PREPRINT VERSION OF HTTP://DX.DOI.ORG/10.1109/TSC.2010.3

Interacting with the SOA-based Internet of
Things: Discovery, Query, Selection, and
On-Demand Provisioning of Web Services

Dominique Guinard, Student Member, IEEE, Vlad Trifa, Student Member, IEEE,
Stamatis Karnouskos, Senior Member, IEEE, Patrik Spiess, Member, IEEE,
and Domnic Savio, Member, IEEE

Abstract—The increasing usage of smart embedded devices in business blurs the line between the virtual and real worlds. This creates
new opportunities to build applications that better integrate real-time state of the physical world and hence provide enterprise services
that are highly dynamic, more diverse and efficient. Service Oriented Architecture approaches traditionally used to couple functionality
of heavyweight corporate IT systems, are becoming applicable to embedded real-world devices, i.e. objects of the physical world
that feature embedded processing and communication. In such infrastructures, composed of large numbers of networked, resource-
limited devices, the discovery of services and on-demand provisioning of missing functionality is a significant challenge. We propose a
process and a suitable system architecture that enables developers and business process designers to dynamically query, select, and
use running instances of real-world services (i.e. services running on physical devices) or even deploy new ones on-demand, all in the

context of composite, real-world business applications.

Index Terms—Service-oriented Architecture (SOA), Service Discovery, Web Services, REST, Web of Things, Device Integration,
Composite Applications, Wireless Sensor (Actuator) Networks, Context modeling, Ubiquitous Business processes.

1 INTRODUCTION

HE last years, we have witnessed two major trends
T in the world of embedded devices. Firstly, hardware
is becoming smaller, cheaper, and more powerful. Ac-
cording to the Internet of Things vision (IoT) [1], the
majority of the devices will soon have communication
and computation capabilities, which they will use to
connect, interact, and cooperate with their surrounding
environment. Secondly, the software industry is mov-
ing towards service-oriented integration technologies.
Especially in the business software domain, complex
applications based on the composition and collabora-
tion among diverse services have been appearing. The
Internet of Services vision (I0oS) [2] assumes this on a
large scale, where services reside in different layers of the
enterprise e.g. different operational units, IT networks, or
even running directly on devices and machines within
the company. As both of these trends are not domain
specific but common to multiple industries, we are facing
a trend where the service-based information systems
blur the border between the physical and virtual worlds,
providing a fertile ground for a new breed of real-world
aware applications. The efficiency of such applications
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will heavily depend on the cooperation of heterogeneous
networked embedded devices among themselves and
with business systems [3]. In this Internet of Things, we
expect that dynamic network discovery, query, selection,
and on-demand provisioning of Web services will be of
crucial importance.

In the future Internet, real-world devices will be able
to offer their functionality via SOAP-based Web Services
(WS-*) or RESTful APIs [4], enabling other components
to interact with them dynamically. The functionality
offered by these devices (e.g. the provisioning of on-
line sensor data) is often referred to as real-world ser-
vices because they are provided by embedded systems
that are related directly to the physical world. Unlike
traditional enterprise services and applications, which
are mainly virtual entities, real-world services provide
real-time (we refer to relatively low-latency, not neces-
sarily offering hard real-time guarantees) data about the
physical world. Armed with this additional knowledge,
one can support a more efficient decision taking process.
Hence, devices providing their functionality as a Web
services can be used by other entities such as enterprise
applications or even other devices. No device drivers
are needed anymore and a new level of efficiency can
be achieved as Web service clients can be generated
dynamically at run-time.

Trends show that in the future, a much more diversi-
fied infrastructure will emerge, and the way we interact
with it will change accordingly. As depicted in Figure
1, mash-ups of services will be created and used across
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Figure 1. The Collaborative Future Internet Vision

various system layers. We will experience horizontal
collaboration directly between devices with no human
intervention [3], but also vertical collaboration between
devices and online services, applications, and people.
Enterprise applications will be able to connect directly
to devices with no need for proprietary drivers, while
non Web service-enabled devices can still be used by
wrapping their functionality behind gateways. Peer-to-
peer communication among devices will push services
down to the device layer and create new opportunities
for functionality discovery and collaboration.

According to OnWorld [5], the global market for
Wireless Sensor Network (WSN) systems and services
is expected to skyrocket to about $4.6 billion in 2011,
up from approximately $500 million in 2005. There will
be a worldwide market of $5.3 billion (conservative esti-
mate) for the industrial control segment only, comprising
4.1 million nodes by 2010. OnWorld’s most aggressive
forecast for all wireless sensor (& control) network seg-
ments is $8.2 billion by 2010, comprising 184 million
deployed nodes. Thus, the business opportunities for
real-world services are promising. Even if a fraction of
this holds true for the near term, we will witness a mass
market penetration of networked embedded devices.
Services taking advantage of the unprecedented ease of
consumption of device functionality will give birth to
new innovative applications and provide both revenue
generating and cost saving business advantages. From
a technology point of view, the key challenge is how to
discover, assess, and efficiently integrate the real-world
services into business applications.

1.1 Background and Related Work

Several efforts have explored the integration of real-
world and enterprise services e.g. [6, 7]. However, the
protocols used do not offer uniform interfaces across
the application space and are too complex to integrate
with traditional enterprise applications. To ensure in-

teroperability across all systems, recent work has fo-
cused on applying the concept of Service-oriented Ar-
chitecture (SOA), in particular Web Service standards
(SOAP, WSDL, etc.) directly on devices (e.g. [8-10]).
Implementing WS-* standards on devices presents sev-
eral advantages in terms of end-to-end integration and
programmability, by reducing the need for gateways
and translation between the components. This enables
the direct orchestration of services running on devices,
e.g. sensors monitoring the temperature of shipments,
with high-level enterprise services, e.g. offered by an
Enterprise Resource Planning (ERP) application.

Embedding SOA concepts at device level initially
seems a good idea, however we have to keep in mind
that SOA standards were designed primarily for con-
necting, complex, and rather static enterprise services.
Thus implementing WS-* standards directly on devices
is not always straightforward. Unlike enterprise services,
real-world services are deployed on resource constrained
devices, e.g. with limited computing, communication
and storage capabilities. This requires significant sim-
plification, optimization, and adaptation of SOA tools
and standards [10]. Additionally, real-world services are
found in highly dynamic environments where devices
and their underlying services constantly degrade, van-
ish, and possibly re-appear. As such, this infrastructure
can not be considered as static and long-lived as tra-
ditional enterprise services. This implies the need for
automated, immediate (dynamic) discovery of devices
and services as well as their effective management.

