
Using Multi-Agent Systems to Simulate Dynamic
Infrastructures Populated with Large Numbers of

Web Service Enabled Devices
Stamatis Karnouskos

SAP Research
Vincenz-Priessnitz-Str 1, D-76131, Karlsruhe, Germany

Email: stamatis.karnouskos@sap.com

Mian Mohammad Junaid Tariq
SAP Research

Vincenz-Priessnitz-Str 1, D-76131, Karlsruhe, Germany
Email: mian.mohammad.junaid.tariq@sap.com

Abstract—A common practice in enterprise environments is
the usage of Service Oriented Architectures (SOA) which implies
heavy usage of web services. Lately the trend is to extend these
approaches down to the embedded device layer i.e. have devices
running web services natively and offer their functionality as
a service. The Internet of Things (IoT) envisions millions of
such heterogeneous, usually mobile, devices communicating with
each other creating a very dynamic infrastructure. In this paper
we concentrate on our efforts to use a multi-agent system to
simulate this emerging dynamic infrastructure populated with
large number of web-service enabled devices.

I. INTRODUCTION

The last years we have witnessed two major trends with
respect to the device world. On the one hand hardware is
getting cheaper, smaller and more capable. According to the
Internet of Things vision (IoT), the majority of the devices
will have communication and computation capabilities, which
they will use to connect, interact and cooperate with their
surrounding environment. On the other hand, the software
industry is moving towards service-oriented approaches and
especially in the business world new complex applications are
based on the composition and collaboration of other services.
The Internet of Sevices vision (IoS) assumes this on a large
scale where services rely on different layers e.g. enterprise,
network, or even at item level. Web service enabled devices
glue IoT and IoS, by providing their functionality as a web
service, in an interoperable way that can be used by other
entities such as enterprise applications or even other devices.

The trend shows that in the future, a much more diversified
infrastructure will emerge, and the way we interact with it
will change significantly. As depicted in Fig. 1, a mash-up
of services will be created, that can be combined and used
in a cross-layer way. Enterprise applications will be able to
connect directly if needed to devices, without the use of
proprietary drivers, while non-web-service enabled devices can
still be attached and their functionality wrapped by gateways
or at middleware layer. Peer to peer communication among
the devices will push SOA concepts down to device layer
and create new opportunities for functionality discovery and
collaboration.

Fig. 1. A cross-layer web-service mashup

Web services are suitable and capable of running natively on
embedded devices, providing an interoperability layer and easy
coupling with other components in highly heterogeneous shop-
floors. Device Profile for Web Services (DPWS [7]) and OPC
UA [8] are emerging technologies for realizing web service
enabled controllers and devices. Several projects such as
SIRENA (www.sirena-itea.org), SODA (www.soda-itea.org)
and SOCRADES (www.socrades.eu) provide a platform to
develop a DPWS stack targeting the industrial automation
devices on the shop floor [1].

Integration of the devices on the functional level allows
us to focus on orchestrating services based on their role
in a process, and not the device per se. Devices can host
a variety of services needed to discover, understand their
functionality and integrate them. Collaboration is enhanced
among the entities which leads to the minimization of islands
of heterogeneous devices and boosts interoperability. However
the whole approach poses some significant challenges as
well. Understanding the semantics as well as evaluating them
against a specific context is needed while communicating in a
vertical way across different layers as well as in a horizontal



one on the same level.

