. However, both incoming and outgoing data rates could be
estimated based for instance on the density of data metering or
other information acquisition as well as functionality offered
at the end-user application side. The communication part does
not really offer an insight on the server load, especially when
a simple service invocation might result in spikes in the server
load due to massive data acquisition and analysis, while the
final transferred result may be of minimum size (e.g. a few
bytes). Typical example might be the analytics over historic
data that spans a custom-defined timeframe of several weeks.
Hence, careful design at DB level should consider the expected
data flow as well as the service offering and restrictions on
their functionalities.

C. IEM Service Performance

The host platform for the IEM services plays a key role
on their performance. IEM has been designed to run on
a distributed infrastructure and all of its components could
(if wished) be installed in different systems with different
computational, storage and communication capabilities that
correspond to the expected load for those parts. To do so,
all components of the architecture depicted in Figure 1 had to
communicate strictly over REST APIs and no local dependen-
cies were allowed. We would like to mention again that our
hardware configuration was moderate and no real optimization
techniques have been applied as mostly default configurations
were used. Figure 7 depicts an overview of the response times
(in ms) of all services, as well as a categorization of the three
applications that were accessing the IEM (as also shown in
Figure 1).

Optimization in any aspect may result in better performance
for the respective service. As an example, applications located
near (network-wise) to the IEM application server resulted in
much better response times due the higher network throughput;
similarly mobile devices over unstable or low-bandwidth links
were performing less efficiently than expected, especially

developer.android.com/about/dashboards/


452	  

115	  

63	  

1445	  

559	   574	   699	  

88	  

400	  

22	  

7173	  

5	  

288	   236	  

1087	  

11	  

60	  

15	  

728	   867	  
809	  

23	  

58	  

21	  

2056	  

244	  

1	  

10	  

100	  

1000	  

10000	  

Billing	   Brokerage	   Info	   Management	   Monitor	   Op=miza=on	   Predic=on	  

Av
er
ag
e	  
re
sp
on

se
	  ,
m
e	  
in
	  m

s	  (
lo
g	  
sc
al
e)
	  

Service	  All	  (including	  development)	   NOEM	   Internet	  Portal	   Mobile	  App	  

Figure 7. Average response time per requester app for all service categories

when significant amounts of data had to be transferred over
the network. The response time is measured from initialization
of the request until the reception acknowledgment from the
requester’s side. Of course, there is also a dependency on how
and which services are used and the amount of processing re-
quested on the server side as well as the data to be transferred.

For instance the Management services indicates a high
response time for requests coming from NOEM; however
this can be fully justified as there are more the 5000 smart
meters and more than 5000 customers, which would result in
significantly higher payload transfer for Management services
called by NOEM (that depict a system view) than the ones
called by the other single-user applications where data of a
single device/customer were needed. The same logic applies
to other services like the Brokerage services. The payload of
these two responses may differ more than 5000 fold in our
pilot.

The Management services were one of the most frequently
used service category. A detailed analysis identified some
bottlenecks i.e. when invoking the service for all the cus-
tomers (average 8235.5 ms) and all the smart meters (average
17737.54 ms), while fetching a single customer or device
resulted to 8.36 ms and 7.12 ms respectively. Even though
lightweight versions of these services were designed and
implemented, the response times are still too high. It is
unclear whether the delay is affected by the data fetching
time or the composition of the Google Protocol Buffer (GPB)
message. Since experiments demonstrated good performance
with almost 10000 times bigger tables, the delay might be
attributed to the composition of the GPB messages or to the
Java Persistence API (JPA). In our implementation there are
JPA dependencies of the entities i.e. almost every device has
location and information entity attached to it.

An interesting observation can also be made for the perfor-
mance difference between consumption (average 738.51 ms)
and production (average 576.9 ms) services in the monitoring
service category. Since both, production and consumption,
share the same DB table, it would be expected to have similar
response times. However, analyzing the usage patterns of
these services during the pilot, revealed that the difference
in response time mainly comes from the fact that service
consumers were more interested in the consumption readings
and they analyzed / visualized them over longer time periods

as they wanted to see their monthly or weekly consumption,
while production was rarely accessed on such a long time
frames (it was rather used only for daily timeslots).