A crucial challenge for SOA developers and process
designers is to find adequate services for solving a
particular task [11]. This process is often referred to
as “service discovery” or simply “discovery” [12] and
is end-user driven. We shall distinguish it from the
“network discovery” [7] of services which is machine
driven and occurs at the network level. Discovering
enterprise services often implies manually querying a
number of registries, such as Universal Description and
Discovery and Integration (UDDI) registries, and the
results depend largely on the quality of the data within
that registry. While such an approach is adequate for
a rarely changing set of large-scale services, the same
is insufficient for the requirements of the dynamic real-
world services. Registering a service with one or more
UDDIs is rather complex, and does not comply with
the minimization of usage of the devices’ limited re-
sources. Furthermore extensive description information
is necessary [13], while the device can only report basic
information about itself and the services it hosts. Trying
to reduce the complexity of registration and discovery,
different research directions have been followed in or-
der to provide alternatives or extensions of the UDDI
standard [11, 12, 14]. However, also these do not take
into account the particular requirements of real-world
services.
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1.2 Our Contributions

Based on our experiences within SAP, in developing real-
world services for the enterprises, we introduce here a
set of requirements to facilitate the querying and discov-
ery of real-world services from enterprise applications:

1) R1: Minimal Service Overhead. As most real-
world services are offered by embedded devices
with (very) limited computing capabilities there is
a need for a lightweight service-oriented paradigm
which does not generate too much overhead com-
pared to using functionality through the propri-
etary APlIs.

2) R2: Minimal Registration Effort. A device should
be able to advertise its services to an open registry
using network discovery. The process should be
“plug and play”, without requiring human in-
tervention. A device should also be expected to
provide only a small amount of information when
registering.

3) R3: Support for Dynamic and Contextual Search.
It should be possible to use external sources of
information to better formulate queries. Further-
more, the queries should go beyond simple key-
word search and take into account user-quality
parameters such as context (e.g. location, Quality
of Service (QoS), application context). Support for
context is essential as the functionality of most
real-world devices is task-specific within a well-
defined context (e.g. a building, a manufacturing
plant, etc.).

4) R4: Support for On-Demand Provisioning. Ser-
vices on embedded devices offer rather atomic
operations, such as obtaining data from a temper-
ature sensor. Thus, while the WSN (Wireless Sen-
sor Networks) platforms are rather heterogeneous,
the services that the sensor nodes can offer share
significant similarities and could be (re)deployed
on-demand per developer request.

In the work presented here we build upon existing re-
search on device integration through services [8-10, 15].
Our key contribution is the service discovery process
for real-world services initially introduced in [16]. This
process is shown on Figure 4 and described in detail
in Section 4. The goal of this process, called Real-World
Service Discovery and Provisioning Process (RSDPP),
is to assist the developers at development time in
the discovery of real-world services to be included in
composite applications. This innovative process fulfills
the requirements of real-world services we described (R1
to R4) above as follows: In order to ensure a minimal
overhead (R1) for providing the functionality of em-
bedded devices as service we propose two approaches.
In the first one we use the Device Profile for Web
Services (DPWS) [8] and its dynamic network discovery
mechanism. DPWS defines a limited set of WS-* stan-
dards which are implementable on relatively resource-
constrained devices. We will describe DPWS in Section

3.1.

As an alternative to fulfill requirement R1 we also
introduce the design of Resource Oriented real-world de-
vices, that is embedded devices providing their function-
ality through a RESTful API [4, 17, 18]. REST (Represen-
tational State Transfer) [19] is the architectural principle
that lies at the heart of the Web and shares a similar goal
with DPWS, which is to increase interoperability for a
looser coupling between the parts of distributed appli-
cations [20] towards serendipitous re-use of services. We
further describe the concept of resource-oriented real-
world devices in Section 3.2.

The minimal registration effort (R2) requirement is met
by using DPWS [8] and its network discovery mech-
anism. In Section 3.2 we also describe how Resource
Oriented devices can also fulfill this requirement.

We further ensure the minimal registration (R2) ef-
fort and support for dynamic search (R3) by extending
developer provided keywords with vocabularies of re-
lated terms also known as “lightweight ontologies” [21].
We generate these terms dynamically, by using semi-
structured Web resources like Wikipedia and Yahoo! Web
Search. This part of the process called Query Augmen-
tation, is described in Section 4.1.

The dynamic search requirement (R3) is also fulfilled
by taking into account the developer context and match-
ing it with the extracted context of real-world services.
This developer quality information is then used for
adequate service selection when retrieving and ranking
services as explained in Section 4.2.

The requirement for on-demand dynamic provisioning
(R4) is fulfilled by a software architecture that enables
the developer to automatically deploy services on de-
vices when no requirements-satisfying service was found
in the environment [22]. This architecture is described in
Section 4.3.

Finally, we present our implementation within an
enterprise application (based on Java Enterprise Edition
and SAP NetWeaver) as well as its deployment and
validation of our results in Section 5.

Before describing the process itself we start with an
overview of the framework in which the RSDPP was
developed and in particular on how devices can register
themselves and advertise their services in an automated
manner.

2 THE SOCRADES
TECTURE

The process described in this article has been developed
and implemented as part of the SOCRADES Integration
Architecture (SIA) [9, 23, 24], which is depicted in Figure
2. The role of SIA is to enable the ubiquitous integration
of real-world services running on embedded devices
with enterprise services. WS-* Web Service standards
constitute the de facto communication method used by
the components of enterprise-level applications, and for
this reason SIA is fully based on them. In this manner,

INTEGRATION ARCHI-
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business applications can access near real-time data from
a wide range of networked devices through a high-level,
abstract interface based on Web Services. Furthermore,
the SIA also supports RESTful services in order to be able
to communicate with many emerging Web 2.0 services.
This enables any networked device that is connected to
the SIA to directly participate in business processes while
neither requiring the process modeler, nor the process
execution engine to know about the exact details of the
underlying hardware.
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Figure 2. The SOCRADES Integration Architecture (SIA)
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The details of SIA can be found in [24], therefore here
we focus those components of the architecture, which are
relevant for RSDPP. The components with gray, diagonal
patterns play a key role in the process. SIA is split in
two parts: A “local, on premise” part which features a
Local Discovery Unit (LDU) and is running at the local
network that contains the devices to be integrated, and
a central system (anywhere on the network or even In-
ternet) that hosts enterprise-level applications. Although
the quantitative relation between both subsystems is
m : n, in a typical single-site setup there will be only one
central system and one or more on-premise systems. In
a multi-enterprise collaborative landscape however, we
would witness several “central” systems collaborating

and possibly various “local” systems reporting to more
than one “central” ones.