II. SIMULATION REQUIREMENTS

Networked embedded devices offering their functionality in
a service oriented way e.g. via web services, are expected to be
mainstream in the mid-term. Several companies in automation
domain such as Beckhoff, Schneider Electric, Siemens, ABB
etc already have or plan to release in the near term devices
that feature web service access to their functionality (in the
simplest versions) and/or dynamically allow their existence
and services to be discovered and used. As envisioned in the
Internet of Things, the population of such devices could be
in a very bigger magnitude as the one most applications are
designed to interact with and handle today. Especially with
the introduction of IPv6 for devices such as the 6lowpan,
an application might be directly IP-connected to thousands
or millions of ubiquitous devices. This is also the vision of
the newly formed IPSO Alliance (www.ipso-alliance.org) that
promotes an IP network of smart objects. It is clear that scal-
ability as well as performance will be key issues, apart from
security, privacy and dependability. This new infrastructure
will need to be modelled and many applications will need to be
trialed out to see what implementation or design changes are
required. Traditionally Enterprise applications are heavyweight
(lightweight approaches usually running on embedded devices
are acting as proxies to the back-end systems) and not designed
to be scalable at the order of magnitude of services this
new infrastructure introduces. Considering also that Enterprise
applications evolve slower and need to go through extensive
checks related to their performance and reliability, we urgently
need a way to test them, identify the shortcuts and enhance
them in order to be able to take full advantage of the Internet
of Things.

To that extend some basic requirements arise:

A. Dynamic Discovery of Devices and Services

Web service devices will provide their functionality as a set
of one or more services. Although for static devices a static
reference would be enough, we focus on mobile devices that
are expected to be the majority of future web-service enabled
devices. As such it is important that these devices are discover-
able in a dynamic way by their neighbours. Furthermore their
services should also by dynamically discovered and used, as
we expect that they will change/adapt over time.

B. Roaming

A mobile device roams various networks, governed by dif-
ferent entities and depicting different capabilities/functionality.
First of all it should be possible to simulate this roaming
behaviour. We distinguish two cases here

• The device changes location but stays in the same do-
main/network segment

• The device changes location and domain/network seg-
ment

Of course these can be further broken down based on ad-
ditional criteria e.g. security aspects governing the different

network segments that the device roams, but this is out of the
scope of this paper. Additionally, it should be possible to track
the device and use its services in a transparent way while it
is on the move. This implies the need for a contact point that
can reliably offer information about the current location of a
device so that it can be used, or alternatively act as a mediator,
hiding the true location of the device but still make it possible
to interact with it.

C. Volatile devices

In a highly dynamic infrastructure devices may change
between online and offline status multiple times. This can
be a result of a device malfunctioning, a network break,
a denial of service attack, or simply part of the device’s
lifecycle management (e.g. to save energy). As an example a
wireless sensor node collecting temperature measurements has
a very weak and unstable link, eventually depicting a volatile
behaviour by being (randomly) online and offline. It should
be possible to simulate this behaviour.

D. Cooperation capabilities

The first generation efforts in the Internet of Things fo-
cuses simply on giving devices the ability to expose their
functionality in a service oriented way. However, subsequently
efforts will advance towards creating more complex behaviors
by composing cross-layered services and adopting cooperative
techniques. As such we will see swarms of devices cooperating
for common goals. The simulator should provide the capability
of creating such cooperation scenarios.

E. Heterogeneity

The Internet of Things envisions a highly heterogeneous in-
frastructure. As such the distinct aspects of each device should
be depicted also in the simulation, meaning that it should be
possible to create a wide variety of devices with respect to the
heterogeneity of them. Therefore any characteristics of a web
service enabled device should be simulatable.

F. Large scale

The Internet of Things foresees very large scale infras-
tructures, therefore any simulation effort should in theory be
scalable to accommodate large numbers of such devices. The
architectural design of the simulator should not put limits
on this, while of course the real boundaries with respect to
resources available on the hosting machine should be trialed.

G. Complex Devices Simulation

Although some devices may be pretty simple (e.g. a wireless
sensor node), some others are much more complex possibly
composed of hundreds of other smaller devices. It should be
possible to simulate highly complex physical devices as well
as be flexible and adaptable to changes that might occur in the
hardware or software of these devices. As such, the simulator
should allow easy extensibility of simulated devices to better
depict the reality or wished behaviour. These complex devices
can either be real or virtual e.g. composed of many others to
investigate their behaviour in a test setup.



