
Discovery and On-Demand Provisioning of Real-World Web Services

Dominique Guinard1,3, Vlad Trifa1,3, Patrik Spiess2, Bettina Dober1, and Stamatis Karnouskos2

1SAP Research Zurich, Switzerland
2SAP Research CEC Karlsruhe, Germany

3Institute for Pervasive Computing, ETH Zurich, Switzerland
Email: dominique.guinard@sap.com

Abstract

The increasing usage of smart embedded devices is blur-
ring the line between the virtual and real worlds. This
creates new opportunities for applications to better inte-
grate the real-world, providing services that are more di-
verse, highly dynamic and efficient. Service Oriented Ar-
chitecture is on the verge of extending its applicability from
the standard, corporate IT domain to the real-world de-
vices. In such infrastructures, composed of a large number
of resource-limited devices, the discovery of services and on
demand provisioning of missing functionality is a challenge.
This work proposes a process, its architecture and an imple-
mentation that enables developers and process designers to
dynamically discover, use, and create running instances of
real-world services in composite applications.

1 Introduction and Related Work

The Internet of Things envisions vast numbers of em-
bedded devices, such as networks of sensors and actuators,
industrial production lines and machines, and household ap-
pliances that are being interconnected and possibly collabo-
rate to provide advanced services [6]. The functionality and
sensor data these devices will be offering, are often referred
as real-world services because they are provided by embed-
ded devices, which are part of the physical world. Unlike
most traditional enterprise services, which are virtual en-
tities, real-world services provide real-time data about the
physical world.

A study from OnWorld [9] projects that wireless sen-
sor network (WSN) systems and services will be worth $
6.6 billion in 2011, and in 2012 it is expected that 25.1
million WSN units will be sold for smart home solutions
only, a significant increase from the 2 million in 2007. The
business opportunities for real-world services are great. As
mass market penetration of networked embedded devices

is realized, services taking advantage of the devices’ novel
functionality will give birth to new innovative applications
and provide both revenue generating and cost saving busi-
ness advantages. From a technological point of view, the
key challenge is how to discover, assess, and efficiently in-
tegrate the new data points into business applications.

Several efforts have explored the integration of real-
world and enterprise services e.g. [12, 5]. However, the pro-
tocols used do not offer uniform interfaces across the appli-
cation space and are thus complicated to integrate with tra-
ditional enterprise applications. To ensure interoperability
across all systems, recent work has focused on applying the
concept of Service Oriented Architecture (SOA), in partic-
ular Web Services standards (SOAP, WSDL, etc.) directly
on devices [11, 4, 14]. Implementing WS-* standards on
devices presents several advantages in terms of end-to-end
integration and programmability by reducing the needs for
gateways and translations between the components. This
enables the direct orchestration of services running on de-
vices, with high-level enterprise services, e.g. offered by
an Enterprise Resource Planning (ERP) applications. For
example, if sensors physically attached to shipments could
offer Web Services, those could be easily integrated in a
process that updates the status (e.g. temperature) and loca-
tion of the shipment directly in the involved ERP systems.

However, SOA standards were designed primarily for
connecting complex and rather static enterprise services. As
a consequence, implementing WS-* standards directly on
devices is not straightforward. Unlike enterprise services,
real-world services are deployed on resource constrained
devices, e.g. with limited computing, communication and
storage capabilities. This requires significant simplification,
optimization, and adaptation of SOA tools and standards.
Additionally, real-world services are found in highly dy-
namic environments where devices and their underlying ser-
vices degrade, vanish, and possibly re-appear. As such, this
infrastructure can not be considered static and long-lived,
as traditional enterprise services. This implies the need for



automated, immediate discovery of devices and services as
well as their dynamic management.

A crucial challenge for SOA developers and process de-
signers is to find adequate services for solving a particu-
lar task [3], which for enterprise services implies a manual
query of a number of registries, typically UDDI (Univer-
sal Description and Discovery and Integration) registries.
The results depend largely on the quality of the data within
the registry, which is entered manually therefore is prone
to error. While this de facto approach is adequate for a
rarely changing set of large-scale services, the same does
not hold for the requirements of the dynamic real-world ser-
vices. Registering a service with one or more UDDIs is
rather complex, and does not comply with the minimization
of usage of the devices’ limited resources. Furthermore ex-
tensive description information is necessary [13], while the
device can only report basic information about itself and the
services it hosts. Trying to reduce the complexity of reg-
istration and service discovery, different lines of research
have been undertaken in order to provide alternatives or ex-
tensions of the UDDI standard [3, 15, 1]. However these
do not take into account the particular requirements of real-
world services.