In the local subsystem at Device Layer there are sev-
eral embedded devices that are running various services.
SIA is able to interact with devices using several com-
munication protocols, such as DPWS, OPC-UA, REST,
etc., however in this article we focus solely on DPWS
and REST-enabled devices. Since DPWS-enabled devices
support Web Services, they also can bypass SIA for
a direct connection to Enterprise Applications, which
is desirable in some use cases, but not for the major-
ity of foreseen ones. Furthermore, SIA allows applica-
tions to subscribe to any events sent by the devices,
offering a publish/subscribe component that supports
WS-Notifications. It also offers buffered invocations of
hosted services on devices that are only intermittently
connected, by receiving notifications when the device
becomes available again or having the system cache the
message and delivering it when the device is ready to
receive it. As such SIA is a vital component hiding and
managing the complexity of real-world landscapes from
the enterprise service developers, easing their tasks.

The key component that connects the local subsystem
with the central one is the local network discovery
unit (or LDU). The LDU module Device Service Proxy
scans the local network for DPWS and REST devices
and reports their connecting and disconnecting to the
central system. It acts as an intermediary that provides
uniform access to different classes of devices through
a set of platform-dependent plug-ins. Some of the ad-
vanced features of the LDU are a lightweight local or-
chestration engine that allows for autonomous execution
of local processes, a Device Service Injector that is
able to change the embedded software on devices in
order to (un)deploy or (re)configure embedded services
(used for on-demand provisioning as in Section 4.3.2),
and an enterprise service proxy factory that can make
services from a business application available in the
local network so that devices can access those back-end
services through the same protocols as they would use to
communicate with other devices. All these are realized
by (unidirectional) Web service calls from the LDU to the
central system, therefore allowing for firewall-friendly
operations and operation through an HTTP(s) proxy.

In the central subsystem, we have implemented
higher-level components to ease the management and
use of devices in a standardized and uniform way. The
Device Repository holds all dynamically acquired but
mostly static device information (metadata) of all on-line
and off-line devices (of all connected local subsystems),
while the Device Monitor contains information about
the current state of each device. The Device Monitor acts
as the single access point where enterprise applications
can find all devices even when they have no direct access
to the shop floor network or such access is not wished
(e.g. flooding of shop-floor with network discovery mes-
sages).

At the same time, information about the different
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services hosted on the device (typically described using
WSDLs) will be retrieved and forwarded using an event
to the Service Type Repository and Service Monitor as
shown on Figure 4. The former only contains information
about the service types without their respective end-
point references; the latter contains information about
the available service instances hosted by the devices and
their endpoint references, and also installable service
types. The Service Type Repository acts as a facade for
querying the underlying repositories and monitors for
pointers to running service instances.

The RSDPP process is mainly orchestrated from the
component called Application Service Catalog. It con-
tains a GUI, hosts and applies the service instance
ranking strategies (see Section 4.2.3), and controls the
interaction with the other components involved in the
process.

3 NETWORK DiSsCOVERY OF EMBEDDED DE-
VICES

Along with increasingly dynamic infrastructures where
mobile devices appear or disappear from the network
at operation time, there is a strong need for tools to
simplify the management and interconnection of net-
worked devices. Network discovery is a central process
in ubiquitous and distributed computing [7]. In con-
trast to the user-oriented discovery, network discovery
enables machines to automatically register themselves
and advertise their services on the network. In a way,
network discovery is the bootstrap of service discovery
for end-users. In this field, many protocols have been
proposed such as the Service Location Protocol (SLP),
Universal Plug and Play (UPnP), Device Profile for Web
Services, Sun’s Jini, or Apple’s Bonjour.

LDU DPWS REST
connector connector
REST
DPWS REST
DEVICES SIA compliant SIA compliant NoT .SIA
compliant

WS-Discovery Active discovery  Forced discovery
Figure 3. Three Alternative Mechanisms for Network
Discovery of Real-World Services Hosted on Physical

Devices

Such a discovery mechanism is essential in scenar-
ios where devices can join the network and discover
dynamically the services offered by other devices, and
will be unavoidable requirement in future enterprise

scenarios with dynamic and adaptive production lines.
In this Section, we present three alternative mechanisms
we have used in our system for network discovery of
devices. As depicted in Figure 3, the process of finding
out real world services running on physical devices can
be done as follows:

1) WS-Discovery on which DPWS is based (both ac-
tive and passive).

2) RESTful active network discovery, where a device
notifies its presence to the LDU automatically.

3) Passive RESTful discovery for REST-enabled de-
vices that do not comply with SIA network dis-
covery. Passive RESTful discovery is triggered by
passing the URI of the device to be registered in
the system as a parameter of the forced discovery
method call.

3.1 DPWS Web Services

Device Profiles for Web Services (DPWS) is a subset of
Web service standards (such as WSDL and SOAP) that
allows minimal interaction with Web services running
on embedded devices. DPWS is the successor of Uni-
versal Plug and Play (UPnP) as in essence it specifies
a protocol for seamless interaction with the services
offered by different embedded devices. However DPWS
is fully aligned with Web Services technologies. The
various specifications DPWS include support for (se-
cure) messaging, service discovery and description, and
eventing for resource-constrained devices. Devices can
run two types of services: a) hosting services and b)
hosted services. Hosting services are directly related to
DPWS and support the low-level, generic (meta-)services
such as network discovery services used by a device
connected to a network to advertise itself and to discover
other devices, metadata exchange services to provide
information about a device and the hosted services on
it, and asynchronous publish and subscribe eventing,
allowing to subscribe to asynchronous event messages
produced by a given hosted service. Hosted services are
mostly functional and depend on their hosting device
and its functionality for network discovery.