IV. LESSONS LEARNED AND FUTURE WORK

The performance of various categories of services such as
management, brokering etc. during the pilot has been analyzed.
However, these are a composite of several other services
and an insight on their distinct parts may provide additional
understanding. For instance on the Brokerage service we
observed that the service fetching the orders of a specific
customer (average 217.67 ms) is slower in the response time
than the service returning all the orders (average 26 ms).
Further analysis showed that the actual usage of the service
from the client application introduced these delays (inefficient
use of the service). Specifically, the customer order service
was not consumed by some of the applications with the best
practice guidelines as advised in the developer documentation,
but the application developers rather called the generic version
of it (without proper parametrization). The last resulted to
delivering excessive info i.e. all customer’s orders (and then
we assume these were filtered on the application side).

Often the developers work under time constraints, and tend
to use the simplest way which “just works” without making
any considerations on the side-effects such as the server
impact or the communication overhead. Although the IEM
developers tried to tackle this by being backwards compliant
(API-wise) and introduce new optimized functionality, we
noticed that many developers of applications simply ignored
these developments under the motto of “don’t touch a running
code”, as the effect on the application side (e.g. the mobile
phone) was not significant. Hence, in our opinion the default
behavior of a service has to be of high-performance and low-
load incurring for the server, while additionally offering more
advanced options via further parametrization. In that way the
majority of the applications connecting will be able to be
“migrated” on-the-fly. In parallel strong documentation and
a migration period will help.

Scalability is of key importance, especially when consider-
ing that all the services now hosted under IEM, will have
different usage patterns and performance requirements. We
have targeted to make IEM scalable and distributed. Our
design decision to enable only RESTful interactions among
IEM services and not take advantage of other intra-component
calls (which may have resulted in better performance) was
justified.

As a multitude of heterogeneous stakeholders are expected
to access and use services such as those provided by the IEM,
more research needs to be done on the expected usage patterns,
data acquisition and validation, as well as the factor that affect
“real-time” analytics. Understanding how the infrastructure
services are used, helps focusing and optimizing several stages
of data lifecycle (from acquisition to processing and end-
application-driven adjustment).

For simplicity and maintainability of the platform, it is
mandatory that the REST APIs offered, are the same for all



applications. In parallel functionalities identified as “generic”
that serve the majority of apps, should be hosted on the
server side and include the sophisticated logic. In that line
of thought, more lightweight applications can be developed,
while their functionalities are decoupled from the data pro-
cessing logic and intelligence of the service, which can evolve
independently. It is expected that in the future such issues will
be negotiated by the application developers and the platform
providers in order to ensure mutual benefits.

Sometimes the server processing took extensive time (due to
the nature of the request or server overload) and in the mean-
time the client either timed-out or was blocked. Hence, asyn-
chronous behavior was implemented (Request/Acknowledge)
instead of synchronous (Request/Response) where possible, in
order to avoid the client blocking. This was done during the
pilot and has significantly improved the application interac-
tiveness for the end-user. One alternative, yet to be explored,
is the use of websockets. This technology, which is available
in HTML5, is somewhat between the request/response and
publish/subscribe models. The client can initiate a permanent
connection to server, effectively giving it a direct route back to
the client, and thus enabling it to deliver information when it is
available. The impact also of HTTP pipelining as well as new
future Internet HTTP-modifying networking protocols like
SPDY and HTTP Speed+Mobility should also be investigated.
Additionally, in a real operational environment, it would be
expected to make use of high performance in-memory row-
based DBs [6] in order to deliver “real-time” analytics over
mass data and to very large user bases. As most future devices
accessing such services are expected to be mobile, special
considerations might need to be taken into account [7].

Security, trust and privacy are challenging issues that are
expected to be an integral part of design, implementation and
deployment of energy service platforms. In our case, we have
not focused on these, but only provided some basic support
including authentication and authorization i.e. basic HTTP
authentication and authorization were used by all services pro-
vided by the platform, and secure interactions over encrypted
channels i.e. all REST calls were made over HTTPS. We have
placed trust on the end-devices delivering valid data; however
device authentication as well as data checks (for replay,
modification of values, other sanity checks etc.) should be
made in operational environments. Developing secure resilient
infrastructures in the Smart Grid era is considered a grant
challenge [8].

Apart from the security angle, data quality aspects as
indicated here need to be deeply tackled. Missing or delayed
data may have a significant impact on key functions such as
prediction or analytics, and a cascading effect on decision-
relevant processes depending on them, e.g. energy trading,
preventive maintenance etc. Hence adequate identification of
data quality issues, as well as estimation of missing or delayed
values should be further investigated.

