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Summary. A key issue for the success of a smart grid is the capability
to accommodate efficient smart metering. Following the trend towards
timely monitoring of energy consumption and production via Internet
related technologies and in-network metering platforms, we need to in-
vestigate performance-related aspects of smart metering and how they
affect the overall operation. We present here our experiences implement-
ing a prototype framework for smart metering, discuss on some of its
aspects, and evaluate its performance.
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1 Motivation

The emerging Internet of Energy [2], and more specifically its core entity, i.e. the
Smart Grid, is a highly dynamic complex ecosystem of energy production and
consumption parties that heavily use Information and Communication Tech-
nologies (ICT) in order to be more efficient compared to current traditional
operation. Additionally, the Smart Grid enables the creation of new innovative
services based on the bidirectional interaction of its stakeholders. The forma-
tion of new relationships between energy providers, distributors, dealers, and
customers who themselves can act as producers (prosumers), has dramatically
increased the complexity of the energy market.

Recent market statements for the smart-grid era, even considered with a grain
of salt, provide some hints on the expected growth and business significance:
Marie Hattar, vice president of marketing in Cisco’s network systems solutions
group, estimated in 2009 that the smart grid network will be “100 or 1000 times
larger than the Internet”. Similarly, Vishal Sikka, CTO of SAP, stated in 2009
that “The next billion SAP users will be smart meters”.

Linking networked embedded systems (smart meters, energy control units,
etc.), handling security and trust, modeling and transacting for highly dis-
tributed business processes, developing market-driven mechanisms for load bal-
ancing, proactive planning of system load profiles using derivatives, development
of new business and market models, allowance for planning and scheduling, and
assurance of interoperability are just a few of the topics that need to be specially
defined and developed in this area [3].
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The Internet Protocol (IP) is seen as one of the key technologies [1] that has
big potential for the smart grid domain, including smart metering. It is expected
that metering aggregation points, e.g. concentrators, will communicate over IP
with online metering platforms and submit the collected metering measurements.
Smart meters could also periodically connect and report their data not only to a
single platform, for example, for billing, but also to multiple online services that
could provide added-value [3]. Generally, due to the emergence of IP everywhere,
such as the 6LoWPAN [4], it will be possible for any networked (embedded)
device (meter, laptop, TV, etc.) to attach to the global IP network and report
its energy consumption or production.

2 Smart Metering

The true power of SmartGrids can be realized once fine-grained monitoring, that
is, metering of energy consumption or production, is in place. The promise of
an Advanced Metering Infrastructure (AMI) is that we will be able to measure,
collect, and analyze energy usage from advanced devices, such as electricity me-
ters, gas meters, and /or water meters, through various communication media on
demand or on a predefined schedule. Today, many utilities have already deployed
or are currently deploying smart meters in order to enable the benefits of the
AMI. A typical example is the world’s largest smart meter deployment, which
was undertaken by Enel in Italy and installed over 27 million smart meters to
its entire customer base. AMI is empowering the next generation of electricity
network, as for example the one depicted in the SmartGrid [2, 5] vision. Smart
meters will be able to not only measure and report energy consumption in a
timely manner, but also, in cooperation with online services or other devices,
possibly provide management capabilities or information to the local network.
These smart meters will be multi-utility, and their services will be interacting
with various systems, not only for billing but for other value-added services as
well [3].

We envision an infrastructure that will follow the Software as a service (SaaS)
approach, where software vendors may host the application on (distributed) In-
ternet servers and provide access to the value-added servers via a variety of
media, such as on mobile devices, web portals, etc. While SaaS was initially
widely deployed for sales force automation and Customer Relationship Man-
agement (CRM), its use has become commonplace in businesses for tasks such
as computerized billing, invoicing, human-resource management, service-desk
management, and sales-pipeline management, among others; we consider this
approach to also be interesting for the SmartGrid era.

