Reactive Business Processes for Factory Automation

Domnic Savio, Stamatis Karnouskos, Luciana Moreira S4 de Souza, Vlad Trifa, Dominique Guinard, Patrik Spiess
SAP Research (www.sap.com)
Contact: domnic.savio@sap.com

Abstract—Modern enterprises operate on a global scale and de-
pend on complex business processes. Business continuity needs to
be guaranteed, while changes at the shop floor should happen on-
the-fly without stopping the production process. Unfortunately,
the existing business processes found in most enterprises are
not modular enough, nor they have dynamic support from the
device level. However, as the number of sophisticated networked
embedded devices in the shop-floor increases, SOA concepts can
now be pushed down and provide a better collaboration between
the business systems and the production line. This leads to highly
dynamic systems that can adapt and optimize their behavior to
achieve their goals. The work presented here shows directions to
achieve this dynamism by means of simulation, state identification
and close coupling of real world and business systems.

I. INTRODUCTION

Business processes in a company are defined by the best
practices of the respective industry and its goals. However, in
reality production processes are mostly monolithic and expect
results to be ideal. A production process usually has a series
of vertical integrations towards the shop floor until end of the
process lifetime. As a consequence, challenges arise when
trying to make the processes adaptive or trying to extend it.
Introducing variables to adapt to the dynamic nature of the
shop floor is very expensive for companies that span multiple
production locations and several heterogeneous IT systems.

The device world is changing drastically, as technology
rapidly advances, the shop-floor becomes populated with
highly sophisticated networked embedded devices that have
faster CPU’s, are more economical, more compact and go
beyond being task specific. Such devices can provide their
functionality as a service and play an active role. They go
beyond controlling local loops and can provide tools that
offer real-time analysis, as well as adaptive Graphical User
Interfaces (GUIs) for operators. Such devices are already
emerging in the market e.g. the CX1020 series Programmable
Logic Controller (PLC) of Beckhoff [1]. Other companies
like Schneider Electric, Siemens and ABB are experimenting
in R&D projects (www.socrades.eu) and expected to create
products in the short term.

Business process can take full advantage of such sophisti-
cated devices by easily integrating them via Service Oriented
Architecture approaches. As web services are suitable and
capable of running natively on embedded devices, they provide
an interoperability layer that leads to easier coupling with other
components despite of their high heterogeneity. Device Profile
for Web Services (DPWS [2]) and OPC-UA [3] are two of
the emerging technologies for realizing web service enabled
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A cross-layer web-service composition.

devices. Eventually, we are heading towards a fully service
enabled and highly dynamic infrastructure. Due to the loose
coupling nature of web services, compositions of services can
be easily created to match the desired scenario, almost like
one would create web mashups. Such compositions contain
services running on the device, on the network and on the
enterprise system layers as depicted in Figure 1.

Integration of the devices on the functional level allows us
to focus on orchestrating services based on their role in a
process, and not the device as such. Collaboration is enhanced
among the entities which leads to the minimization of islands
of heterogeneous devices and boosts interoperability.

Service based integration of shop-floor devices with en-
terprise systems, brings many benefits in terms of business
automation, response time, and data quality. Although these
benefits make this integration highly desirable in a competitive
economy, the unsupervised integration of devices with backend
systems can also cause economic losses. These losses include:
production halts, production time increase, reputation loss due
to delays and even product recalls. When unexpected situations
occur in the shop-floor, a rapid and dynamic adaptation of the
business process is required in order to mitigate the effects
that such an event can cause.

Hence, a beneficial integration of shop-floor devices with
backend systems should provide characteristics that enable
business processes to dynamically adapt to changes in the state
of the device layer. With the current improvement of shop-



floor devices and the adoption of SOA on all layers of the
system, it is possible to create systems that are self-healing,
self-monitoring, and self-optimizing.