Service failures may occur both at client and server side
even during the processing of a request. Typical examples
are those of network failures, time-outs, service crash, etc.

Strategies to detect service performance deterioration and
handling are needed. As many of these pose a vivid research
area especially in cloud computing domain, we assume that
these aspects of service monitoring and lifecycle management
will be provided by the underlying platform hosting the energy
services.

V. CONCLUSIONS

As we can see the design, implementation and development
of an energy services platform such as the IEM depicted in
this work is a continuous process. Decisions taken on the
assumptions prior to pilot had to be revised and adjusted to ad-
dress real-world aspects including the way services were used.
Several aspects could be better understood once the real-users
started experimenting with the infrastructure and its services
via the provided applications. We consider fundamental the
stakeholder agreement of generic energy services that should
be provided by platforms and potential standardization [9] of
them. Only then these will be able to act as enablers for
the creation of lightweight sophisticated end-user applications
that can deliver the fully-blown vision of the Smart Grid.
This will only be achieved in a collaboration mode among
multiple stakeholders and extensive pilots will help fine-tune
the proposed solutions.

ACKNOWLEDGMENT

The authors would like to thank for their support the
European Commission, and the partners of the EU FP7
projects SmartKYE (www.SmartKYE.eu) and NOBEL (www.
ict-nobel.eu) for the fruitful discussions.

REFERENCES

[1] X. Yu, C. Cecati, T. Dillon, and M. Simões, “The new frontier of smart
grids,” Industrial Electronics Magazine, IEEE, vol. 5, no. 3, pp. 49–63,
Sep. 2011.

[2] European Commission, “SmartGrids SRA 2035 – Strategic Research
Agenda: Update of the SmartGrids SRA 2007 for the needs
by the year 2035,” European Technology Platform SmartGrids,
European Commission, Tech. Rep., Mar. 2012. [Online]. Available:
http://www.smartgrids.eu/documents/sra2035.pdf

[3] V. Giordano, A. Meletiou, C. F. Covrig, A. Mengolini, M. Ardelean,
G. Fulli, M. S. Jiménez, and C. Filiou, “Smart Grid projects in Europe:
Lessons learned and current developments 2012 update,” Joint Research
Center of the European Commission, JRC79219, 2013.

[4] S. Karnouskos, “Smart houses in the smart grid and the search for
value-added services in the cloud of things era,” in IEEE International
Conference on Industrial Technology (ICIT 2013), Cape Town, South
Africa, 25–27 Feb. 2013.

[5] S. Karnouskos, P. Goncalves Da Silva, and D. Ilic, “Energy services for
the smart grid city,” in 6th IEEE International Conference on Digital
Ecosystem Technologies – Complex Environment Engineering (IEEE
DEST-CEE), Campione d’Italia, Italy, Jun. 2012.

[6] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA database: data management for modern business applica-
tions,” SIGMOD Rec., vol. 40, no. 4, pp. 45–51, Jan. 2012.

[7] N. C. Zakas, “The evolution of web development for mobile devices,”
Queue, vol. 11, no. 2, pp. 30:30–30:39, Feb. 2013.

[8] S. Karnouskos, “Cyber-Physical Systems in the SmartGrid,” in IEEE
9th International Conference on Industrial Informatics (INDIN), Lisbon,
Portugal, Jul. 26–29 2011.

[9] J. Bryson and P. D. Gallagher, “NIST framework and roadmap for
smart grid interoperability standards, release 2.0,” National Institute of
Standards and Technology (NIST), Tech. Rep. NIST Special Publication
1108R2, Feb. 2012. [Online]. Available: http://www.nist.gov/smartgrid/
upload/NIST Framework Release 2-0 corr.pdf

www.SmartKYE.eu
www.ict-nobel.eu
www.ict-nobel.eu
http://www.smartgrids.eu/documents/sra2035.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf
http://www.nist.gov/smartgrid/upload/NIST_Framework_Release_2-0_corr.pdf

	Introduction
	Data Quality Assessment
	IEM Service Assessment in Pilot
	IEM Service Request Analysis
	IEM Server load and DB Analysis
	IEM Service Performance

	Lessons Learned and Future Work
	Conclusions
	References

