Chapter 15

Factory of the Future: A Service-oriented
System of Modular, Dynamic Reconfigurable
and Collaborative Systems

A.-W. Colombo!, S. Karnouskos? and J.-M. Mendes?®

Abstract Modern enterprises operate on a global scale and depend on complex
business processes performed in highly distributed production systems. Business
continuity needs to be guaranteed, while changes at some or many of the distrib-
uted shop-floors should happen on-the-fly without stopping the production process
as a whole. Unfortunately, there are limits and barriers that hinder the business re-
quirements in beating tackled timely in the shop-floors due to missing modularity,
agile reconfigurability, collaboration and open communication among the systems.
However, as the number of sophisticated networked embedded devices in the
shop-floors increases, service-oriented architecture (SOA) concepts can now be
pushed down from the upper information technology level to the device level, and
provide a better collaboration between the business systems and the production
systems. This leads to highly modular, dynamic reconfigurable factories that build
a collaborative system of systems that can adapt and optimize its behaviour to
achieve the business goals. The work presented in this chapter shows directions to
achieve this dynamism by means of SOA introduction in all layers, increased col-
laboration and close coupling of production sites and enterprise systems.

Keywords Service-oriented architecture, dynamic reconfigurable systems, col-
laborative systems

I A.-W. Colombo (1<)
Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany
email: armando.colombo@de.schneider-electric.com

2'S. Karnouskos
SAP Research, SAP AG, Vincenz-Priessnitz-Strasse 1, D-76131 Karlsruhe, Germany

3 J. -M. Mendes
Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal



460 A.-W. Colombo et al.

15.1 Introduction

The business world is highly competitive, and in order to successfully tackle eve-
ryday challenges, operational managers and executives demand high dependability
and wide visibility within their business process networks. The later is done usu-
ally via business key performance indicators. However, in order to provide up-to-
date information and be able to react in a flexible and optimal way to changing
conditions, real-time information must flow via all layers from the shop-floor up
to the business process level. In that sense enterprises are moving towards service-
oriented infrastructures that bring us one step closer to the vision of real-time en-
terprises. Applications and business processes are modelled on top of and using an
enterprise-wide or even cross-enterprise service landscape. For any solution to be
easily integrated in this environment, it is recommended to feature a service-based
approach (Karnouskos et al., 2007).

Modeling and Cross-layer Timely monitoring
Simulation collaboration and control
y ERP
e Enterprise

Resource

e |- e

Planning
mES T
Manufacturing C%

Execution
System
Production Control Level
bcs A
L Y v
:mﬂﬁd 'f-ef-ef‘,{‘f,?‘ 06 g’e/"’f@—

System Process Control Lavel

Monitoring

|

Fig. 15.1 Monitoring, control and collaboration for service-based future factories

Currently, shop-floor intelligent systems based on distributed embedded de-
vices concentrate the programming of the behaviour and intelligence on a handful
of large monolithic computing resources accompanied by large numbers of dumb
devices. The intelligence and behaviour are tailored and individually programmed
for each application. However, as we are moving towards the “internet of things”
(Fleisch and Mattern, 2005) where millions of devices will be interconnected,
provide and consume information available on the network and cooperate, new
capabilities as well as challenges come into play. As these devices need to inter-



15 Factory of the Future 461

operate and collaborate pursuing common production management and control
goals (Colombo and Harrison, 2008), the service-oriented approach seems a prom-
ising solution, i.e. each device offers its functionality as a service, while in parallel
it is possible for it to discover and invoke new functionality from other services
on-demand.

The future factory should be seen as a system of systems (Jamshidi, 2008),
where complex and dynamic systems interact with each other in order to achieve
the goals at system-wide but also at local level. To realize this, timely monitoring
and control as well as open communication and collaboration in a cross-layer fash-
ion are key issues (Figure 15.1). Modern approaches such as the service-oriented-
architecture (SOA) paradigm when applied holistically can lead to the desired re-
sult. By considering the set of intelligent system units as a conglomerate of dis-
tributed, autonomous, intelligent, proactive, fault-tolerant and reusable units,
which act as a set of cooperating entities, a new dynamic infrastructure, a system
of systems that is able to provide a better insight to its components to the higher
levels and better react to dynamic business changes, can be realized.

15.2 The Emergence of Cooperating Objects

The rapid advances in computational and communication parts in embedded sys-
tem, is paving the way towards highly sophisticated networked devices that will
be able to carry out a variety of tasks not in a standalone mode as usually done to-
day, but taking into full account dynamic and context specific information. These
“objects” will be able to cooperate, share information, act as part of communities
and generally be active elements of a system.

Cooperating objects (COBS) is an emerging domain (Marron et al., 2009) with
strong roots in (i) ubiquitous computing, (ii) embedded systems and (iii) wireless
sensor networks. They possess features attributed to all three aforementioned do-
mains, in order to allow their cooperative behaviour to emerge.

Generally COBS possess the ability and possibly the willingness to work or act
together; however, their cooperation can be intentional or unintentional. Inten-
tional cooperation can be forced (rare) or voluntary (the usual case). In a system
view, COBS have goals and work together because of one or more common (even
partially common) goals or means to achieve the end-goals. Single COBS are
parts of teams; as such cooperative behaviour may be shown at higher level, e.g.,
group level, and not be clearly identifiable at object level.

The COBS are physical objects and should have the means to cooperate. This
assumes:

e networking capabilities — communication;
¢ interaction with other objects, including heterogencous ones; and
e autonomous behaviour.