As services run directly on limited networked devices,
a robust mechanism is needed, in order to find new
devices as they connect to the network, and dynamically
retrieve metadata about it and the services it hosts.
To achieve this, the WS-Discovery specification is used.
When a new device joins the network, it will multicast
a HELLO message via the UDP protocol. By listening
to this message, clients can detect new devices and in a
second step retrieve their metadata. This in turn triggers
the sending of an appropriate message to the SIA Device
Monitor, containing the device’s static metadata. The
metadata information can be classified into a certain
set of metadata classes (see categories paragraph below),
and is required for searching services according to more
detailed criteria. This data about the device is stored by
the higher units for future usage.
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Filtering information can be included in a Probe mes-
sage sent to a multicast group. Devices whose metadata
match the probes’ content will send a ProbeMatch re-
sponse directly to the client (in unicast mode). Similarly,
to locate a device by name, a client sends a Resolve
message to the same multicast group and the device that
matches sends a ResolveMatch response directly to the
client. After this network-level scan, the result set can be
further narrowed by matching keywords or textual in-
formation that describe both static (device type, available
sensors on board) and dynamic properties of devices
(QoS, physical location, available battery life, network
connectivity, or available sensors).

Metadata categories The DPWS metadata of devices
and services can be classified in different categories, as
follows:

o Scopes a set of attributes that may be used to
organize devices into logical or hierarchical groups,
e.g. according to their location or access rights.

o Model and Device metadata provides information
about the type of the device like manufacturer name,
model name, model number, etc. as well as infor-
mation on the device itself such as serial number,
firmware version and friendly name.

o Types are a set of messages the device can send
and/or receive; these can be either functional WSDL
port types (e.g. turn on’, "turn off’) or abstract types
grouping several port types and/or hosted services
(e.g. 'printer’, 'lighting’, "residential gateway’).

o Links to WSDL document (i.e. URLs), containing
the port types (operations and message structures)
implemented and the endpoint of hosted services.

3.2 RESTful Services for the Real-World

The architectural principles that are core to the Web,
namely Representational State Transfer (REST) as de-
fined by Roy Fielding [19], share a similar goal with WS-*
Web services, which is to increase interoperability for a
looser coupling between the parts of distributed applica-
tions [20]. However, the goal of REST is to achieve this in
a more lightweight and simpler manner seamlessly inte-
grated to the Web. REST uses URIs for encapsulating and
identifying services on the Web. In its Web implementa-
tion it also uses HTTP as a true application protocol. This
way, REST brings services “into the browser”: resources
can be linked, bookmarked, cached, searched for, and
the results are directly visible within any Web browser.
Requests for services (i.e. verbs on resources) are formu-
lated using a standard URI. For instance, typing a URI
such as http://.../spotl/sensors/temperature
in a browser, can be used to request the resource (here:
operation) “temperature” of the resource “sensor” of
“spotl” with the verb GET HTTP method.
Traditionally, REST has been used to integrate web-
sites together. However, the lightweight and ubiquitous
aspects of REST makes it an ideal candidate to build
an “universal” API (Application Programming Interface)

for embedded devices. This concept is often referred to
as “Web of Things” [17, 18, 25].

Since many such devices usually offer rather simple
and atomic functionalities (for example reading sensor
values), modeling them using REST is often straightfor-
ward. While REST services are well adapted for rather
atomic services, thus cover a fair part of the basic ser-
vices offered by embedded devices, they have limitations
when modeling services which require complex input
and/or deliver complex outputs. According to our own
experience and of others [26], in traditional integration
patterns based on WS-* Web Services, we suggest that
WS-* services are to be preferred for highly complex
real-world integration and rather static use-cases, such
as those involving complex business processes or those
requiring high reliability or security, for example com-
posing a manufacturing process on several machines.
For lightweight and more end-user oriented applica-
tions, the RESTful approach offers significant advantages
such as simplicity, direct Web integration and looser-
coupling [4, 26]. As both scenarios are needed for truly
flexible enterprise applications, the Local Discovery Unit
of our solution supports both DPWS and REST-enabled
devices.

HTTP has been designed as a high-level application
protocol, therefore the notion of network discovery is
not part of HTTP specifications. In the modern Web,
resources are discovered by following outgoing links
from each resource, but this model requires to know
beforehand the URI of a boot-strap resource, therefore
is not suited for discovering new devices that appear on
the network. To counter that, mRDP [27] proposed as a
simple HTTP-based semantic resource discovery mech-
anism, based on UDP broadcasting. In our approach,
we implemented alongside WS-Discovery, a RESTful
network discovery mechanism suited for devices that
do not support DPWS, but only HTTP. In the passive
network discovery of REST-enabled devices, each device
must announce itself using a HELLO message (exactly
as in the DPWS network discovery case), however, upon
reception of the acknowledgment from the LDU, the
device will generate a PUT request on the LDU REST
server, and register itself into the LDU using a prede-
fined device registration procedure.

Since there is no standard for the discovery of RESTful
services, we cannot expect any RESTful device to be
compliant with the custom HTTP passive discovery
protocol we have just described. In this case, we force the
network discovery (active) upon the device, by issuing
a GET request on the device page which needs to be
known. The LDU will parse the device page and retrieve
the necessary information from the device and its ser-
vices. The device page is a machine-readable “RESTful
API” described in HTML. To enhance this description
we experimented using metadata contained in a specific
microformat! we have developed specifically for devices.

1. www.microformats.org
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The metadata contained in this microformat is the same
as the metadata used in the network discovery process of
DPWS devices so that the same information is contained
in the service repositories of the architecture for both
REST and DPWS services.

4 REAL-WORLD SERVICE DISCOVERY AND
PROVISIONING PROCESS (RSDPP)
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Figure 4. Overview of the Real-World Service Discovery
and Provisioning Process (RSDPP).

After describing the way devices and their services
are advertised, this Section describes the RSDPP and
its underlying steps. As illustrated in Figure 4 step
1, the process begins with a Types Query after the
network discovery of devices has been executed. In
this sub-process the developer uses keywords to search
for services, as she would search for documents on
any search engine. Subsequently this query is extended
with related keywords fetched from different websites,
and used to retrieve types of services that describe the
functionality, but not yet the real-world device it runs
on. This is the task of the Candidate Search, where the
running instances of the service type are retrieved and
ranked according to context parameters provided by the
developer (Fig 4, step 2). In case no service instance
has been found, the process goes on with Provisioning.
It begins with a forced network discovery of devices,
where the devices known to provide the service type the
developer is looking for, are asked to acknowledge their
presence (step 3). If no suitable device is discovered, a
service injection can be requested. In this last step the
system tries to find suitable devices that could run the
requested service, and installs it remotely (step 4).
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In the first part of the discovery process (step 1 on Figure
4), the developer or process designer enters keywords
describing the type of service she wants to find (step 1
on Figure 5). A Service Type is a generic WSDL file
describing the abstract functionalities of a real-world

Types Query

service, but not bound to any particular end-point of
a concrete real-world device. The entered keywords are
sent to the Query Augmentation module which extends
the query with additional keywords. The output of
this module is then used to retrieve and rank types of
services according to user-quality parameters such as the
current user context.