Based on our previous experience within the
SOCRADES project [4], we introduce here a set of
requirements to facilitate the use of real-world services
within enterprise applications:

1. Minimal Registration Effort. A device should
be able to advertise its services to a registry using
network-level discovery. The process should be “plug
and play”, without requiring human intervention. A
device should also be expected to provide only a small
amount of information when registering.

2. Support for Dynamic Search. It should be possible
to use also external resources to better formulate the
queries. Furthermore, queries should take into account
context (e.g. location, Quality of Service (QoS), ap-
plication context). Support for context is essential as
the functionality of most devices is task-specific within
well-defined places (e.g. a building, a plant, etc.).

3. Support for On-Demand Provisioning. Services on
embedded devices offer rather atomic operations, such
as obtaining data from sensors. Thus, while the WSN
platforms are rather heterogeneous, the services that
the sensor nodes can offer share significant similarities
and could be deployed on-demand per user request.

The key contribution of the work presented here is a
service discovery process for real-world services shown
on Figure 1 and detailed in Section 3. The goal of this pro-
cess, called Real-World Service Discovery and Provision-
ing Process (RSDPP), is to assist the developers in the dis-
covery of real-world services to be included in composite

Figure 1. Overview of the complete Real-
World Service Discovery and Provisioning
Process (RSDPP).

applications. This innovative process fulfills the three re-
quirements of real-world services we described above:

The minimal registration effort requirement is met by us-
ing the Device Profile for Web Services (DPWS) [2, 11]
and its discovery mechanism. DPWS defines a limited set
of WS-* standards which are implementable on resource-
constrained devices. A DPWS compliant device also has a
set of built-in services, fulfilling the automatic network dis-
covery of devices and services on a local network. We will
describe DPWS in Section 2.

We further ensure the minimal registration effort and
support for dynamic search by extending user provided key-
words with vocabularies of related terms also known as
“lightweight ontologies” [10]. We generate these terms
dynamically, by using semi-structured web resources like
Wikipedia and Yahoo Web Search. This part of the process
called Query Augmentation, is described in Section 3.1.

The dynamic search requirement is also fulfilled by tak-
ing into account the user context and matching it with the
extracted context of real-world services. This information is
then used when retrieving and ranking services as explained
in Section 3.2. The requirement for on-demand dynamic
provisioning is fulfilled by a software architecture that en-
ables the developer to automatically deploy services on de-
vices when no satisfying service was found in the environ-
ment [7]. This architecture is described in Section 3.3.

Finally, we present our implementation within an enter-
prise application (based on Java Enterprise Edition and SAP
NetWeaver) to validate our results and show its usability for
actual deployments in Section 4.

Before describing the process itself we start with an
overview of the framework in which the RSDPP was devel-
oped and how devices can register themselves and advertise
their services in an automated manner.

2



2 The SOCRADES Integration Architecture

The process described in this article has been developed
within the research project SOCRADES, and has been im-
plemented as part of the SOCRADES Integration Architec-
ture (SIA) [4]. The role of SIA is to enable the integra-
tion of real-world services running on embedded devices
within enterprise-level applications. Web Services stan-
dards constitute the standard communication method used
by the components of enterprise-level applications, and for
this reason SIA is fully based on them. In this manner, busi-
ness applications can access near real-time data from a wide
range of networked devices using a high-level, abstract in-
terface based on Web Services. This allows any networked
device that is connected to the SIA to directly participate in
business processes while neither requiring the process mod-
eler, nor the process execution engine to know about the
details of the underlying hardware.

The SIA has been described in [4], and here we only
describe a few particular components of the whole archi-
tecture. In SIA, the lowest layer is called the Devices
Layer and comprises the different embedded devices that
are running the different services. SIA is able to interact
with devices using several communication protocols, such
as DPWS, OPC-UA, etc. In this article, however, we focus
solely on devices that are connected to SIA using web ser-
vices (DPWS). Nevertheless, since DPWS-enabled devices
support Web Services, they also can bypass SIA for a direct
connection to Enterprise Applications, which is desirable in
some use cases. Furthermore, SIA allows applications to
subscribe to any events sent by the devices, offering a pub-
lish/subscribe component by providing a WS-Notification
compliant Notification Broker. It also offers buffered invo-
cations of hosted services on devices that are only intermit-
tently connected, by receiving notifications when the de-
vice becomes available again or having the system cache
the message and delivering it when the device is ready to
receive it.