H. Real and virtual data sources

The source of data reported by the simulated devices should
be configurable and possibly coming from

• Real data sources: We consider here the real physical
devices whose values are propagated in a timely manner
to the simulated device. The data can be used by the sim-
ulated device on an one-to-one basis or after computing
of them e.g. temperature values from -5°C to +40°C can
be normalized in the -60°C up to +80°C range.

• Virtual data sources: We consider here any virtual source
of data e.g. a stream of values stored in a database, an
algorithm generating the required etc.

I. Transparent device simulation

The simulated device should acquire the majority of the
characteristics of the device it simulates, effectively making
it almost impossible to distinguish from the original device,
at least for the simulated functionality. As such the simulated
infrastructure should be transparent to the simulator external
applications, meaning that the infrastructure hosting n devices
composed of r real and s simulated ones would act as a
composition of them. Of course looking closer at the device
specific info one could realise the interconnection between real
and simulated ones, however their behaviour should be as a
total indistinguishable of a similar infrastructure composed of
only real devices.

J. Self-* behaviour

In complex environments self-* features such as self-
configuration (automatic configuration of components), self-
healing (automatic discovery and correction of faults), self-
optimization (automatic monitoring and control of resources
to ensure the optimal functioning with respect to the defined
requirements) and self-protection (proactive identification and
protection from arbitrary attacks) are expected to exist. Being
able to integrate such capability in the simulated behaviour
will provide a more realistic macroscopic behaviour of the
whole infrastructure.

III. ADDRESSING THE SIMULATION REQUIREMENTS WITH
MULTI-AGENT SYSTEMS AND WEB SERVICES

To address the majority of requirements mentioned, we have
selected to use multi-agent systems i.e. the JADE platform [5],
and web services targeting the device world i.e. the Devices
Profile for Web Services (DPWS) [7].

Multi-agent systems (MAS) [4] are considered one of
the most important paradigms for conceptualizing, design-
ing, implementing and simulating software systems. They
support group behaviour of agents in dynamic situations,
and are capable of simulating systems with large number
of heterogeneous entities behaving differently. As such MAS
are suitable for evaluating distributed systems that involve
complex interaction between entities, e.g. humans, industrial
robots, smart devices. As agents are autonomous and operate
without human intervention MAS can model really complex

non-deterministic systems governed by common and possibly
even conflicting goals.

DPWS defines a minimal set of implementation con-
straints to enable secure Web Service messaging, discovery,
description, and eventing on resource-constrained devices.
DPWS builds on several core Web Services standards such as
WSDL 1.1, XML Schema, SOAP 1.2, WS-Addressing, WS-
Metadata Exchange, WS-Transfer, WS-Policy, WS-Security,
WS-Discovery and WS-Eventing. In Aug 2008, a new com-
mittee [10] was formed in OASIS to enable secure web service
discovery and control of networked devices, which in detail is
about standardisation of WS-Discovery, SOAP-over-UDP, and
DPWS. The main issues associated with DPWS and relevant
to our requirements are i) it runs on resource-constrained
devices, ii) allows dynamic discovery of devices and services
running on devices, and iii) developer implementations of it are
available as open source in Java and C (e.g. www.soa4d.org,
www.soa4d.org). A DPWS implementation (WSDAPI) is also
included by default in Microsoft Windows Vista and Windows
Embedded CE (Windows Communication Framework).

• Dynamic Discovery of Devices and Services: As DPWS-
enabled devices support WS-Discovery, any device using
DPWS can be discovered. Furthermore subscription to the
events generated is possible which gives us more capa-
bilities in simulating event-based infrastructures (which
are the most likely paradigm to dominate real world
environments e.g. industrial shop-floors).

• Roaming: As devices are connected to and controlled
by agents, we can use the mobility capabilities of the
agent system to simulate the movement of devices across
domains with the movement of agents among agent
systems.