4.1.1 Query Augmentation and Assistant

@Kcywords
—

________________________

List of Keywords

(Feedback)
f———7] Query Augmentor Y @
Query —’CD
strategies|H
O

Service Type

Service Type Lookup Repository

@I

List of Service Types (WSDLs without endpoints)

Figure 5. Looking for a Service Type.

In conventional service discovery applications, the
keywords entered by the user would be sent to a Service
Repository to find types of services corresponding to
the keywords. The problem with this simple keyword
matching mechanism is that it lacks flexibility. As an
example lets assume a developer who wants to find
services offered by a “smart meter”, a term often used
to describe a next generation device that can measure
the energy consumption of other devices and possibly
control them depending on built-in logic. Typing “smart
meter” only, will likely not lead into finding all the
corresponding services, because services dealing with
energy consumption monitoring might not be tagged
with the “smart meter” keyword but simply with “elec-
tronic meter” etc. We want to avoid the construction of
domain ontologies, and to minimize the amount of data
that embedded devices need to provide upon network
discovery and service registration. Thus, we propose a
system that uses services on the Web to extend queries
without involving communication with the embedded
devices or requiring complex service descriptions from
them. This is the query augmentation shown on step 2
of Figure 5.

Our idea is to use existing knowledge repositories
such as Web encyclopedias (e.g. Wikipedia) and search
engines (e.g. Google, Yahoo! Web Search), in order to
extract “lightweight ontologies” [21] or vocabularies of
terms from their semi-structured results. The basic con-
cept of the query augmentation (step 2 on Figure 5) is
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to call 1..n Web search engines or encyclopedias with
the search terms provided by the developer, for instance
“smart meter”. The XHTML result page from each Web
resource is then automatically downloaded and ana-
lyzed. The result is a list of keywords, which frequently
appeared on pages related to “smart meter”. A number
of the resulting keywords are thus related to the initial
keyword i.e. “smart meter” and therefore can be used
when searching for types of services corresponding to
the initial input.

An invocable Web-resource together with several fil-
ters and analysis applied to the results is called a Query
Strategy. The structure is based on the Strategy Pattern
[28], which enables us to encapsulate algorithms into
entirely independent and interchangeable classes. This
eases the implementation of new strategies based on
Web resources containing relevant terms for a partic-
ular domain. A simplified class diagram of the Query
Strategy framework is depicted on Figure 6. Any Query
Strategy has to implement the AbstractStrategy
class which provides the general definition of the al-
gorithm. As an example the YahooStrategy is a con-
crete implementation of this algorithm using the Ya-
hoo! Search service. Furthermore, strategies can have
extensions, adding more specific functionality to a con-
crete instance of a Query Strategy. As an example
the WikipediaStrategy can be extended with the
WikipediaBacklinks class. This particular extension
is using the backlinks operation offered by Wikipedia in
order to know what pages are linking to the currently an-
alyzed page similarly to what the well-known PageRank
uses to rank websites [29]. This information is then used
by the WikipediaStrategy to browse to related pages and
gather relevant keywords. As such, our approach builds
on top of existing ranking and connectivity approaches
on the Web.

Furthermore, Query Strategies can be combined in or-
der to get a final result that reflects the successive results
of calling a number of Web-resources. The resulting list
of related keywords is then returned to the developer in
the Query Assistant, where she can (optionally) remove
keywords that are not relevant (step 3 of Figure 5).

The implementation of the Query Strategy architecture
makes it easy to test combinations of several strategies
together with their extension. We implemented a number
of these, and their evaluation is presented in Section 5.2.

4.1.2 Service Type Lookup

The augmented query is used to determine any matching
service types in the Service Type Repository (step 4 and
step 5 on Figure 5). All service types that match any
of the keywords supplied are found; both those manu-
ally entered and those determined automatically by the
augmentation step. The query keywords are matched
against all metadata of a service type that was sent to the
Service Monitor upon network discovery or extended by
a manual entry. This includes human readable descrip-
tions, contact information, legal terms, explicit keywords

AbstractStrategy

+getEnrichedKeywords()
+getDocSummary()

General definition of the +getXPath()
algorithm and functionality +getURL()
+..()
| |
YahooStrategy WikipediaStrategy
Main strategies with +getXPath() +getXPath()
hotspots implementation  |+getEnrichedKeywords() +getEnrichedKeywords()
+getDocSummary() +getDocSummary()
e tonsi +..() +..()
xtensions
YahooRelatedTags YahooRelatedTags WikipediaBacklinks
+getDocSummary() +getDocSummary() +getEnrichedKeywords()
+..) *) +()

Figure 6. Architectural overview of the Query Strategies
based on the Strategy and Template software design
patterns.

and interface descriptions (WSDL). Additionally, struc-
tured technical metadata is considered, e.g. dependency
information between service types, and requirements of
the service type on underlying hardware. The result of
the Service Type Lookup is a list of service types that
potentially support the functionality the developer is
looking for.

4.2 Candidate Search
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Figure 7. Ranking and optionally Provisioning Service
Instances.

Real-world devices are volatile e.g. often connecting
and disconnecting, thus we need to decouple the dis-
covery of service types from the discovery of actual
instances of services. The Candidate Search (step 2 on
Figure 4) models the discovery of running service in-
stances. The first step in this sub-process is for the
developer to select the suitable types of services by
browsing their details (step 1 on Figure 7). Alternatively
she can select all the types retrieved in the Types Query
part of the process.
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4.2.1 Context Extractor

One of the main differences between real-world service
and virtual services is that real-world services are di-
rectly linked to the physical world. As a consequence, the
context in which a service exists as well as the context in
which the developer initiates the discovery of a service
are highly relevant. Context is information that qualifies
the physical world, and it can help in both reducing the
number of services returned to the developer, as well as
in finding the most appropriate services for the current
environment [30].

To satisfy the requirements of real-world service dis-
covery, we propose modeling the context by two distinct
parts inspired from [31]: the digital environment, which
we define as everything that is related to the virtual
world the developer is using, and the physical environ-
ment, which refers to properties of the physical situation
the developer currently is located in or wants to discover
services about.