462 A.-W. Colombo et al.

AN

Business Process supported by a cross-layerservice

Indirect access to e !
(web service enabled)  ~ ! [N

devicesvia middleware Voo

LN N Directaccess to
* webservice enabled
\ A » devices

Crossdayer SOA Collaboration
(Internetof Services)

M&

Cross-Domain Heterogeneous Device Collaboration

(internet of Things)

<

Fig. 15.2 The envisioned cross-layer SOA-based vertical and horizontal collaboration

There are several flavours of COBS. Advanced COBS can process the context
of cooperation intentionally, act on it and intentionally extend it, change it or stop
it. As such COBS may possess logic to understand semantics and build complex
behaviours. This eventually means that they can be part of dynamic complex eco-
systems. Of course a cooperating object is governed by its internal rules and con-
strained by its resources; however, its behaviour is the result of a negotiation and
potential benefit yield with respect to the external collaboration.

In our work within the SOCRADES project (www.socrades.eu), we have fo-
cused on some of the characteristics on COBS, i.e., automation devices for the fu-
ture factory that have the envisioned capabilities to support web services (WS) on
devices. As such their functionality is depicted as a service that can be used by
other entities and eventually be part of complex orchestrations. As depicted in
Figure 15.2 this will enable cross-layer collaboration not only at horizontal levels
e.g., among cooperating devices but also at vertical level between systems located
at different levels of a computer-integrated manufacturing or plant-wide system
enterprise architecture (Pfadenhauer et al., 2006; PERA, 2006; Namur, 2007). Fo-
cusing on collaboration and taking advantage of the capabilities of cooperating ob-
jects poses a challenging but also very promising change on the way future facto-
ries will operate, as well as to the way we design software and model their
interactions.



15 Factory of the Future 463

15.3 The Cross-layer Service-oriented-architecture-driven Shop
Floor

The key issue for achieving business continuity and realize future factories that
can promptly respond to dynamic situations is the strong collaboration of the
shop-floor system with enterprise and engineering systems. In order to achieve
that we have to make sure that an open infrastructure (Figure 15.3) will enable the
exchange of information, exposed and able to be consumed as services, and allow
also the integration of legacy or isolated sub-systems.

The SOA applicability in industrial automation (Jammes and Smit, 2005) and
the collaborative automation system as part of the collaborative manufacturing
management (Gorbach and Nick, 2002; Nick and Polsonetti, 2003) are comple-
mentary paradigms that result from a multidisciplinary activity, including scien-
tific and technological areas like knowledge management, production control en-
gineering, information and communication technologies, etc. (Kennedy et al.,
2008; Candido et al., 2009). In order to realize SOA and collaborative systems,
three main activities have to be performed:

Engineering

WS: Service capability e.g. DPWS, OPC-UA
Device: Motor, Valve, Conveyor, robot, sensor etc. Wireless
Service Mediator / Gateway: Industrial PC, Sensor /

dedicated device etc.

Actuator Resource
Network Devices

Fig. 15.3 A shop-floor seen as a cross-layer SOA-based system composed of devices, gateways,
tools, engineering systems, and enterprise systems

o Identification of the cooperating entities (systems): the identification of the col-
laborative automation units that are able to expose and/or consume services, for
each production scenario in a defined production domain, e.g., electronics as-
sembly, manufacturing, continuous process, etc. A collaborative unit can be a
simple intelligent sensor or a part/component of a modular machine, a whole
machine and also a complete production system.



464 A.-W. Colombo et al.

e Building the system of systems: networking/bringing the entities together
within an SOA or collaborative infrastructure, i.c., putting the units architectur-
ally together.

e Making the system work for reaching the production goal: collaborative behav-
iour of the systems for reaching common objectives, i.c., control objectives,
production specifications, markets objectives, etc.

The main technical direction is to create a service-oriented ecosystem (SOA-based
ecosystem): networked systems that are composed of smart embedded devices in-
teracting with physical, engineering and organizational environments, pursuing
well-defined system goals. Taking the granularity of intelligence to the device
level allows intelligent behaviour to be obtained on the shop-floor of a factory by
composing, aggregating and then orchestrating services offered by configurations
of automation devices, engineering systems and enterprise resource planning
(ERP). All these systems offer their functions as services (e.g., WS) and are able
to introduce incremental fractions of the whole intelligence required for the flexi-
ble and agile behaviour of the whole system, within the enterprise/intra- and or in-
ter-enterprise architecture (Figure15.3).

A key idea of the future SOA-based factory is to enable the participation of all
factory entities including the legacy devices in the envisioned infrastructure. As of
course not all devices will be able to participate, the concept of gateways and ser-
vice mediators (Figurel5.4) that tackle this issue has been developed (Karnouskos

//\/

Dynamic Discovery of Services & PZP Commu nlcatlon

ke
wain

ke
2DAIBS g

S
g o % 2 TR h 33
2 3 U\% 8 AN W g:é&
LHO e = .. LY
(B Hn | \E! § =]
(L) b L 2

J1akeq
a3inosay

%4“---_-_

r RS-
I el j
| -
LN
(S A uou)

;

Fig. 15.4 Legacy device integration: gateway and service mediator concepts



15 Factory of the Future 465

A gateway is a device that controls a set of lower-level non-service-enabled
devices, each of which is exposed by the gateway as a service-enabled device.
This approach allows one to gradually replace limited-resource devices or legacy
devices by natively WS-enabled devices without impacting the applications using
these devices. This is possible since the same WS interface is offered this time by
the WS-enabled device and not by the gateway. This approach is used when each
of the controlled devices needs to be known and addressed individually by higher-
level services or applications.

The service mediator not only aggregates various services but possibly also
computes/processes the data it acquires before exposing it as a service. Service
mediators aggregate manage and eventually represent services based on some se-
mantics (e.g., using ontology’s). In our case the service mediator could be used to
aggregate various non-WS-enabled devices. This way, higher-level applications
could communicate with service mediators offering WS, instead of communicat-
ing with devices with proprietary interfaces.