Within the scope of SmartHouse/SmartGrid (www.smarthouse-smartgrid.eu)
and NOBEL (www.ict-nobel.eu) projects, we are defining and implementing a
smart metering infrastructure that would glue heterogeneous systems and pro-
vide them common smart metering services. Although the concepts have been
tested in a laboratory, the earliest real-world trials, which will start in mid-2010,
are expected to deliver more results and hands-on experiences. An overview of
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Fig. 1. Overview of smart metering in SmartHouse/SmartGrid project
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the first trials is depicted in Figure 1. A commonality among them is the en-
terprise integration that is done towards two directions, (i) the metering data
is reported for traditional business purposes, e.g. billing, and (ii) value-added
services can be realized in conjunction with the context-specific info in each
location.

The Internet-based metering platform features several components that im-
plement the necessary services, such as MeterReading service to report real-time
measurements, and is hosted in an Internet server. Currently, the main way to
communicate among the platform and the different metering data-collections
points is via web services [6], although in the future we envisage to experiment
also with REST (Representational State Transfer) approaches. As such a concen-
trator, a smart meter or any other metering data entity can contact the necessary
web service and submit the collected data.

3 Metering Platform Implementation

A metering service was realized as a web service. This service is used to submit
the measurements acquired by the metering point to the platform. The smart
meter web service is defined as a stateless Enterprise Java Bean (EJB). An
EJB is a server-side component used to encapsulate business logic. The EJB is
responsible for managing database operations for the insertion, update, deletion,
and querying of meter reading data. The clients communicate with the server
through the Simple Object Access Protocol (SOAP), a standard web service
protocol used for exchanging the messages between clients and servers.
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A key issue in the scalability of any smart metering platform is its ability to
handle large numbers of requests, that is, the volume of smart meter readings
should be handled in a timely manner by one or more instances of the platform
(for load balancing). For simplicity, we assume that each platform instance may
be hosted on a server, and by evaluating the limits of it, we can get a good
indication of how many servers would be needed to reliably handle the targeted
volume of data (scalability considerations). To this end, the time taken to handle
a metering insertion request was measured at different stages of the incoming
request life-cycle.

As can be seen in Figure 2, when a request arrived at the Application Server
(realized by JBoss in our prototype), the appropriate EJB method was called
and the data was inserted into the database. Subsequently, control propagates
back to the server, which completed the request by sending a response to the
client. The time required to execute these three stages, the total request time,
EJB time, and database insert time, was measured.
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Fig. 2. Web service enabled Smart Metering

In order to realize the performance tests, we developed a prototype stress
test application (in Java) that employed raw socket connections to communicate
with the server and sent the generated meter readings. The data was wrapped in
a SOAP message and sent via a POST request to the web service’s URL address.
The response from the server was acknowledged but no further processing was
performed. The application enabled the tweaking of its functionality via three
parameters:

— Number of sockets to use: a number of active connections established between
the client and the server;

— Message delay: a wait time (in milliseconds) before the client sent the next
request; and
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— Total number of messages: the total number of the requests to be sent to the
server. This value is independent to the number of the connected sockets.

From the operational point of view, the application generated requests and
called the respective web service on the server at the specified interval until
the total number of requests was reached. If the application was configured to
use more than one socket connection, the requests were sent using each available
socket in a Round-Robin fashion. Each request contained the exact message that
a real metering point would submit (payload in XML), but in our prototype we
generated these automatically and populated them with dynamic data, such as
measurement value, meter 1D, etc.

In the metering platform depicted in Figure 2, we can see that the web service
layer (deployed with EJB 3.0) could have multiple parallel instances. Since the
metering platform was able to handle parallel requests, the new Session Bean
instances would be initialized if the metering platform started to receive data
from multiple TCP connections. As with the socket connections, for every web
service request a new thread would run on the server side, but an overall limit
was defined within the Session Bean pool size. As we note later, this may be
one of the bottlenecks towards achieving higher performance, which might be
resolved with the usage of multiple application servers.