• Volatile Devices: the agents can change the status of the
simulated services (e.g. start, stop etc) based on their
internal strategy, therefore effectively create the effect of
a volatile infrastructure.

• Cooperation Capabilities: Agent cooperation is one of
their characteristics that has been developed thoroughly
the last decades. Several social phenomena are already
modelled and simulated by agents. Furthermore due to
the variety of available tools such as the agent communi-
cation language (ACL), interoperability framework etc.,
it is easy to built on top and create more sophisticated
cooperation capabilities. Already defined semantics and
ontologies ease the communication evaluation and pro-
mote the cooperation.

• Heterogeneity: Traditionally agents have been used to
wrap heterogeneous functionality to enhance interop-
erability, but also due to their internal logic, external
behaviour can be easily changed which gives us the
capability of simulating heterogeneity.

• Large Scale: Multi-agent systems are designed to be scal-
able and accommodate thousands of agents that carry out
their tasks. As such they are suitable for accommodating
simulation of large numbers of devices.



• Complex Devices Simulation: Complex devices are built
from simpler components that operate based on a bigger
plan. Agents can simulate simple devices, however due to
their communication as well as the goal-based behaviour,
they can be combined/grouped and controlled by other
agents, in the essence forming an ecosystem that depicts
complex behaviour. Therefore in theory we can simulate
extremely complex devices, but if the implementation
overhead is justified, needs to be evaluated.

• Real and Virtual Data Sources: Real devices will be
connected and emit data e.g. temperature. It should be
possible to realize this in an interoperable way and this
will be done by implementing it as a web service via
DPWS, where others can subscribe to. Furthermore we
need to support virtual data sources. These can either
be pre-gathered values stored in a database, on-the fly
generated values by an algorithm, or even values created
by a real device that are processed and presented also as
a web service for consumption.

• Transparent Device Simulation: The agents can discover
and use the data emitted by a real device and then
create duplicate simulated devices that depict exactly the
same behaviour to the outside world. To realize this
the metadata of each device should be collected and
processed, as well as the real-time readings or results of
a service the device offers. This can be partially covered
by DPWS as it makes device specific info available.

• Self-* behaviour: Autonomy is a key characteristic of
agents, while their capability of realising behaviours has
already been used by the research community to create
agents depicting self-* behaviour. As such part of it can
be also observed on the simulated devices that are created
and controlled by the respective agents.

IV. THE MULTI-AGENT SIMULATION ENVIRONMENT

As a proof of concept a simulation environment has been
developed. In Fig. 2 several layers can be seen. The devices
at the lowest layer make available their functionality via web
services, while a subscription can be made to its services.
The device layer consists of devices that directly implement
web services e.g. via the DPWS protocol, and/or via DPWS
gateway (due to resource constraints etc). Typical examples
of such devices that implement web services (SOA-ready)
are programmable logic controllers (PLCs), robots, advanced
sensors e.g. SunSPOTs etc., and example of devices connected
via a DPWS gateway could be RFID tags that connect via an
RFID reader that acts as a DPWS gateway etc. At execution
layer, the mobile agent system hosts several agents that not
only cooperate but also control the created virtual devices.
One layer higher relies the logic, which describes the scenarios
the users run within the simulator. The scenarios range from
simple ones running standalone up to complex which may
start other simpler scenarios first. Finally at enterprise layer,
various services and applications can communicate via web
services with the devices, both real and simulated ones.