The holistic cross-layer SOA approach favours adaptability and rapid (produc-
tion real-time conditions) reconfigurability, as re-programming of large mono-
lithic systems is replaced by reconfiguring loosely coupled embedded units, across
the complete enterprise. From a functional perspective, the main technological
challenge is on managing the vastly increased number of intelligent devices and
systems and mastering the associated complexity that emerges from the architec-
tural and behavioural specifications of the factory shop-floor. In this sense, from a
run-time infrastructure viewpoint, the shop-floor is now considered as a heteroge-
neous set of a new breed of very flexible real-time embedded devices
(wired/wireless) that are fault-tolerant, reconfigurable, safe and secure, and that
are exposing their functionality as a set of WS. Auto-configuration management is
then addressed through basic plug-in, plug-and-work/run and plug-out mecha-
nisms. This functional perspective must be applied to several types of devices,
used in automation systems, automotive electronics, telecommunications equip-
ment, building controls, home automation, telemetry, medical instrumentation, etc.

15.4 Dynamic Reconfiguration of a Service-oriented-
architecture-based Collaborative Shop Floor

Dynamic reconfiguration of the shop-floor can be achieved by applying the con-
cepts we introduced in engineering and operation of collaborative automation and
production systems (Gorbach and Nick, 2002) composed of distributed, recon-
figurable and collaborative service-oriented devices integrated in a cross-layer
service-oriented enterprise architecture.



466 A.-W. Colombo et al.

15.4.1 Methodology

The methodology we follow explains the autonomous behaviour of systems com-
posed of service-oriented devices at the shop-floor, able to interact with the infor-
mation technology (IT) enterprise systems. The resulting engineering approach
permits after initial setup the automatic operation of the device and interaction to
other devices and to upper IT levels of an enterprise based on, e.g., MES (manu-
facturing execution system)/ ERP and DMS (decision-making system).

At shop-floor level, the devices have a degree of autonomy in the sense of auto-
sustainable control and necessary services to permit lateral collaboration with
other devices, requesting/providing decision information from MES/ERP/DMS
and integration. All interactions and resource sharing are via service orientation.
There is a lose-coupling inheritance in form of bottom-up perspective (from the
devices/shop-floor level), enhancing the autonomy and consequent reconfiguration
capabilities.

The orchestration is described and implemented by a dynamic model-based
component called the orchestrator and is supported by routines to handle undocu-
mented events and decide over present conflict situations that arise due to shared
resources, competition and concurrent relationships among the devices, as well as
the occurrence of unexpected failures, errors, etc.

It is important to recall here that the operational behaviour of the devices is
self-controlled and guided by internal/external events that also may correspond to
service calls. Several procedures are defined for the operation behaviour life cycle
of these components (see Figure 15.5):

DMS
Provide support Need external support?
information ‘ Need reconfiguration? Upper level
Test Event Shop floor
%
: Receive Event - Synchronize service activities

Initial Setup & Evolve System - Read/Write 1/0’s
Reconfiguration \\\‘ - Update control model

Needs reconfiguration

" Lateral
collaboration

Lateral S——————————
collaboration Service-oriented Device
Fig.15.5 Concept of the independent behaviour of autonomous service-oriented de-
vices/components



15 Factory of the Future 467

o Initial setup of the device, including configuration, establishment of connec-
tions to other devices/components and putting in a waiting state.

e Events are received via service operations, internal device interface to in-
put/output (I/O) and generated directly by the control (e.g. from conflicts).

e The received event must be tested:

— If it corresponds to some description of the control model's actual state,
then the system is evolved by updating the control model, synchronizing
service activities (e.g. interaction with other devices), read/write to I/O and
other related tasks.

— In the case of an exception, undocumented event or an internal conflict,
some decision is required. If the device has the necessary information to
resolve it, special procedures are taken to interfere in the normal system's
control and new events are generated. In the case of not having sufficient
control over the event, it may ask for external support (e.g., DMS) to pro-
vide more useful information for a concrete decision over the problem.

o After processing the event and evolving the system it is able to receive other
events.

e Some events and consequent decisions may result in the requirement of recon-
figuration of the control model and other parameters. In this situation, the de-
vice should be setup considering the new situation. Note: the reconfiguration
time does disable the device, but does not imply the inability of other compo-
nents/devices to operate (except on heavy dependence).

The application of this method results on autonomous devices that are self-
controlled and have less dependency on other components, especially from the
upper levels such the DMS. In short, the features of these devices are:

e service orientation;
e autonomous control and consequent behaviour;
e cvent-based life cycle.

The orchestration (control) of the lifter is defined in a high-level petri net (HLPN)
model that shows the global behaviour in the different operation modes (Figure
15.6) exposed as “Services”. Please note that for simplification, only one pallet at
a time may occupy the lifter. The blue-colored and larger transitions mean a com-
plex operation (such as a service call) and can be detailed to provide a more in-
depth look at the control. They represent the necessary steps to do, e.g., a top-left-
transfer-in operation by reading/writing to corresponding I/O and synchronizing
the service activity (e.g. a conveyor requests the service). The activation of this
transition is done when the lifter is available and when a conveyor asks for the
service or a sensor did detect a pallet. Other situations that are not documented can
also be handled and need special procedures, as referenced previously. Transfer-
out operations (such as the top-right-transfer-out transition) should be done
synchronously with connected transfer devices (e.g., conveyor) to be able to
provide a smooth transitional movement of the pallet from one device to another
one. This requires that the lifter request a transfer in service of the connected
conveyor.