Our aim is to depict how we can move towards highly-
dynamic enterprises. Although simulations have been used
before either at the shop-floor or at business process level,
these have been used in an isolated way. Here we try to bring
together the shop-floor and the business system and assess
dynamically their state using also simulation and monitoring to
adapt situations and predict possible problems. A SOA based
middleware, such as one we proposed in [4] and demonstrated
in [5], showed preliminary promising results in this area. Our
contribution in this paper, is to extend our a SOA based
system to accommodate simulation and analytics as well as
decision making and process mapping strategies. This helps
enterprise systems to dynamically adapt to changes in the
shop-floor, to reduce the gap between the real world and its
digital representation, and also to optimize business processes.

II. STATE-OF-THE-ART

Simulating Shop Floor production models and analyzing it
with expert systems was done in the late 80’s using Fortran
and Prolog [6]. A scheduling system that optimized work flows
based on shop floor and the ERP data and allowing the user
to enter manually non-system data was proposed [7]. Another
web based configuration and simulation tool for production
systems [8] concerned only the conceptual phase of new pro-
duction systems. Complex production planning and scheduling
problems have been dealt based on a architectural approach
[9]. Other tools like SIMSCRIPT-IL.5 and SLAM System have
been used in modeling work flow processes [10]. A simulation
model based on data from the ERP system including a simple
scheduling logic was developed [11]. The WITNESS modeling
software is widely accepted in the industry for simulating
production models, e.g. in production scenarios and analysis of
best practices in production modeling [12], [13]. Autonomous
control of production systems on the shop floor has been
treated as discrete-event and continuous flow models in a
simulation environment [14]. Recent efforts in the COLL-
PLEXITY (www.coll-plexity.com) project focus towards a
generic model of complexity. Such a model is considered to
be a problem-to-system match framework for collaborative
systems on the shop floor [15]. Supply Chain networks are
modeled to understand the future demand on customized mass
products [16]. Modeling the job flow, comparing the real time
data to the models and enabling an expert system to make a
decision for the enterprise application using service oriented
paradigms is rather new. Furthermore the approach taken in
this paper is holistic and tries to strongly couple the shop-floor
and enterprise systems, using among also tools for simulation
and estimation.

III. TOWARDS A MORE DYNAMIC AND AUTONOMOUS
SYSTEM

As we move towards the “Internet of Things” [17], it can be
expected that billions of devices of different size and capability
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Fig. 2. Example business process for manufacturing production

will be connected and interact with each other and with
business systems over IP (Internet Protocol) [18]. Generally
for modern enterprises we expect [19]:

« Increase in complexity of systems.

o Increase in the heterogeneity of devices, software plat-
forms, online services, etc.

o Wireless connection of a large proportion of devices to
the backbone infrastructure.

« Increase of bandwidth and computing power.

e Ad-hoc computing, collaboration, task delegation, and
environmental adaptation will be basic necessities.

o Vital on-demand software and service deployment.

e Gain in the importance of security and its satellite ser-
vices.

In such future infrastructure, autonomic systems are ex-
pected to be of considerable help, since they are able to
be, at a great degree, self-sustained and also to react to
a dynamically changing environment. The essence of such
autonomic systems is to deliver an optimized system. Four
functional areas are defined: self-configuration, self-healing,
self-optimization, and self-protection.

There are two strategies in achieving autonomic behavior,
i.e., through adaptive learning and via integral engineering into
systems [20]. Our approach focuses mainly on how to engineer
such an autonomous system with respect to the coupling of
business systems and real world production facilities, while
adaptive learning, or self-learning, used at specific places e.g.
identification of machine state.

IV. SCENARIO

The short lifecycle of manufactured products (e.g. mobile
phones, clothing, features in cars, etc), combined with their
high amount of complex features, imposes great challenges
to modern production systems. Due to their short lifecycle,
assembly lines need to be flexible in order to easily adapt
to new products. In this dynamic environment, the reduction
of manufacturing costs drives the innovation on production
systems.