Fig. 2. Simulator Overview

Each Agent represents one SOA-ready device. Some con-
cepts and implementation details can be found in [1]. The
Agent can get initial or continuous data either from the devices
they simulate in real-time by connecting to them via WS,
or by getting predefined values stored in a database or even
by generating their own based on internal algorithms. The
simulator is part of an ecosystem and completely transparent
to the other actors of the infrastructure including the enterprise
applications and other services and devices. As an example,
SAP’s Manufacturing, Integration and Intelligence (MII) prod-
uct that typically links a shop floor system with an ERP and
provides enterprise services with information from plant floor
applications and systems can discover all devices via WS-
Discovery [9]. The functionality of MII is extended via a
DPWS client that can discover the devices created by the
simulator and cannot distinguish them from the real devices.
This allows us to create large-scale infrastructures in agnostic-
ways for the other layers. We have to note, that agents repre-
senting devices can communicate with the outside world via
the DPWS, while internally the facilities offered by the Agent
platform can be used in parallel i.e. the Agent Communication
Language (ACL). This gives us extended capabilities as we
have two different communication and control planes (that of
Agent system and of DPWS) that can be used independently.

The simulation environment consists of a basic set of agents,
each of which has its goals and internal logic.

• Management Agent: Tasks of this Agent include evalua-
tion of user arguments, creation of other agents and other
management functions e.g. logging etc.

• Device Explorer Agent: This Agent is based on the
concept of DC-Agent (DPWS Client Agent [1]) and its
job is to discover all the DPWS enabled devices in the
network based with a specific scope

• Device Generator Agent: The core function of this Agent
is to receive and execute requests towards creating and
initializing service agents that simulate a specific service.

• Scenario Agent: This agent is specific for each scenario
as it executes its strategy/logic.



Fig. 3. Agents simulating temperature sensors

• Service Agent(s): Design of a service Agent is based on
the DS-Agent model [1]. Such types of agents simulate
a DPWS service and are visible to the external world via
DPWS communication.

V. SELECTIVE DEMONSTRATION SCENARIOS

In order to investigate the capabilities of the simulator
we have investigated some demonstration scenarios, that also
depict how the different requirements are addressed. These
have been implemented in an evolutionary approach, starting
with simple functionality and building on top of it more
advanced ones.

A. Generator scenario

This scenario creates Service Agents that expose specific
virtual services. To service consumers these virtual services
appear just like any other real DPWS service available through
some DPWS enabled physical devices. An amplified number
of the discovered DPWS devices is created, depending on the
parameters. For instance, if two devices are discovered on the
network and the amplification size is of value ten, then it will
create ten virtual services for each one of the two devices, thus
the total number of the DPWS devices exposed on the network
will be twenty-two (twenty created and two real devices). Of
course if no devices are available or if it is wished, devices
can be created based on user defined device profiles (described
in XML). Any of the created devices also acts as source
device and other virtual services can be created from these
(tree structure). The goal here is to test the dynamic discovery
and creation of virtual devices based on discovered ones. As
the numbers increase and network communication comes to
play the result is non-deterministic as some devices may not
be discovered within the specific discovery timeframe.

B. Amplification scenario

This scenario is an advanced version of Generator simu-
lation scenario. It supports real-time data transfer between
a source device service and the virtual services simulating
this source. In other words it supports Service Agents with

integrated DPWS clients, and a DPWS connection and sub-
scription feature to transfer data in real-time. Let us consider
this example: Suppose the amplification size is ten and Device
Explorer Agent discovers three DPWS devices active on
network. Then this scenario will create ten virtual devices for
each discovered device (as shown in Fig. 3). Then the data
channels based on DPWS connection and subscription features
will be established between the source device and simulated
services. In other words one source device will provide data
to ten virtual devices/ services in real-time. The goal here
is to subscribe to live events created by the source devices
and see the effects on the resources available, the network
utilization etc. For our experiments the SunSPOTs wireless
sensors of SUN Microsystems have been used where their
functionality is offered as DPWS services [9]. The simulated
devices subscribe to the temperature readings that are in real-
time measured by the SunSPOT’s sensor and offered as a web
service (as depicted in Fig. 3).