468 A.-W. Colombo et al.

A0 i
4 top-left-transfer-out - Conflict 1 top-right-transfer-in
o=~ —) I~
R s b
top-left-transfer-in '(—‘ top-right-transfer-out
1
J- Lift-up
! Conflict 2

Lift-down
12
[I_(),,”_()..I 4:”:(?',_.
. —u
bottom-left-transfer-out -right- -
1" ottom-left-transfer-ou Conflict 3 bottom-right-transfer-in
bottom-left-transfer-in bottom-right-transfer-out

Fig. 15.6 HLPN model of the behaviour of a dynamic orchestrator for the lifter of Figure 15.5

15.4.2 Example

The methodology is applied to a mechatronics device corresponding to a lifter
with two levels and four different ports where pallets can be inputted and output-
ted. These ports should be used to connect to other devices, such as conveyors, but
can be triggered manually by placing a pallet in the lifter (since a sensor detects
it). Figure 15.7 shows a representation of the lifter with all possible predicted
operation modes (that correspond to the paths that a pallet may take).

Paths/operational modes:

n-=01 13->07
=02 13->08
11-=03 13->09
12->04 14->010
1205 14->011
13->06 4->012

012

Fig. 15.7 Production device (lifter) with 12 operational modes to be exposed as services



15 Factory of the Future 469

After the initial setup and configuration of the device with the control model
and additional routines, the device is available and waiting for events. For exam-
ple, a connected conveyor is requesting the bottom-left-transfer-in service. In this
case, and since it is a documented event in the control model, the device proceeds
to evolve the system by running the HLPN model and taking the related actions.
After the bottom-left-transfer-in is successfully concluded, the system has to con-
front an exceptional event that is thrown up by a conflict in the model (namely,
conflict 2). If it does not have the necessary information to decide, it must call
specialized components to help in the procedure. As depicted in Figure 15.5, DMS
are used for this purpose. The lifter sends a request for support to the DMS, in-
cluding supporting information (the ID of the pallet and possible outputs: lift-up
and bottom-right-transfer-out). Based on the workflow of the pallet, a decision is
returned in the form of an event to the lifter and now it should be able to resolve to
conflict and evolve the system. For example, the lifter receives the suggestion to
do a lift-up from the DMS, so it may proceed to do a lift-up. In any case, the final
decision is up to the lifter that considers the received suggestion, but may operate
differently in the case of internal situations (e.g. occupation of the lifter and/or
connected conveyors).

The following topics summarize the initial advantages of the proposed ap-
proach:

e autonomous supervisory control and support for individual device reconfigura-
tion without affecting whole system behaviour;

e integration into IT-enterprise and lateral collaboration among devices due to
service orientation.

15.5 Analysis Behind the Engineering Methods and Tools

15.5.1 Applying Functional Analysis to Validate Service
Composition Paths in High-level Petri-net-based Orchestration
Models

Given a factory layout, its structure and predicted behaviour are modelled using
HLPNs. A bottom-up approach is used, which consists in:

1. Modelling the behaviour of resources hardware (HW) mechatronics like robots,
machines, transport components, etc. The models represent all possible discrete
states of such a resource and also all manufacturing functions that this resource
is able to expose as services, e.g., move-piece, pick-part, transfer-pallet, etc.

— Remark 1: the modelling approach generates a set of a resource’s discrete
states that fulfil basic properties like boundedness, conservativeness, etc.
(Silva and Valette, 1989; Feldmann and Colombo, 1998).



470 A.-W. Colombo et al.

— Remark 2: The modelling approach generates a set of a resource’s exposed
services that fulfil basic properties like repetitiveness, liveness, etc.

2. The models of resources are composed into a “coordination model”. At this
point, it is possible to speak about a behavioural model of the SOA system,
which represents the set of services that are correlated and able to be orches-
trated and composed/coordinated following the layout and also the production
specifications of the production system.

This task follows the same rules of configuring a required HW layout, i.e., tak-

ing into account competition, concurrency and shared resources behavioural re-

lationships, among others. The result is an HLPN model of the whole factory.

3. Due to the strong mathematical background that is behind the Petri net theory,
the models can formally be analyzed (Memmi and Rucairol, 1979; Murata,
1989)

Co-related discrete states of composed resources belong to, at least, one
state-invariant. The set of “state-invariants” and their linear compositions
represents all possible configurations of HW resources that are able to ex-
pose a service.

—  Co-related exposed services belong to, at least, one service-invariant. The
set of “service-invariants” and their linear compositions represents all pos-
sible “service orchestrations paths” that the whole system is able to expose.

4. The coordination model structure represents the kernel of an SOA component
identified here as model-based dynamic orchestrator.

5. When the model-based orchestrator is interacting in real-time production condi-
tions with the HW devices, interaction based on the exchange of events and
“exposition/calling” services, many known “intelligent supervisory control and
automation functions” like model-based monitoring, diagnosis, maintenance
control, are intrinsically supported and performed. Note: the application of
Petri nets to perform monitoring of flexible production systems has been ad-
dressed by (Silva and Valette, 1989; Feldmann and Colombo, 1998 and the ref-
erences therein). One of the major references to model-based monitoring sys-
tems and applications is Du et al. (1995).

The intrinsically contained information about a resource’s states, exposed
services, controlled manufacturing process, etc. that is contained in the
HLPN model can be classified/recognized as model-based monitoring in-
dexes.

—  The model-based monitoring indexes can/must also be exposed as services.

—  The model-based monitoring services will be used to enhance the feature-
based monitoring indexes that are exposed as services by the devices. Fea-
ture-based monitoring indexes refer to sensor signals, device parameters
like motor velocity, electrical intensity, etc.

6. Having the minimal set of state- and service-invariants, the dynamic orchestra-
tion that can be performed by the HLPN-based orchestrator will consist in gen-
erating and exposing different compositions of those invariants.

—  Each composition is an orchestration path, allowed by the modelled sys-
tem.



15 Factory of the Future 471

— Each composition will be done by weighting the individual atomic ser-
vices. It is basically a composition of services invariants done according to
pre-conditions required to automate the behaviour of the system, i.e.,
minimal energy-consumption service path, faster throughput service path,
etc.