The digital environment is composed of Application
Context and Quality of Service. The Application Context
describes the business application the developer uses
when trying to discover services, e.g. the type of ap-
plication she is currently developing or the language
currently set as default. Such information co-determines
the services a developer is looking for and can reduce
the discovery scope. The QoS Information reflects the
expectations of the developer (or of the application she is
currently using) in terms of how the discovered service
is expected to perform. Our current implementation sup-
ports service health and network latency, i.e. the current
status of the service and the network transmission delay
usually measured when calling it.

The physical environment is mainly composed of in-
formation about location. Developers are likely to be
looking for real-world services located at a particular
place, unlike when searching most virtual services. We
decompose the location into two sub-parts following the
Location API for Mobile Devices (as defined in Java
Specification Request JSR-179). The Address encapsu-
lates the virtual description of the current location, with
information such as building name, floor, street, country,
etc. and the Coordinates are GPS coordinates. In our
implementation the location can either be automatically
extracted e.g. if the developer looks for a real-world
service close to her location, or it can be explicitly spec-
ified if she wants a service located close to a particular
location e.g. in a form of radius.

In the RSDPP Context, extraction on the developer
side is done at step 2 of Figure 7. It is worth noting that
the context on the developer side is meant to reflect the
expectations or requirements with regard to the services
that are going to be returned. As an example, during this
phase the developer can express the wish for a service
to be physically close to her current location, or she can
quantify the importance of context parameters such as
Quality of Service.

This developer-quality information is then going to be

compared to the service and device side context by the
Service Instance Ranking component (see Section 4.2.3)
in order to select and rank the most relevant service
instances.

4.2.2 Service Instance Search

In step 3 of Figure 7, the identifiers of the selected service
types and the context object extracted on the developer-
side are sent to the Service Monitor. This component is
the link between service types and running instances of
these services. Thanks to the dynamic network discovery
of devices (explained in Section 3.1) the Service Monitor
and the Device Monitor know what devices are currently
providing which service types. In steps 4 and 5 of Figure
7, the Service Monitor queries the Device Monitor for
the context of the selected service instances. The digital
environment context parameters such as the Quality of
Service, are derived by polling the devices from time to
time, as well as by monitoring the invocations of services
and calculating their execution time.

Getting the context parameters related to the physical
environment of a service instance is slightly more com-
plicated. Indeed, as an example it can not be expected
from each real-world device to know its location. Thus,
we suggest taking a best effort strategy, where each
actor of the discovery process is trying to further fill-
in the context object. As an example, consider a mobile
sensor node without a coordinates-resolving module (e.g.
a GPS). When discovered by the Local Discovery Unit
(see Section 3.1 and Figure 2), the sensor node does not
know its location and thus can not fill-in the Address
and Coordinates fields of the context object. The LDU
however, is a usually immobile component and can be
configured at setup time with its location and current
address. As a consequence the LDU can fill the Address
and Coordinate fields of the sensor node with its own
location (within a specific radius). While not entirely
accurate with respect to the sensor’s exact location, this
information will already provide a hint which can be of
value to the developer. In the future, more sophisticated
methods can be used at device or LDU level (especially
if any of them are mobile) e.g. [32] in order to acquire
location information with the required accuracy. Simi-
larly, since we can not expect every LDU to provide
a full contextual profile, the Service Monitor has its
own default context component which can again be
used to extend the information the device and LDU
provided. The final context information is packed into
a context object for each device running the selected
Service Instances.

If no appropriate service instances have been found,
the optional step 7 (described in 4.3) and step 8 (de-
scribed in 4.3.2) are taken; otherwise the process contin-
ues with Service Instance Ranking.

4.2.3 Service Instance Ranking

The Service Instance Ranking component is responsible
for sorting the instances according to their compliance
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with the context specified by the developer or extracted
from her machine. As shown in step 6 of Figure 7, the
Service Instance Ranking component receives a number
of service instances alongside with their context object.
It then uses a Ranking Strategy to sort the list of in-
stances found. For instance, a Ranking Strategy could
use the network latency so that the services are listed
sorted according to their network latency; another could
rank instances according to their compliance with the
current location of a developer or the target location she
provided.

As for Query Strategies (see Section 4.1.1), Rank-
ing strategies can be well modeled using the Strat-
egy pattern. In this way, new strategies can be easily
implemented and integrated. Furthermore, we extend
the pattern to support chained ranking strategies, in
order for the resulting ranking to reflect a multi-criteria
evaluation. Each ranking criterion can use both the
context information of the instances gathered during
the Service Instance Search, and the context information
extracted on the developer side in step 2 of Figure 7.
Thus, instances can be ranked against each other and/or
against the context of the developer (e.g. her location).
The output of the ranking process is an ordered list
of running service instances corresponding both to the
extended keywords and to the requirements in terms of
context expressed by the developer. The pattern-based
design of the component makes it possible to extend the
strategies to accommodate emerging research e.g. [33-
35] on matching and ranking that needs however to be
adapted to consider the specifics of real-world services.

4.3 On-Demand Service Provisioning

In case no running service instance has been found, On-
Demand Service Provisioning will first actively try to
discover service instance on the network that matches
the developer’s requirements. If this also fails, installa-
tion of services on suitable devices will be carried out.

4.3.1 Forced Network Discovery of Devices

As discussed in Section 3.1, passive DPWS network dis-
covery can be unreliable depending on the mechanism
used. This is due to the fact that UDP is used, which
provides an unreliable service where datagrams may
arrive out of order, appear duplicated, or simply get
lost without notification. Furthermore, this mechanism
might take a long time to propagate across the whole
system (especially when we have thousands of on-
device services e.g. [36]) as UDP packets are multicasted
only in local networks. When up-to-date information is
needed, the forced network discovery mechanism can be
used, particularly within dynamic environments where
devices with unknown capabilities continuously connect
to or disconnect from the network. This dynamic process
can use different types of filters to specify the device
type and the scope, as well as other additional semantic
information. This is useful to restrict the result set when

looking for new devices, as only devices matching the
specified criteria will respond. Forced network discovery
is depicted as the optional step 6 in Figure 7. Forced
discovery will result to new discovery messages arriving
at System Monitor, after which the process is continued
from step 5.