4 Performance Tests

Our initial aim was to investigate the ability of an online metering platform
(hosted on a single server) to handle a relative heavy load of metering requests.
This was done by stressing the server, that is, sending as many requests as
possible, under different client configurations, in order to better understand the
server behavior under peak load. This should provide some insight on how servers
may be configured to reliably handle large numbers of requests, such as from
one million smart meters. To achieve this, three scenarios were defined in terms
of the number of workstations sending requests to the server and the number
of sockets used by each workstation. The stress test application was used on
each workstation to generate the load. Table 1 provides an overview of each
scenario, its parameters, and performance. For all of the scenarios, we did not
set any delays between the requests generated by the stress application, that is,
generating (a lot) more requests than the server could handle.

Table 1. Performance Test Overview

Scenario |clients [sockets/ requests/ |requests/ |requests/
ID workstation |workstation |second 15 Min

1 1 1 10000 435 391500

2 1 10 10000 672 604800

3 2 5 5000 769 692100
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The tests were performed with several clients running Ubuntu Linux 9.10,
Windows Vista, and Windows XP. On the server side, where the measurements
were made, we used a COTS machine with an Intel Core Duo 6600 (2x2.4GHz)
CPU, 4x2GB DDR2 667MHz memory, and a gigabit (one hop) Ethernet con-
nection between the clients and the server. The server was running Ubuntu
9.10 64bit (2.6.31-21-generic kernel), with application server JBoss 5.1.0.GA and
MySQL 5.1.37 DBMS. It should be noted that JBoss can be configured to deploy
different server profiles, consisting of different service and module configurations.
For the purposes of this experiment, the default server profile, which ships with
the JBoss application server, was used. However, the Tomcat component of the
JBoss server had to be configured with the maxKeepAliveRequests parameter
on the HTTP/1.1 connector set to “-1” in order not to limit the the number of
requests that can be made from a single connection.
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Fig. 3. Scenario 1 — Total request handling time

Scenario 1 is depicted in Figure 3, where we see the request handling times for
each request. The EJB time is almost entirely comprised of the database insert
time (both graphs overlap in Figure 3). We can see that there iss a big difference
between total request handling time and the EJB time. This is probably due
to overhead related to processing of the SOAP message, both at the request
side (extracting the required information to perform the database insert) and
on the response side (sending an empty SOAP response). Another interesting
observation are the periodical spikes in message response time. As it can be
seen in Figure 3, there are four peaks in response time, and a few smaller peaks
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throughout. This may be the result of reoccurring operating system or database
procedures.
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Fig. 4. Scenario 2 — Total request handling time

Scenario 2 is depicted in Figure 4, and demonstrates the response time of
the server for requests made from one workstation using 10 sockets (in contrast
to scenario 1 where we had only 1 socket). As it can be seen in Table 1, there
is a clear gain in request throughput against scenario 1, while also sustaining a
clear increase in response time (as shown Figure 4). The gain in throughput is a
consequence of the use of multiple sockets, and thus multiple threads, resulting in
the requests being handled in parallel. So, instead of one request being handled
(scenario 1), ten requests are handled at the same time (scenario 2).

Figure 5 shows a comparison of the load duration curves for scenario 2 and
scenario 3. As expected, the difference in insignificant, since the overall load
is similar; the only difference is that in scenario 3 the composite load comes
from two different workstations. However, as we can see, a higher throughput
was achieved in scenario 3, most probably due to variable network conditions or
JBoss AS internal management.

5 Discussion and future directions

We have seen that in the prototyped smart metering platform, a large portion of
time is spent on internal processing happening at the Application Server itself.
As shown in Figure 3, the total request/response time for one socket connec-
tion was approximately four times longer than the DB INSERT operation. This
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Fig. 5. Scenario 2 vs. Scenario 3 load duration curve

difference was possibly the first sign that the application server load should
be balanced over multiple application servers. Therefore, further possible per-
formance enhancements should be explored in order to reduce that time, for
example via the usage of multiple application platforms running as front-end.
However, more aggressive performance-related strategies might provide better
results, such as usage of in-memory DBs or strategic (on-demand or periodic)
committing to the DB.