7. Since the system (e.g., resources and factory) and their HLPN model are
mathematical (algebraic) vectorial fields (both are dual fields), the service or-
chestration is respecting all rules that such vectorial spaces have, under the laws
of functional analysis (Kreyszig, 1989). Figure 15.8 shows a simplified exam-
ple.

—  There is an isomorphism between the “composition of service-invariants”
coming from the processing/analysis of the HLPN model and the “compo-
sition of services” exposed by the resources/factory.

—  The cardinality of the state and service spaces of the real production envi-
ronment is the same as the places and transitions of the HLPN model.

Service Exposed: Lift
Service: Move-out from Lift

Service Exposed:

Composition/Orchestration of Services
exposed by the Lift and Transport-Band
Service: Transfer from Lift to Transport-Band

Service Exposed: Transport-Band

Service: Move-into Transport-band
Service Exposed: Gripper

Service: Pick a Part

Service Exposed: Composition/Orchestration
of services exposed by the Gripper and Robot
Service: Pick and Place a Part

Service Exposed: Robot
Service: Place

Fig. 15.8 Orchestration of services formally expressed as vectorial composition

8. The different HLPN models have to be analysed, before they can be used in the
different phases of the life cycle of the SOA-based system. With the results of
this analysis, a formal validation of the specification of the SOA-based archi-
tecture, structural and behavioural specifications, is performed. If and only if
the basic properties of the modelled system are proved, the model can be used
as the logic structure of the orchestration of services. Remark: as a matter of
fact, and as an example of the high value of this analysis, only if each transition
of the HLPN model belongs to at least one transition-flow/invariant, will the
corresponding service at some moment be able to be exposed and/or called in
the system. In a similar way of thinking, many other relationships will be vali-
dated. Figure 15.9 shows a screen-shot of the HLPN-analysis software devel-
oped in the project SOCRADES.



472 A.-W. Colombo et al.

T saETH

Fig. 15.9 PNDK tool to analyse the HLPN models of an SOA-based shop-floor

15.5.2 Example

1. The lifter depicted in Figure 15.7 possesses 12 operation modes.

2. Each operation mode is exposed as a service, which is the composition of
atomic services.

3. Each operation mode corresponds to a transition-flow/transition-invariant or
service-invariant in the HLPN model depicted in Figure 15.6.

4. The model-based orchestrator is able to expose three possible conflicts situa-
tion, i.e., states that are shared by different orchestration paths. In the language
of HLPN models, the situation is recognized as “conflict” between two or more
concurrently enabled transitions or transition-firing modes, as shown in Figure
15.10.

5. When the lifter is working, services are called according to an orchestrated ser-
vice-based production path.

—  From control point of view, each time a service is called, it happens by the
firing of a transition of the HLPN model (e.g., top-right-transfer-out in
Figure 15.6).

— A path is performed by following a precise mathematically well-defined
service-invariant in the HLPN model.

—  Due to the composibility rule expressed above, at any time in an asynchro-
nous manner (better to say, at any discrete state of the system) it is possible
to take the decision for changing the next service. That is, the system fol-
lows the originally orchestrated path calling the next service of the path, or
it decides to change to another service that is part of one of the minimal
service-invariants that have originated the “composed path”.

— In Figure 15.6, after the system starts performing I1, after finishing the
“I1-Service” and when the Petri net marking is ready to call the service



15 Factory of the Future 473

<Transfer-Up>, the service represented by O2 is no longer more exposed,
e.g., blocked/failed, or the system has to change strategy due to some ex-
ternal conditions. The system offers the possibility to change the sequence
initially orchestrated. There are three services that can follow the 11, one is
02 (out of the question), the other two are O1 and O3.

—  Following the behaviour of the HLPN-based model-based orchestrator de-
picted in Figure 15.6, after the service <Botom-Left-Transfer-In> was exe-
cuted, the conflict 3 is exposed. For the lifter, it is possible to continue
with (<Lifter-Up> + <Top-right-transfer-out>) or (<Lifter-Up> + <Top-
Left-Transfer-Out>) or <Botom-Right-Transfer-Out>), nevertheless, the
first one according to (f.) is no longer exposed.

— The conflict situation exposed as a service in Figure 15.10 needs to be
solved. The solution, i.e., the selection of the possible next-called service
can be modelled in a static manner or left to an external SOA component
that in the SOCRADES project has been called DMS, as depicted in Figure
15.5. Basically, the action of the DMS should be the selection of the HLPN
transition or transition-firing mode that has to be fired in the next event
(from the set of them that are enabled).

—  This selection corresponds to a dynamic change of T-flows and it is what
is called here dynamic orchestration.

%1 Lift-up

- Pallet is available
- Lifter is busy
- Call to DMS service

Conflict 3

bottom-left-transfer-in bottom-right-transfer-out

=

11
e Mechatronic transport device offers transport functions

e Operations are exposed as Web Service (Transfer Interface)
- TransferIn (int p), TransferOut (int p), TransferStop (), Transfer Completed (Pallet, p), GetStatus (Status s), ...

e Device offers additionally DPWS standard plug’n play functions for description and
discovery of Device/Transfer Service

Fig. 15.10 Conflict behaviour processing by the dynamic orchestrator for the lifter of Figure 15.7

6. From control and monitoring viewpoints, the call of a service/firing of a transi-
tion is one step (service) of an orchestration path, i.e., it is possible to immedi-



474 A.-W. Colombo et al.

ately know how many and which are the remaining steps (services) that can be
called as next in the current path and also in alternative paths.

7. At any state of the system (represented by the current marking of the HLPN),
past, current and future discrete states of resources (individual or composed
services) are known and ready to be used for monitoring and other supervisory
control functions.