On top of the Device Layer, we have built higher-level
components to ease the management and use of devices in
a standardized and uniform way. The Device Repository
holds all known static device information (metadata) of all
on-line and off-line devices, while the Device Monitor con-
tains information about the current state of each device. The
Device Monitor acts as the single access point where enter-
prise applications can find all devices even when they have
no direct access to the shop floor network.

At the same time, information about the different ser-
vices hosted on the device (typically described using WS-
DLs) will be retrieved and forwarded using an event to the
Service Type Repository and Service Monitor as shown on
Figure 1. The former only contains information about the
service types without their respective endpoint references,
the latter contains information about the available service

instances hosted by the devices and their endpoint refer-
ences, and also installable service types. The Service Type
Repository acts as a facade for querying the underlying
repositories and monitors for pointers to running service in-
stances.

Device Profile for Web Services (DPWS) The Devices
Profile for Web Services (DPWS) defines a minimal set
of implementation constraints to enable (secure) Web Ser-
vice messaging, discovery, description, and eventing on
resource-constrained devices. Its objectives are similar to
those of Universal Plug and Play (UPnP) but, in addition,
DPWS is fully aligned with Web Services technology and
includes extension points, allowing for seamless integration
of device-provided services in enterprise-wide application
scenarios. The DPWS specification defines an architec-
ture in which devices run two types of services: a) host-
ing services and b) hosted services. Hosting services are
directly associated to a device, and play an important part
in the device discovery process. Hosted services are mostly
functional and depend on their hosting device for discov-
ery. Hosting services comprise of: discovery services used
by a device connected to a network to advertise itself and
to discover other devices, metadata exchange services to
provide information about a device and the hosted services
on it, and asynchronous publish and subscribe eventing,
allowing to subscribe to asynchronous event messages pro-
duced by a given hosted service.

Network Discovery of Devices As real-world services
run natively on embedded devices, we need a robust mech-
anism to dynamically find devices as they connect to the
network, and dynamically retrieve metadata about the de-
vice and the services it hosts. Furthermore, we want mech-
anism to fulfill the requirement for a minimal registration
effort. To achieve this, we use DPWS which follows the
WS-Discovery specification. When a new device joins the
network, it will multicast a HELLO message via the UDP
protocol. By listening to this clients can detect new de-
vices and in a second step retrieve their metadata. This in
turn triggers the sending of an appropriate message to the
SOCRADES Device Monitor, containing the device’s static
metadata. The metadata information can be classified into a
certain set of metadata classes, and is required for searching
services according to more detailed criteria. This data about
the device is stored by the higher units for future usage.

The DPWS metadata of devices and services can be clas-
sified in different categories, as follows: Scopes a set of at-
tributes that may be used to organize devices into logical
or hierarchical groups, e.g. according to their location or
access rights. Model and Device metadata provides infor-
mation about the type of the device like manufacturer name,
model name, model number, etc. as well as information on
the device itself such as serial number, firmware version and

3



friendly name. Types are a set of messages the device can
send and/or receive; these can be either functional WSDL
port types (e.g. ’turn on’, ’turn off’) or abstract types group-
ing several port types and/or hosted services (e.g. ’printer’,
’lighting’, ’residential gateway’). Links to WSDL docu-
ment (i.e. URLs), containing the port types (operations
and message structures) implemented and the endpoint of
hosted services.

3 Real-World Service Discovery and
Provisioning Process (RSDPP)

After describing the way devices and their services are
advertised, this section describes the RSDPP and its under-
lying steps. As illustrated in Figure 1 step 1, the process
begins with a Types Query after the network discovery of
devices has been executed. In this sub-process the developer
uses keywords to search for services, as he would search
for documents on any search engine. This query is then ex-
tended with related keywords fetched from different web-
sites, and used to retrieve types of services that describe a
functionality, but not yet the real-world device it runs on.
This is the task of the Candidate Search where the run-
ning instances of the service type are retrieved and ranked
according to context parameters provided by the developer
(Fig 1, step 2). In case no service instance has been found
the process goes on with Provisioning. It begins with a
forced network discovery of devices, where devices known
to provide the service type the developer is looking for are
asked to acknowledge their presence (step 3). If no suitable
device is discovered, a service injection can be requested.
In this last step the system tries to find suitable devices
that could run the requested service, and installs it remotely
(step 4).