4.3.2 On-Demand Service Injection on Devices

In case that even after forced network discovery of
devices no service instances that match the query have
been identified, the system tries to inject (i.e. remotely
install) appropriate instances of the identified service
types (depicted as the optional step 7 in Figure 7).
This involves finding devices that are capable of hosting
the service, and actually installing it in a platform-
dependent way. The new instances are detected by the
System Monitor, and again, the process continues from
step 5.

Injection is possible if the descriptions of the service
types identified in previous steps include installation
instructions and executable software artifacts. In the Ser-
vice Repository, for each service type, we therefore pro-
vide data structures for deployable artifacts, including
(dynamic and static) hardware requirements and depen-
dency relations between services. These requirements are
compared with the capabilities and states of the currently
available devices. An efficient service to device mapping
is calculated and platform-specific injection actions are
taken to change the system according to the mapping.
Once the injection finishes successfully, control is handed
back to Service Instance Ranking, which uses the Service
Monitor again to discover the newly installed Service
Instances.

In a concrete example, the service description of a
fire detection service could include both DPWS bundle
for installation on an DPWS-enabled sensor platform
and a rule set for a rule-based sensing system. Meta
information makes sure that the bundle and the rule set
are only applied to the appropriate platforms. Additional
information for deployment can be included, such as the
desired coverage (e.g. 80 % of all nodes), dependency on
other services, e.g. a temperature measurement service
and a fire shutter control service. If the service to be
deployed is depends on other services, those can be de-
ployed as well. Metadata may also include the memory
required to install the new service. Our efforts on service
mapping and injection are described in detail in [22].

5 PROCESS EVALUATION

A prototype of the described process was implemented
and integrated to the SOCRADES Integration Architec-
ture. The prototype implementation was developed in
Java and deployed on a Java Enterprise Application
Server (SAP NetWeaver) at two distinct locations. The
evaluation of the prototype was split in three parts fol-
lowing the sub-parts of the Real-World Service Discovery
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Figure 8. Search User Interface, looking for instances of
services in the Application Service Catalogue

Process (i.e. Types Query, Candidate Search, Provision-
ing).

The first step in evaluating the implementation of the
process was to get a number of DPWS-enabled devices
offering services to search for. Unfortunately since it is
only recently that DPWS has become an official standard
(WS-DD) its adoption on industrial devices is ongoing.
Thus, we decided to simulate a larger number of devices
that one could expect to find in future industrial envi-
ronments. Since developers usually write the description
of Web Services [11], we selected seventeen experienced
developers and asked them to write the description of
a selected device and of at least two services it could
offer. The developers were given the documentation of
a concrete device according to the projects they were
currently working on. Based on these descriptions we
generated thirty types of services (described in WSDL
containing DPWS metadata) for sixteen different smart
devices ranging from RFID readers to robots and sensor
boards. Out of these, one thousand service instances
were simulated at the two deployed locations.

This work further extended the simulation by imple-
menting them on a prototyped shop floor in a labo-
ratory and industrial setup in two different scenarios
described in section 5.4. The locations spanned across
cities and countries using Internet as the communica-
tion backbone for these services and internal operations.
Common shop floor devices like temperature and vibra-
tion sensors were identified. SunSPOT sensors?, gantry
robots, PLC (Programmable Logic Controller) devices
controlling conveyor belts and proximity sensors from
leading industrial vendors were wrapped with (DPWS)
Web services or directly deployed service instances on
the devices themselves. We further tested the integration
of RESTful devices by implementing a native Web server
for the SunSPOTs [18].

The prototype of the SOCRADES Integration Archi-
tecture was used in the back end to monitor, search and

2. www.sunspotworld.com

compose services offered by these devices. The LDU of
the SIA was used at different locations in the field trials
to dynamically discover devices on the shop floor.

5.1 Search User Interface

A search (or discovery) Web user interface (UI) for
developers was developed (shown on Figure 8) on the
top of the Java Enterprise implementation of the RSDDP.
This UI offers several interaction zones corresponding to
the steps of the process and allows the developer to feed
her feedback into the discovery loop at every step of the
process.

In the first zone (1. Search Form) the developer is
asked to enter n keywords. These keywords are then
extended with related words by the Query Augmenta-
tion and Assistant module (see Section 4.1.1 and step 1
on Figure 4), as shown in the second zone (2. Query
Augmentation). In this zone the developer can also
choose to remove/extend words before performing a
Service Type Lookup (second part of step 1 and Section
4.1.2). The result of this is shown in the third zone
(3. Search Result - Types of Services) that is a list of
all the types of services corresponding to the extended
keywords. The developer then selects the types she is
actually interested in. To help her identifying these, a
table provides a description of each type as well as all
its currently associated tags. Additionally, the developer
can tag the service types with new keywords, if she
thinks relevant tags are still missing. Once the service
types are selected, the Candidate Search is performed
(step 2 on Figure 4 and Section 4.2. The result of this
execution (zone 5. Result - Service Instances) is a list of
running instances for all the selected types. As already
mentioned, to facilitate the final selection of a service, the
instances are ranked according to the context parameters
extracted on the developer side. As an example the
service instances on Figure 8 are sorted according three
combined parameters i.e. network latency, service health
and location (with respective relevance levels of 10%,
30% and 50%).

Before taking the final decision on what service to
select the instances can be tested. In the case of a (DP)WS
service a click on a instance results in opening its com-
plete WSDL file, and a further click on a link opens
the Web Service Navigator of SAP Netweaver to allow
testing of the service. In the case of a RESTful service a
click on an instance directly retrieves the identifier of the
service (i.e. a URL) and allows for direct testing within
the browser.

Finally, if no running instances were found for any
of the selected types, the developer can choose to force
the network discovery of instances (step 3 on Figure 4
and Section 4.3) or to perform an injection of the selected
types on appropriate embedded devices (zone 4. Actions
on Types of Service).
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Figure 9. Results for the Query Augmentation with Yahoo!
and Wikipedia

5.2 Evaluation of Types Query and Candidate
Search

In the evaluation of the Query Augmentation module
we wanted to know whether:

1) Augmenting developer input with related key-
words could help in finding more real-world Web
services

2) What type of combination of query strategies is the
most suitable.

Two types of strategies were used. In the first we used
a human generated index (i.e. Wikipedia), and in the
second a robot generated index (i.e. Yahoo! Web Search).
The input keywords were selected by seven volunteers,
all working in IT. They provided seventy-one search
terms (composed of one to two words) that they would
use if they were to search for services provided by the
seventeen devices. These terms were entered one by one
and all the results were logged.