As already noted and also depicted in Table 1, the indicative performance
depends on many factors. With the current configuration, our scenarios would
accommodate in a per-15-minute measurement window approximately 692k (sce-
nario 3) measurements. This gave some early indication on the infrastructure
that needed to be in place to accommodate millions of meters in this time in-
terval. However, we have to point out here that these end-metering points could
also be concentrators that then would further increase the total number of last-
mile end-points (smart meters results are grouped at concentrator level) whose
data could be collectively reported.

Our test generates (on client side) and pushes (to server side) a high amount
of generated data; as such, the communication throughput is limited by the
TCP receive window (server side). If we take a closer look into the transport
layer (Figure 6), it can be seen that the server side reaches its input buffer limits
(TCP window size). Thus, TCP window scaling (RFC 1323), that is, to increase
the TCP receive window size above its current value (Windows default is 65535
bytes), is an option. The increase of the TCP window on the server side helps
to not exceed the capacity of the receiver to retrieve data (flow control). As we
can see in Figure 6, TCP window updates were very common, and also TCP
ZeroWindow occurred during our tests. This was due to the fact that our client
generates (many) more requests than those the server can handle. Thus, the
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Fig. 6. Communication analysis: TCP Window scaling

client will continue generating data, but it will be kept in output buffer until
the server updates its window size to equal (or greater) value of the message
size to be sent. These steps will be repeated over and over again until all data
is transmitted.

Apart from the initial performance evaluation presented here, several direc-
tions can still be assessed both in the laboratory environment and in real world
conditions. With respect to metering data exchange, the time penalties in sub-
mitting single vs. multiple metering values from one or multiple locations needs
to be further evaluated. The reliability needs to be investigated, especially over
unreliable or congested channels. The metering payload and its correlation to
processing and transmission time need to be further evaluated. Furthermore, we
mostly assume best-effort network, therefore we wanted to take a closer look at
network performance aspects, such as possible optimizations on the communi-
cation strategy: create connections per message, per client, strategy to manage
connection time, such as one connection open for multiple measurement sub-
missions, etc. The usage of approaches that provide some guarantees, such as
WS-ReliableMessaging, or security, such as exchange of signed/encrypted mea-
surements, would also be of interest.

For the metering platform, we want to further investigate issues related to
throughput, that is, performance measurements related to number of measure-
ment messages processed, resource consumption e.g. CPU, memory, etc, message
processing time (from acceptance to storage), as well as storage performance (for
storing and retrieving). Scalability of the platform (clustering, etc.) and/or its
components is also an issue, especially considering the heavy load that near real-
time metering might pose. End-to-end service performance (for example, from
metering of data up to end-user display) would also enable us to see if and how
real-time services can be provided.

6 Conclusions

We have presented our experiences in prototyping an online smart metering
platform that can communicate via web services with the metering points and
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collect the measurements. Initial evaluation shows that the concept and technol-
ogy approach are sound and that we can achieve a high number of measurements,
even with COTS hardware and software, and with no significant performance
tweaking. Although there are many aspects to be evaluated, here we focus on a
service-enabled infrastructure and evaluate the performance of a simple proto-
type platform for acquiring and storing high numbers of metering measurements.

Nowadays, many commonly refer to high-resolution metering, which is con-
sidered in a “l15-minute” period. However, in the near future we will move not
only towards real-time metering but also expand on the notion of “meters”, since
any of the billion Internet of Things envisioned devices could be acting as a “me-
ter”. This trend will pose some significant requirements to metering platforms in
order to be able to accommodate all measurements in a timely manner. We have
shown that simple prototype solutions as ours can achieve considerable perfor-
mance. However, requirements for more reliability and scalability will increase
in the future.
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