3.1 Types Query

In the first part of the discovery process (step 1 on Fig-
ure 1), the developer or process designer enters keywords
describing the type of service she wants to find (step 1 on
Figure 2). A Service Type is a generic WSDL file describ-
ing the abstract functionalities of a real-world service, but
not bound to any particular end-point of a concrete real-
world device. The entered keywords will be sent to the
Query Augmentation module which is going to extend the
query with additional keywords. The output of this module
is then used to retrieve and rank types of services.

3.1.1 Query Augmentation and Assistant

In conventional service discovery applications, the key-
words entered by the user would be sent to a Service Repos-
itory to find types of services corresponding to the key-
words. The problem with this simple keyword matching

Figure 2. Looking for a Service Type.

mechanism is that it lacks flexibility. For instance, a de-
veloper wants to find services offered by a “smart meter”,
a term often used to describe a device that can measure the
energy consumption of other devices. Typing “smart meter”
only, will likely not lead into finding all the corresponding
services, because services dealing with energy consump-
tion monitoring might not be tagged with the “smart meter”
keywords. We want to avoid the construction of domain
ontologies, and to minimize the amount of data embedded
devices need to provide upon network discovery of device
and service registration. Thus, we propose a system that
uses services on the web to extend queries without involv-
ing communication with the embedded devices or requiring
complex service descriptions from them. This is the query
augmentation shown on step 2 of Figure 2.

The idea is to use existing knowledge databases, such
as web encyclopedias (e.g. Wikipedia) and search en-
gines (e.g. Google, Yahoo Web Search), in order to extract
“lightweight ontologies” [10] or vocabularies of terms from
their semi-structured results. The basic concept of the query
augmentation (step 2 on Figure 2) is to call 1..n web search
engines or encyclopedias with the search terms provided by
the user, for instance “smart meter”. The XHTML result
page from each web resource is then automatically down-
loaded and analyzed. The result is a list of keywords, which
frequently appeared on pages related to “smart meter”. A
number of the resulting keywords are thus related to the ini-
tial keywords “smart meter” and can hence be used when
searching for types of services corresponding to the initial
input.

An invocable web-resource together with several filters
and analysis applied to the results is called a Query Strat-
egy and their structure is based on the Strategy Pattern [8],
which enables to encapsulate algorithms into entirely inde-
pendent and interchangeable classes. This eases the imple-
mentation of new strategies based on web resources con-
taining relevant terms for a particular domain. Furthermore,
Query Strategies can be combined in order to get a final re-

4



sult that reflects the successive results of calling a number
of web-resources. The resulting list of related keywords is
then returned to the developer in the Query Assistant, where
she can (optionally) remove keywords that are not relevant
(step 3 of Figure 2).

In order to test the query augmentation mechanism we
implemented a number of Query Strategies, they are evalu-
ated in Section 4.1.

3.1.2 Service Type Lookup

The augmented query is used to determine any match-
ing service types in the Service Type Repository (step 4
and 5 on Figure 2). All service types that match any of
the keywords supplied are found, both those manually en-
tered and those determined automatically by the augmen-
tation step. The query keywords are matched against all
metadata of a service type, which was sent to the Service
Monitor upon network discovery or extended by manual
entry. This includes human readable descriptions, con-
tact information, legal terms, explicit keywords and inter-
face descriptions (WSDL). Additionally, structured techni-
cal metadata is considered, e.g. dependency information
between service types, and requirements of the service type
on underlying hardware. The result of the Service Type
Lookup is a list of service types that potentially support the
functionality the developer is looking for.

3.2 Candidate Search

Figure 3. Ranking and optionally Provision-
ing Service Instances.

Real-world devices are volatile e.g. connect and discon-
nect thus the need to decouple the discovery of service types

from the discovery of actual instances of services. The Can-
didate Search (step 2 on Figure 1) models the discovery of
running service instances. The first step in this sub-process
is for the developer to select the suitable types of services
by browsing their details (step 1 on Figure 3). Alternatively
she can select all the types retrieved in the Types Query part
of the process.

3.2.1 Context Extractor

One of the main differences between real-world service and
virtual services is that real-world services are directly linked
to the physical world. Context is information that quali-
fies the physical world, and can help in both reducing the
number of services returned to the developer, as well as in
finding the most appropriate services for the current envi-
ronment. Context extraction on the developer side is done
at step 2 of Figure 3. It is worth noting that context on the
developer side reflects her expectations, this information is
then going to be compared to the service and device side
context by the Service Instance Ranking component (see
Section 3.2.3).