15.6 A Service-oriented-architecture-based Collaborative
Production Management and Control System Engineering
Application

The approach for creating complex, flexible and reconfigurable production sys-
tems is that these systems are composed of modular, reusable and collaborative
components that expose their production capabilities as a set of services. This
composition approach applies to most levels of the factory floor, where simple de-
vices compose complex devices or machines, which in turn are composed to build
cells or lines of a production system and so on (see Figure 15.11).

Workstation = T = I’ = 1
1 MDUW ,‘ MDST | MDSC ‘ [ MDST |,
1 ]
- E S S NS S S ES S ESES S SE=N Lif
. i ! ) ) I ter
Lifter Iy Mpst l [ MDSC ‘ [ MDST |, | apuL
MDUL P | I ) I ) E— 1
1 Upper line :
PPy g -
MainLine 1 | MDST mpsT ) !
MDUW g i )
N Lowerrevenelme T
Mainstation Il vost MDSC MDST |!
MDUW —— :‘ .
S@CRADES.EU ) Woekstatian 1
» A bly Cell is d from

« 2x Assembly workstation (3 units)

« 1xMainline (5 units)

» 2x End/Start Lifter

» 2x Product carrier

e 4x OSITrack readers + Modbus Gateway
# Flexible material flow
# Conflicting points at crossings

Fig. 15.11 A modular, reconfigurable shop-floor

The same applies to the concept of service-oriented production systems, where
the shop-floor components expose their production capabilities as a set of services.
Figure 15.12 shows the same layout of Figure 15.11 but identifying the shop-floor
components by their “service exposition”. Moreover, some of the shop-floor com-



15 Factory of the Future 475

ponents are also able to expose complex services built by composing and/or or-
chestrating simpler services, using their collaborative behaviour.

Orchestration and link to DSS (] % Seqiuestu
= Orchestration Service

0 Create, Delete, getNextService 2 Y M)

O Dynamic Interfaces for exposing new Services

and interacting with composed Services

Services of Mechtronic devices MI ‘ﬂ‘ [ﬁ'
= Transfer Service "

o Transferin, TransferOut
= Lifting Service

o LiftUp, LiftDown
= RFID Reader Service

Services of Software components (PC-based)
= Production Service
O StartProduction,
= ProductionExecution Service :
O getNextService, getDetails,. . i
= OrderEntry Service :
o Start, Yield, newCOrder,

Fig. 15.12 A service-oriented view of a shop-floor

Based on the requirements of both physical hardware and the SOCRADES pro-
ject, it was decided that the basic building blocks that compose the distributed sys-
tem should be configurable software components assuming different tasks. There-
fore, the software components were designated as “bots” (that have a so-called
“orchestration engine” embedded inside) and are able (in a service-oriented fash-
ion) to coordinate their activity and proceed also to collaboration processes with
other components in the system. To design, configure and maintain bots, there is a
need of specific tools that are user-friendly and speed-up the development, using a
high-level programming approach (visual languages). These tools are addressed
here under the name “Continuum”as depicted in Figure 15.13 (Mendes et al.,
2009).

Since services aren’t isolated entities exposed by the intervenient software
components, there should be some kind of logic that is responsible for the interac-
tion. The modelling language of choice derives from Petri net specifications i.e.,
HLPN, with high-level extensions, such as time considerations, property system
and customizable token game engine. The extensible property mechanism of the
HLPN is used as the interface for the configuration of Web service related proper-
ties.

Following the approach and structure shown in Figure 15.5, additional re-
quirements are the use of decision support system (DSS) and DMS (Leitao et al.,
2008) that are able to provide the correct information each time there are decision
points in the executed Petri net model. This DSS is the main interface between the
model-based approach for the shop-floor system and the production planning sys-
tem.



476

e Contmuum Development Studio (Editor) |

Deployment
(Cenfiguration XML)

Orchestration

S Design >> Deployment >> Execution

Fig.15.13 Petri-net-based orchestration tools and engineering continuum.

Network

A.-W. Colombo et al.

Running Continuum
Automation Botand
DPWS Stack

gontﬁ@m

Automation Device
(Smart 1'0)

Once the models are specified for the mechatronic components or even bigger
systems by the Petri net designer, tools are needed for composing systems, creat-
ing configuration files and deploying those files to simulators or even embedding
the engines and files into real smart automation and control devices. Figure 15.14
shows the case of embedding the orchestration engines and deploying the orches-
tration models to smart I/O devices (Advantys STB from Schneider Electric).

/_,_\/““\/_ ¥
Smart VO Davice
(Advantys STB)

Running Continuum

Automation Bot and

DPWS Stack

With Embedded PN

Orchestration Engine

and IEC 1131 Engine

\_.__)\
@ 3 x Advantys STB

with embedded PN englne
for device-level,

distributed Service Orchestration

13 x Advantys STB

with embedded IEC engine
for device-level, 10 control
and Services

= 4 x OSITrack RFID Reader

for reading pallet-ids

Fig. 15.14 A shop-floor system composed of a distributed control system exposing their produc-

tion control and management functionalities as services



15 Factory of the Future 477

The final result of this engineering phase allows to see the same original ser-
vice-oriented shop-floor depicted in Figurel5.11 as presented in Figure 15.14.
That is, a complex flat distributed automation system composed of a set of smart
control devices shown in Figure 15.13 wrapping the mechatronics systems with
their service view of Figure 15.12.

In order to show the gain in flexibility using SOA, the application was en-
hanced by performing a change in the production order from the ERP system, di-
rectly on the shop-floor (see Figure 15.15).