C. BigBrother scenario

The BigBrother simulation scenario heavily depends on the
above mentioned scenarios. It compares and evaluates the
number of Service Agents present in the system versus the
number of simulated DPWS services active in the network.
As the amplification size of the simulation increases, and
many parameters come into play e.g. network reliability,
high volume of messages on the network channel, resource
consumption etc. the difference between the number of Service
Agents and virtual DPWS services detected might differ. A
Service Agent and its DPWS service are two independent
entities and they are connected to each other via Agent’s
integrated DPWS client [1]. So as the load on the resources
increases (due to large amplification size of the simulation),
it is possible that the Service Agent will continue to function
but its service might crash, or not be reachable or the Agent
might not be able to start the service etc. This will lead to a
difference between the actual number of agents and DPWS
devices started. The aim of this Agent is to monitor and
identify this gap.

D. Assassin and saver

The concept of this scenario is similar to the Big Brother
simulation scenario but allows us to include strategies and
bring in dynamicity. The main purpose is to simulate a highly
dynamic system where devices appear and disappear non-
deterministically. The same holds true for a non-reliable ser-
vice infrastructure. We realise this by trying to terminate and
create Service Agents simultaneously. This is a scenario where
the one or more agents from each kind (saver or assassin)
fight to achieve their goals. The Saver agent(s) try to keep
the population of devices/services with specific characteristics
stable, while in parallel the Assassin agent(s) try exactly the
opposite i.e. to minimize agent populations based on specific
criteria. The logic of behind this scenario can range from
simple (like the one we implemented here as proof of concept)
up to very complex ones e.g. from the game theory domain.



Fig. 4. Example: Memory and CPU measurements with respect to 30000
simulated agents and DPWS devices in the ”amplification scenario”

E. Evaluation

We have made some initial measurements by monitoring
system resources, the time to create a service agent, the
number of agents created etc. All of the tests were done in a
PC with the following configuration: Intel®Core™2 Duo CPU
6600 , 2.4 GHz (x64), 64-bit Microsoft Windows VISTA, 8
GB RAM, 64-bit SUN Microsystems Java SE v1.6 (server VM
with increased heap size).

As it is depicted in Fig. 4 for up to 25000 devices created,
the simulator is responsive and can create an infrastructure
simulating this amount of devices. However from then on, the
system resources utilization i.e. memory and CPU increases
dramatically, which results to the system being non responsive.
Although devices and their respective agents can be created,
the subscription to the services they offer after a specific point
either fail to start or take too long to provide the necessary
events. As such we propose to use a single physical system as
the one described here only for simulations of up to approx.
20000 devices. If subscriptions are to be fully functional in
a timely manner, it is also advisable to limit the number of
simulated DPWS devices below the 10000 limit. Physically
extending the resources either by adding more RAM or even
better use other computers running the simulator (in a cluster),
may lead to extending the numbers mentioned, which would
lead to larger scale infrastructures. Please also have in mind
that the whole system presented here was implemented as a
proof of concept, and no optimizations whatsoever have been
done on the code or on the concepts to take optimal advantage
of the resources. Therefore, higher number of devices might
be possible with a single computer if the code or parts of the
architecture are optimized. It has however to be pointed out
that this number of devices within one network segment fully

covers existing infrastructures.

VI. FUTURE WORK AND CONCLUSION

The work presented shows how the real world devices can
be coupled with virtual devices simulated by a multi-agent
system and how both of them can create an ecosystem that
can be used transparently by applications and other services
relying at enterprise, network or device layer. This work was
implemented as proof of concept, and a number of issues have
been identified that could build on top.

• Large Scale Distributed Infrastructures: As it was demon-
strated, we have run this simulation for thousands devices.
However in the future efforts should concentrate on
running it in a distributed infrastructure with multiple
physical computers and devices across different network
segments. Larger number of devices in the millions do-
main, might provide more interesting research questions
and results

• Strategy: Most of the scenarios are pretty simple, and
were done as proof of concept. However, the basic blocks
are there to realize much more complex scenarios e.g.
coming from the artificial intelligence and game theory
domains.