In Figure 2 a generic business process for manufacturing
a product is presented. While planning for production, the
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Fig. 3. Self-Healing and self-optimizing process re-route

bill of materials is identified. Information is taken from the
audit where raw material availability is retrieved from the
material master database. Once the production is planned, it
is released. A Manufacturing Execution System (MES) takes
care of retrieving this information and executing it on the
machines. It keeps the ERP system updated about the current
status of the production process.

Traditionally, these systems are huge databases and real
time processing systems coming from different IT companies.
Making information transparent to these systems on the IT
landscape is a tremendous customization effort. Service Ori-
ented Architectures make seamless integration to these systems
possible and this in turn helps a MES system to connect
directly to a supply chain system transaction without hassle
and at the same time delivering the status of the production,
to a production monitoring system. But when it comes down
to devices on the shop floor, these are not visible to the ERP
world.

When unexpected events in the production line occur, the
ERP system need to investigate possible collateral effects,
such as: order delays, maintenance, costs etc. Therefore, it
is important to increase the integration between the shop-floor
and ERP systems, in order to improve the decision making
process and identify effects of unexpected situations in early
stages.

A. Production Halt

In Figure 3, a simplified T-shirt production line process is
presented. In this production line, T-shirts are produced with
different qualities, according to the production request. Each
production step has a cost associated to it, which is dependent
on the quality of the process. These costs usually vary with the
number of items produced. For sake of simplicity, we assume
in this scenario a fix cost for each process step.

In this production line shirts are produced, right from knit-
ting, cutting, assembling with buttons, proving and packing.
Breaks in the sequential operations would bring the rest of the
production line to a halt. It would be inefficient to stop the
entire line if a machine failed at the Cutting I stage, while
there are alternative routes available.

For a dynamic reaction to a breakdown state, it is necessary
to have online information of other machines. Automatic
production re-routing is still mostly solved locally, while the

Procuction Usage:70%  Production Usage:70%
0 0

Real-time monitoring,
event-based infrastructure
Web Services on Devices (loT)

Multiple scenario simulation for
predictive measures
Performance of perfect vs. real system

Autonomous Decision
Support System for
Business Continuity

Enforce proposal from DSS
to shop-floor (1oT)
and enterprise systems (loS)

Fig. 4. Towards autonomous systems via cross-layer monitoring, simulation
and management

ERP system is not informed, or informed with significant
delays. This is due to the fact that an assembly machine (the
stitching machine in our example) is purchased from a differ-
ent manufacturer than the knitting machine. The machines use
different protocols and have different computing speeds. An
even more complex situation can occur if break down states
exist in the assembly lines, and due to lack of information, a
plant manager releases a production order in the ERP system
for 1000 pieces of a knitted shirt to be delivered in a short
timeframe.

The production orders stocks up in the ERP system, and the
MES system have no information of the error in the production
line. If shop-floor machines host web services, the interaction
with the ERP system increases and such production crisis
scenarios can be better predicted and managed.

V. INTEGRATING BUSINESS AND SHOP FLOOR PROCESSES

To improve the automation of business processes executed
in factories, we propose a reactive approach that follows the
concepts depicted in Figure 4. A number of concepts and
technologies should come together to ease information flow
among the different components, predict behaviors and finally
take actions based on careful analysis of the current state of
the system.

The key technical concept to the whole approach is a cross-
layer communication in order to provide effective monitoring,
simulation and management. In this approach we target several
characteristics of a autonomous system:

o Self-healing: Automatic discovery and correction of faults
or possible preventive actions. The system can recover
from well-known problems including those that can be
dynamically identified based on the correlation of events
(Complex Event Processing).

o Self-optimization: Automatic monitoring and control of
resources of the system can be done, in order for the
different components that recognize themselves in a goal-
driven manner with respect to the environmental context
they act on. In that case, early indicators can be correlated
and emerging problems are easier to pinpoint.