1 Continuum Tool chain

SAP
2. Deployment to Automation controller with embedded PN Engine SIA
3. Execution of the models
= Pallet move along the Mainline j,

4. Production Order sent to Seligenstadt Pilot
remotely by SAP via LDU / OrderEntry ==

Continuum

Order entry

5 Decision needed at Cross units
< |Is there a Production Order
in the Database?

Production
Execution

Decision Support]

v

[

< Product needs known }{| i Orchestration []
by Production Execution . Engin ]
< Status reported
to SAP

l Servicel ‘ Service | ‘ Service ‘ | Service ‘ {.
b
d

Fig. 15.15 Production execution based on collaboration with enterprise systems and local ser-
vices

Additionally only minimal assumptions about the concrete production line are
present in the whole system design. The detailed production steps are stored in the
production execution system, which is integrated in between of the Petri-net-based
decision support module related to the smart devices and the ERP. The production
order system is dynamically discovered and registers new orders in the ERP using
the local discovery unit (LDU) of the SOCRADES integration architecture (SIA),
further details of which are provided in Spiess et al. (2009).

Finally, it was possible to demonstrate the flexible integration and collaboration
based on the idea of having a multi-site service-oriented enterprise in which the
assembly of electromechanical components is performed in two geographically
distributed assembly systems (both of them are similar to the system depicted in
Figure 15.11) and production orders could be allocated to different sites. This al-
location/re-allocation is done as an evaluation result of the best production facility
available at the moment when a production request is made, or when — due to ex-
ternal factors — the production should be shifted to a different location.



478 A.-W. Colombo et al.

The idea, as shown in Figure 15.16, is that similar production facilities are
available in remote locations (e.g. Schneider Electric in Germany or Tampere in
Finland). The prototypes developed and hosted in Tampere (TUT) and Seligen-
stadt (Schneider Electric) represent two different companies that are linked with
business relations. These companies are “interconnected” via the Enterprise Ap-
plications that are hosted in Walldorf (SAP).

— SIA Architecture

Network 5@ . (Enterprise Integration)
Enterprise L] Ll:
Services Sia
OOO Server fr
SAP (DE) === |
=r=a
B
Enterprise to | g—— i
shop-floor (=) &
]nmrmt Communication /-:._-n—-.

-

Local Network

Event

LDU Lou

Subscription - Event
a3 Subscription g

TUT (FI) SchneiderElectric (DE)

Fig. 15.16 Cross-company collaborative production based on the SOCRADES integration archi-
tecture

Both facilities provide electromechanical assembly capabilities using
SOCRADES architecture; this means that the components of the production sys-
tems in these locations are abstracted and perceived externally as WS. At local
level, each one of the facilities acts independently and can coordinate its service-
enabled production system by using the SOCRADES tools. At global level, both
facilities connect to a service-enabled ERP module provided by SAP, which is
used for coordinating the production in the remote locations.

A network application (named LDU) is downloaded and this immediately pro-
vides discovery of devices and services (via the device profile for web services-
DPWS) on the local network and connection to the backend system (the SIA). Dif-
ferent versions of the LDU can add-up functionalities, e.g., proxy also specific en-
terprise services at the local shop-floor, where they can be discovered and used by
the devices and other services. LDUs provide a means for connecting and manag-
ing devices from different premises, without needing virtual private network con-
nections to SAP premises.



15 Factory of the Future 479

The LDUs can discover local services and can interact directly with production
execution systems exposed as WS. This is a typical example of hosted functional-
ity on a network server at the provider side, where business services are being im-
plemented/updated and the remote sites (Tampere/Seligenstadt) can interact over
the network, with only minimal installations at their side (in order to interact with
the business services). In this specific case, the software that interconnects each
site is downloaded on the fly over the network.

The different sites involved are collaborating between them via interactions
that previously were not possible or would require significant implementation ef-
forts. As can be seen, this is an event-based approach where all sites are notified
about the necessary status of the production in the other side, and where the enter-
prise systems have full visibility on the production and can re-arrange orders in
order to meet business goals.

15.7 Conclusions and Future Work

The future factory should be seen as a system composed of modular, dynamic re-
configurable and service-oriented collaborative systems. Complex and dynamic
mechatronics, control, communication and IT systems interact with each other, in
a service-oriented manner, in order to achieve the goals at system-wide but also at
local level (Kennedy et al., 2008; Colombo and Karnouskos, 2009). To realize
this, timely monitoring and control as well as open communication and collabora-
tion in a cross-layer fashion are key issues.

Modern approaches such as the SOA paradigm when applied holistically can
lead to the desired result. By considering the set of intelligent system units as a
conglomerate of distributed, autonomous, intelligent, pro-active, fault-tolerant and
reusable units, which operate as a set of cooperating entities, a new dynamic infra-
structure, a system of systems, that is able to provide a better insight to its compo-
nents to the higher levels and better react to dynamic business changes can be real-
ized.

This work presented an overview of the engineering approach, methods and
tools that have been specified and developed within the European Research and
Development project SOCRADES (www.socrades.eu) and shows the results of
the first set of successful applications in the area of elechtromechanical assembly
systems, extending the concepts to geographically distributed service-oriented
production sites.

Among many scientific and technological outlooks, an intensive study should
be performed in spreading the application of the service-oriented paradigm in pro-
duction control and management. This is having in mind that the roles of control
and automation technology developers, producers of production components and
IT systems is strongly influenced when all their products and solutions are to be
integrated into a system of systems viewed/wrapped as services. A possible view
could be that depicted in Figure 15.17.