The trend extracted from these experiments is shown
on Figure 9. Two results can be drawn. First the Query
Augmentation process does indeed help in finding more
real-world services. Without augmentation 75% (plain
gray line on Figure 9) of the service types were found
and using the query augmentation up to a 100%. How-
ever, the Query Augmentation generates a number of
false positives, i.e. service types that are returned even if
they are not related to the provided keywords (depicted
by the two lines at the bottom of Figure 9). Thus we need
to restrict the number of keywords added to the intitial
ones. The observed optimum is between 5 and 10 added
keywords, leading to less than 20% false positives out
of 95% types of services found. The second result can
be seen on Figure 9 which reveals that using Yahoo!,
the approach performs slightly better than when using
Wikipedia. Looking more in detail, we see that ind-
eded, approximately 50% of the keywords used against
Wikipedia did not lead to any page, simply because they
do not have yet dedicated articles, even if Wikipedia

was growing at a rate of about 1400 articles per day°.
However, when results where extracted from Wikipedia
pages they were actually more relevant for the searched
real-world services. Thus, a good solution would be
to chain the strategies so that first human generated
indexes are called and then robot generated ones, in case
the first part did not lead to results.

The Candidate Search was evaluated based on a proof
of concept implementation. We tested two chained rank-
ing strategies for the generated services; one comparing
service health and given weight of 30% as well as one
comparing network latency and given a weight of 50 %.
They performed as expected, sorting the lists of retrieved
service instances according to the ranking strategies
which, we believe helps developers finding their way
across the results, but would need to be tested with
neutral volunteers. We implemented the sorting using
the merge sort algorithm which has a complexity of
O(nlogn), and since the strategies can be chained we
have an overhead for the ranking of O(mnlogn) where
m is the number of strategies and n the number of
Service Instances.

5.3 Evaluation of On-Demand Service Provisioning

On-Demand Service Provisioning can be the result of not
being able to find a suitable running service, or even be-
cause the possible existence of such a service on a specific
device would result in better satisfying the requirements
e.g. better performance. Our implementation of the on-
demand provisioning part was done using adaptations
of well-known algorithms, which resulted to NP-hard
approaches for service to device mapping [22]. Both
probabilistic/efficient (O(nk)) and complete/inefficient
(O(n*)) algorithms have been implemented. Some eval-
uation was done using test scenarios, in which the
probabilistic algorithms produced results close to the
optimum, with respect to a given objective function.
A proof of concept implementation demonstrated the
service mapping and deployment both on simulated and
real devices (PDA-level). Flexibility is achieved by using
exchangeable strategies for each step of the mapping
process that can be exchanged at during run-time. This
approach is also scalable, since most of the components
can be easily replicated and distributed across different
locations. A detailed evaluation and discussion of the
on-demand service provisioning is given in [22].

5.4 Demonstrator and Field Trial

In the recent years we have witnessed the SOA concepts
starting to be successfully applied to the shop floors of
future factories. Thus, the key motivation for evaluating
the prototype was to identify the feasibility of SOA based
cross-location infrastructure in real-world situations such
as in factories. In the demonstrated scenario multiple
heterogeneous physical devices on the shop floor were

3. http:/ /en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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Figure 10. Trial of the SIA in an multi-location, cross-
network real-world scenario

discovered, the services to be composed were identified
and used based on the RSDPP. In particular, DPWS and
RESTful Web services were deployed (see Figure 10)
with the aim to evaluate part of the aforementioned
concepts on real data and events.

In the trial, a manufacturer operates in two distinct
geographical locations (marked as “Location A” and
“Location B” in Figure 10), that also belong to different
networks and reside behind firewall/proxy without di-
rect connections between the shop-floors. At company’s
headquarters a running ERP system governs the overall
operations with respect to the two locations. A pro-
duction order is issued from the headquarters to its
production facilities at location A. During the course of
production, a severe unpredictable failure of machines
causes the production to be stopped at location A. Such
a scenario occurs often in production plants where the
stop per hour could run to a loss of thousands of dollars.

In this scenario the ERP system at the headquarters
is immediately alerted about the current loss and an
estimated delay in completing the production order is
calculated. Subsequently the ERP evaluates alternative
scenarios in order to realize the customer’s order and
satisfy its constraints. Therefore it decides to relocate the
remaining of the production order to location B. It also
arranges for the already produced parts of location A
to be transfered to a storage room where the parts from
location B will also arrive shortly, in order to complete
one whole shipment to the customer.

During the design time of the composite application,
the services hosted on the devices at these facilities are
discovered by the SIA and its LDUs. These services,
along with their QoS and other contextual information,
are stored in the Service Type Repository. A sequential
process-oriented composite application is created by the
developer by searching for instances of services using
the RSDPP and the search user interface in order to com-
plete a production sequence. Functionality envisioned at

design time but that could not be found at run time is
deployed on-demand. This composite application is then
also available as a Web service. Two such applications
were developed for location A and location B for this
scenario. In the second phase - runtime phase, the actual
composite application is being executed.

6 CONCLUSION

The future Internet will be highly populated by hetero-
geneous networked embedded devices that will further
blur the borders of real and virtual world, empowering
us with new capabilities in creating real-world aware
business applications. For this to happen, it is of high
importance to be able to find real-world services that
can be dynamically included in enterprise applications
- a quite challenging task considering the application
requirements, technologies and heterogeneity of devices.
In that line of thought, we have presented here an
approach that would facilitate this task for developers,
allowing them not only to search efficiently for services
running on embedded devices, but also to deploy miss-
ing functionalities on-demand.

The comprehensive process demonstrated in this arti-
cle shows that we can extend the reach of enterprise com-
puting to the real world (and vice versa). To achieve this,
we suggest to use Web Service standards (DPWS) and
Web oriented patterns (REST) to easily integrate physical
devices into existing enterprise information systems.
Web services on devices can be used to dynamically
register devices and the service(s) they provide. We have
suggested to use queries to search service metadata that
has been gathered by the network discovery of devices.
Furthermore, we have designed and evaluated automatic
augmentation of the search queries, with strategies that
extend queries with related keywords found on knowl-
edge repositories available on the network e.g. third
party Web sites. With this extension we have shown
that significantly more services can be identified without
overloading devices with description data. We have also
shown how context is important for real-world services
and explained its use within the service discovery pro-
cess. Finally, we presented how missing functionality can
be injected on devices upon developer’s request.
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