• Mobility: The focus of this work was on the functionality
and on stationary agents. While it is not considered to be
a significant difficulty to introduce mobility in all the
aforementioned work and scenarios (JADE supports it
seamlessly), this will fundamentally change the results
in the simulation scenarios introducing more complexity.
However this will provide very interesting research chal-
lenges, that come closer to real-world infrastructures of
roaming devices.

• Cooperation: The cooperation aspects so far have been
kept to minimum. However the agents provide very
advanced capabilities for cooperation, and this should
be further investigated also with the use of semantic
technologies.

• Toolkit: A toolkit that would allow easy configuration and
real-time interaction with the framework itself needs to
be developed in order to minimize the learning curve and
make the simulator more user-friendly.

• Enterprise Integration: Stronger enterprise integration
should be achieved, i.e. services that would make it
possible to configure and manage the framework in a
transparent way. Extension of some enterprise modelling
tools could allow enterprise service developers to create
on the fly large scale infrastructures and test their appli-
cations with different configurations.

• Performance: Enhancements should be made to enhance
the existing performance of the system, including further
investigation of the exact limitations that the system can
reach.

Future enterprise services will heavily depend on the data
acquired from millions of devices; therefore simulating such
infrastructures in order to test aspects of it such as commu-
nication overheads, performance, model services capable of



dealing with dynamic changes etc will become critical. From
our viewpoint the developed simulation framework depicted
here can offer great insights on how this could be realized. As
the basic blocks are conceptually and technologically there,
others can built more complex systems on top of this in order
to more realistically simulate a real-world infrastructure.

ACKNOWLEDGEMENT

The authors would like to thank the European Commission
and the partners of the European IST FP6 project ”Service-
Oriented Cross-layer infRAstructure for Distributed smart Em-
bedded devices” (SOCRADES - www.socrades.eu), for their
support.

REFERENCES

[1] Stamatis Karnouskos, Mian Mohammad Junaid Tariq, ”An agent-based
simulation of SOA-ready devices”, IEEE supported 10th International
Conference on Computer Modelling and Simulation, 1-3 April 2008,
Cambridge, England.

[2] F. Jammes and H. Smit, ”Service-oriented paradigms in industrial au-
tomation”, IEEE Transactions on Industrial Informatics, p. 62-70, 2005.

[3] Stamatis Karnouskos, Oliver Baecker, Luciana Moreira Sa de Souza, Pa-
trik Spiess, ”Integration of SOA-ready Networked Embedded Devices in
Enterprise Systems via a Cross-Layered Web Service Infrastructure”, 12th
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), September 25-28, 2007, Patras, Greece

[4] Michael Wooldridge, ”An Introduction to Multiagent Systems”, February
2002, John Wiley & Sons (England). ISBN 0 47149691X.

[5] Fabio Luigi Bellifemine, Giovanni Caire, Dominic Greenwood, ”Develop-
ing Multi-Agent Systems with JADE”, Wiley Series in Agent Technology,
2007, ISBN-10: 0470057475

[6] E. Fleisch and F. Mattern, editors. ”Das Internet der Dinge: Ubiquitous
Computing und RFID in der Praxis: Visionen, Technologien, Anwendun-
gen, Handlungsanleitungen” (in German), Springer, 2005.

[7] Shannon Chan et al., ”Devices profile for web services”, February 2006.
http://schemas.xmlsoap.org/ws/2006/02/devprof

[8] OPC Unified Architecture (OPC-UA), OPC Foundation http://www.
opcfoundation.org/UA

[9] Domnic Savio, Stamatis Karnouskos, ”Web-service enabled Wireless
Sensors in SOA environments”, 13th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), September 15-18,2008,
Hamburg, Germany.

[10] OASIS WS-DD Technical Committee, http://www.oasis-open.org/
committees/ws-dd/