480 A.-W. Colombo et al.

n Top-down
Product §
Orchestrator Product 9
- Orchestrator
/] feedbackd
\\ exposition of featurhd in form of servces /4
s i \ il iy R
\l‘m““ I-'I v‘“‘lm::on _-')‘,’I:all production @
\ \ \ ! servces g o
Integration with \ \ - ]
e\ ABBR VAN
e, ) Q
- T
4 &N : §
Integration of Shop floor Orchestrator =
SR and Integrator E_

Shop floor \ i orchestration 8, <
Imegrvonjevet ) _ D _ _@_'w-t_-m_\\_ SN z
Shop ficor level - . . -]

%" b i * 2
§ g § 5
8 2 2

2 2 2

& & &

8 s

S Device  Device S Factory Cell Bottom-up

Fig. 15.17 Cross-layer systems integration facilitated by the SOA approach

Having a production system built according to the SOA paradigm, it can be
seen as a conglomerate of distributed smart devices and systems able to interact at
shop-floor level (horizontal) and in a cross-layer fashion integrating IT systems of
the other levels of the enterprise architecture, a clear next step in a technology
roadmap and research and development agenda is the realization of supervisory
control, automation and production management functions as services.

Acknowledgements The authors would like to thank the European Commission and the part-
ners of the European FP6 project “Service-Oriented Cross-layer infRAstructure for Distributed
smart Embedded devices” (SOCRADES - www.socrades.eu) and the European FP7 project “Co-
operating Objects Network of Excellence” (CONET — www.cooperating-objects.eu), for their
support.

References

Candido G, Barata J, Colombo AW. et al. (2009) SOA in reconfigurable supply chains: a re-
search roadmap. Eng. Appl. Artif. Intell., 22(6):939-949

Colombo AW, Harrison R (2008) Modular and collaborative automation: achieving manufactur-
ing flexibility and reconfigurability. Int. J. Manuf. Tech. Magmt., 14(3/4):249-265



15 Factory of the Future 481

Colombo AW, S. Karnouskos (2009) Towards the factory of the future: A service-oriented cross-
layer infrastructure. In: ICT Shaping The World - A Scientific View, chapter 6, John Wiley
and Sons, UK

Du R, Elbestavi, Wu S (1995) Automated monitoring of manufacturing processes, Part 1: moni-
toring methods. J. Eng. Ind., 117:121-130

Feldmann K, Colombo AW (1998) Material flow and control sequence specification of flexible
production systems using coloured petri nets. Int. J. Adv. Manuf. Tech., 14(10):760-774

Fleisch E, Mattern F (2005) Das internet der dinge: ubiquitous computing und RFID in der pra-
xis: Visionen, technologien, anwendungen, Handlungsanleitungen, Springer

Gorbach G, Nick R (2002) Collaborative manufacturing management strategies. White paper,
ARC Advisory Group

Jammes F, Smit H. (2005) Service-oriented paradigms in industrial automation. IEEE Trans. on
Ind. Info., 1(1):62-70

Jamshidi M (2008) Systems of systems engineering: principles and applications. CRC Press

Karnouskos S, Baecker O, de Souza LMS et al. (2007) Integration of soa-ready networked em-
bedded devices in enterprise systems via a cross-layered web service infrastructure. In: Pro-
ceedings of the IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 293-300

Karnouskos S, Bangemann T, Diedrich C (2009) Integration of legacy devices in the future
SOA-based factory. In: Proceedings of the 13th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM'2009), Moscow, Russia

Kennedy P, Bapat V, Kurchina P (2008) In pursuit of the perfect plant. Evolved technologist,
ISBN 978-0978921866

Kreyszig E (1989) Introductory functional analysis with applications. Wiley and Sons

Leitdo P, Mendes JM, Colombo WC (2008) Decision support system in a service-oriented con-
trol architecture for industrial automation. In: Proceedings of the 13th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’08), pp. 1228-1235,
Hamburg, Germany, 15-18 Sep

Marron PJ, Karnouskos S, Minder D et al. (2009) Research roadmap on cooperating objects.
European communities, ISBN 978-92-79-12046-6

Memmi G, Roucairol G (1979) Linear algebra in net theory. Lect. Notes in Comp. Sci., 84:213—
223

Mendes JM, Bepperling A, Pinto J et al. (2009) Software methodologies for the engineering of
service-oriented industrial automation: The continuum project. In: Proceedings of the 33rd
Annual IEEE Computer Software and Applications Conf. (COMPSAC’09), Seattle, USA.
20-24 July

Murata T (1989) Petri nets: properties, analysis and applications. Proc. of the IEEE, 77(4):541—
580

Namur (2007)
http://www.namur.de/fileadmin/media/Pressespiegel/atp/atp_05 2007 _DIN_EN_62264.pdf

Nick R, Polsonetti C (2003) Collaborative automation: The platform for operational excellence.
White paper, ARC Advisory Group

PERA (2006) Purdue reference architecture
http://pera.net, http://iies.www.ecn.purdue.edu/IIES/PLAIC/

Pfadenhauer K, Kittl B, Dustdar S et al. (2006) Shop-floor information management and SOA.
Lect. Notes in Comp. Sci., 4103:237-248

Silva M, Valette R (1989) Petri nets and flexible manufacturing. Advances in Petri nets. Lect.
Not. In Comp. Sci., 424:374-417

Spiess P, Karnouskos S, Guinard D et al. (2009) SOA-based integration of the Internet of things
in enterprise services. In: Proceedings of the IEEE International Conference on Web Services
(ICWS09), Los Angeles, CA, USA, 6-10 July



	15. Factory of the Future: A Service-oriented System of Modular, Dynamic Reconfigurable and Collaborative Systems
	15.1 Introduction
	15.2 The Emergence of Cooperating Objects
	15.3 The Cross-layer Service-oriented-architecture-driven Shop Floor
	15.4 Dynamic Reconfiguration of a Service-oriented-architecture-based Collaborative Shop Floor
	15.4.1 Methodology
	15.4.2 Example

	15.5 Analysis Behind the Engineering Methods and Tools
	15.5.1 Applying Functional Analysis to Validate Service Composition Paths in High-level Petri-net-based Orchestration Models
	15.5.2 Example

	15.6 A Service-oriented-architecture-based Collaborative Production Management and Control System Engineering Application
	15.7 Conclusions and Future Work
	References