Figure 5 depicts the architectural approach proposed in this

paper. The core idea is the strong coupling of Enterprise
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Systems with the shop-floor in a dynamic and autonomous
way assisted by a Decision Support System (DSS). This DSS
takes into consideration dynamic data coming from monitoring
the shop floor, running simulations and its result are given as
input to the business process control, the shop-floor and even
on fine-tuning the simulation itself. In this concept, continuous
real-time data flow into a monitoring system. In parallel a
model of the shop-floor executes in a simulator. At specific
intervals depending on the time or tasks, the output of the
simulation and the monitoring are evaluated. Any deviation
o is used as input from the DSS. Parallel to o, the DSS
considers inputs from the enterprise systems as well as the
Prediction Simulation which predicts the next system state(s)
of according to the existing models the system will continue
to perform in the same way. The DSS considers all the input
and makes decisions e.g. for optimizing the performance of
the system, preventing faults that would happen if the mode
of operation is unchanged etc. The DSS decisions are fed as
input to the business systems, the shop-floor and the simulation
itself, so that their behavior can be adapted. Having a precise
information of the problems occurring (or predicted to occur)
in the production line, the DSS can define measures to
automatically modify the business process to heal the system.
The result is that we are moving towards a self-* system that
monitors and adapts itself according to the evaluation of the
input from the sources mentioned.

A. Simulation

Simulating a process work flow as a production model on a
computer, takes away the risks of heavy investment. Modeling
tools, such as flowcharts, process mapping, and spreadsheets
are often used to identify how the shop floor would look
like for a particular business objective. However such tools
only show relationships between processes and generally don
not provide any quantitative performance measures. They are
static, deterministic and do now consider the dynamics of real
life work in progress.

Dynamic production model simulation tools like WITNESS
[21] and ProModel (www.promodel.com) consider the dy-
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Fig. 6. Machine States

namic characteristics of production, e.g. process flow, process-
ing times, setup requirement, labor, control rules, breakdown,
shift, loading schedule, etc. We propose to go one step further
by using the simulation results and comparing them to the live
input coming the shop floor in order to assess the situation,
possibly proactively determine problem zones, and optimize
the shop-floor.

Figure 6 presents the generic states of a machine in a pro-
duction line. Based on a known machine state a deterministic
action can be performed. Nevertheless, defining the current
state of the machine can be a challenging task. The information
available to the back-end system consists of a great amount of
events triggered through the assembly process. They could be
identical to the simulated set of events and states, or deviate
from the simulated conditions. Therefore, it is necessary to
process these events in order to identify patterns that indicate
which is the current state of the production line.

The advantage of production model simulation tools is that
by changing the characteristics of production, the results on
the shop floor can be accurately determined [22]. These tools
give a good in depth understanding of how the manufacturing
process would react to different situations on the shop floor.
Such results can be considered as a reference for a series of
deterministic characteristics of the shop floor [21]. As depicted
in Figure 5, we propose a methodology where the workflow of
a particular production process is continually monitored and
compared to (pre)simulated results.

The state of the actual workflow process is continually
monitored and compared with the simulated result on the
shop floor. Based on the possible deviation o, the work flow
process or the business process can be affected. The deviations
of the shop floor behavior from the expected result of the
simulation have to be categorized in order to determine if the
current condition would be tolerable or it would lead to a
critical bottleneck. Various algorithms and methodologies can
be combined to identify and categorize the state of the current
production line.



B. Self-healing Mechanisms

Through a comparison between the expected state (simula-
tion results) and the real state of the shop floor, it is possible
to identify malfunctions in the system. This information is
essential for the system to self-heal.

For instance, in the example described in Section IV-A, if
the machine responsible for executing the process “Cutting 1”
fails, the production order of the T-Shirts with quality 3 will
halt. This can result in delays, reputation loss, and even break
in a contract, which implies high costs to the factory.

If the manufacturer defines a maximum cost for the T-
Shirt production, it is possible to re-map the business process
to avoid a production halt considering the new state of the
system. This process re-mapping is depicted in Figure 3.

With the modification in the business process, the system
self-heals and continues the production, while a maintenance
workflow is triggered. Although the item cost increases, it
remains within the threshold specified by the manufacturer,
and prevents major losses due to production halts.

Another self-healing mechanism, investigated by this
project, explores predictive maintenance and possible produc-
tion bottlenecks. Based on real-time data from the shop-floor
and having identified the current status of the production line,
it is possible to predict the course of the current production.
This is done based on analysis of the previous production
history and also based on the simulated production model.
The result of such prediction model analysis is forwarded to a
Decision Support System (DSS), which then reacts providing
input to the business process modeler (Figure 5). Finally, the
integration of ERP business processes and such DSS can be
performed through the SAP Manufacturing Intelligence and
Integration (SAP MII) tool.

C. Self-optimizing Mechanisms

Business processes are available as services in the enterprise
service repository. Hence, a set of rules can be modeled in
the DSS to invoke a corresponding business process at the
prediction of a critical bottleneck state on the shop floor.
Alternatively, shop floor devices hosting web services can
be effectively used in such scenarios to prevent malfunction
or break down of the machine. The DSS can reduce the
production cycle on a particular assembly line when the system
foresees a non linear increase in temperature or a production
variable on the work flow.

In this article, we propose to base the optimization process
on Swarm-Intelligent (SI) principles [23]. These methods were
originally inspired by observation of various natural phenom-
ena, in particular the collective behavior of social insects and
flocking and schooling in vertebrates. The application of SI
to distributed, real-time, embedded systems aims at devel-
oping robust task-solving methodologies by minimizing the
complexity (including the intelligence) of the individual units
(in our case machines of the assembly line) and emphasizing
parallelism, and self-organization. From an engineering stand-
point, the principal advantages of swarm-intelligent system
design are four-fold: scalability, from a few to thousands

of units; flexibility, as units can be dynamically added or
removed without explicit reorganization; robustness, not only
through unit redundancy but also through an adequate balance
between explorative and exploitative behavior of the system,
and simplicity (and low-cost) at the individual level, which
also increases robustness. These properties would be highly
beneficial if applied to machine production lines, and could
be further optimized when machine have access to global
information about the whole manufacturing process.

In particular, we propose to use Threshold-Based Algo-
rithms (TBA) for a flexible task allocation mechanism to
decide of the dynamic path in the production line. TBA
have been initially used to model the dynamic task allocation
decision process in ant colonies, and has been successfully
applied for example for power-aware optimized load balancing
[24]. Using TBA at the production-line level enables a reactive
and fully-decentralized decision process done dynamically by
the machines at runtime, based both on the objects to process,
external data (environmental data, priority of the tasks, market
values, etc), and the proprioceptive data of the machines.
Threshold-based algorithms model group behavior based on
a small number of control parameters (thresholds) that affect
whether or not a particular task will be executed by a given
machine. For this, every machine has an internal threshold
value which is a function of different dynamic and static
factors (price and time associate with task execution, machine
current state, etc). Each task to process will have its own
stimuli value that will be compared with the threshold of the
machines and will be used to decide which machine will per-
form the task. Thresholds are allowed to change and become
heterogeneous over time as a function of stimuli encountered
and tasks performed, and this can lead to specialization and
division of labor.

VI. CONCLUSIONS

Shop-floor processes are more dynamic in nature than
business processes. As service-enabled devices are evolving
towards hosting web services, they provide seamless inte-
gration to MES systems rather and data coming from them
can be effectively used in production modeling. This helps
analyzing shop floor behaviors with low risk and investment.
We proposed a system that can take the simulation of the
shop floor behavior as a reference to compare with real time
production data. We enhanced the proposal with a predictive
model that can determine the course of the production line.
It can be used together with an expert system to identify
and categorize the states of the production line. The system
can understand the shop floor, and business processes can
react dynamically or even proactively to the changes in the
production model. Industry standard tools like WITNESS and
SAP MII are used to realize predictive maintenance scenarios,
however they can be further extended to include simulation
models of the shop floor and analyze real time data to estimate
the production course.
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