To fit our requirements, the context is modeled by two
distinct parts: the digital environment, which we define as
everything that is related to the virtual world the developer
is using, and the physical environment, which refers to prop-
erties of the physical situation the developer currently is lo-
cated in or wants to discover services in.

The digital environment is composed of Application
Context and Quality of Service. The Application Con-
text describes the business application the developer uses
when trying to discover services, e.g. the type of applica-
tion she is currently developing or the language currently
set as default. Such information co-determines the services
a developer is looking for and can reduce the scope of the
discovery. The QoS Information reflects the expectation of
the developer (or of the application she is currently using)
in terms of how should the discovered service perform. Our
current implementation supports service health and network
latency, i.e. the current status of the service and the network
transmission delay usually measured when calling it.

The physical environment is mainly composed of infor-
mation about location. Developers are likely to be looking
for real-world services located at a particular place, unlike
when searching most virtual services. We decompose the
location into two sub-parts following the Location API for
Mobile Devices (JSR 179). The Address encapsulates the
virtual description of the current location, with information
such as building name, building floor, street, country, etc.
and the Coordinates are GPS coordinates. In our imple-
mentation the location can either be automatically extracted
e.g. if the developer looks for a real-world service close to
her location, or it can be explicitly specified if she wants a
service located close to a particular location.

5



3.2.2 Service Instances Search

In step 3 of Figure 3, the identifiers of the selected service
types and the full context object are sent to the Service Mon-
itor. This component is the link between service types and
running instances of these services. Thanks to the dynamic
network discovery of devices (explained in Section 2) the
Service Monitor and the Device Monitor know what devices
are currently providing what service types. In steps 4 and 5
of Figure 3, the Service Monitor queries the Device Monitor
for the quality of service of the selected service instances.
This information is derived from polling the devices from
time to time as well as by monitoring the invocations of ser-
vices and calculating their execution time.

The QoS information is then packed into a context ob-
ject that contains all available contextual information for
each device running the selected Service Instances. Since
we can not expect every device to provide a full contex-
tual profile, the Service Monitor has its own default context
component which can be used to extend the information the
device provides.

3.2.3 Service Instance Ranking

The Service Instance Ranking component is responsible for
sorting the instances according to their compliance with the
context specified by the developer or extracted from his ma-
chine. As shown in step 6 of Figure 3 the Service Instance
Ranking component receives a number of service instances
alongside with their context object. It then uses a Ranking
Strategy to sort the list of instances found. For example,
a Ranking Strategy could use the network latency so that
the services will be listed sorted according to their network
latency.

Weighted and chained combinations of Ranking Strategy
can be used when sorting. Furthermore, each ranking cri-
terion can use both the context information of the instances
gathered during the Service Instance Search and the con-
text information extracted on the developer side in step 2 of
Figure 3. Thus, instances can be ranked against each other
or/and against the context of the developer (e.g. her loca-
tion). The output of the ranking process is an ordered list
of running service instances corresponding both to the ex-
tended keywords and to the requirements in terms of context
expressed by the user.

3.3 On-Demand Service Provisioning

In case no running service instance has been found, On-
Demand Service Provisioning will be carried on. This will
first dynamically discover devices on the network that offer
services matching the requirements of the developers. In
the last instance, installation of services on suitable devices
will be carried out.

3.3.1 Forced Network Discovery of Devices

According to our experience, network discovery of devices
is not entirely reliable. This is because it uses UDP and
might take a long time to propagate across the whole sys-
tem. Sometimes fresh information is needed and thus, an-
other discovery mode is proposed that is particularly suited
for environments where devices with unknown capabilities
continuously connect to or disconnect from the network.
Forced network discovery of devices is responsible for dy-
namic discovery of specific devices. The dynamic process
can use different types of filters that specify the type of the
device or a scope in which the device resides and/or other
semantic information. This is useful to restrict the result set
when looking for new devices, as only devices that match
the criteria specified will respond. Filter information is in-
cluded in a Probe message sent to a multicast group; devices
that match the probe send a ProbeMatch response directly
to the client (in unicast mode). Similarly, to locate a device
by name, a client sends a Resolve message to the same mul-
ticast group and the device that matches sends a Resolve-
Match response directly to the client. After this network-
level scan, the result set can be further narrowed by match-
ing keywords or textual information that describe both static
(device type, available sensors on board) and dynamic prop-
erties of devices (QoS, physical location, available battery
life, network connectivity, available sensors).

3.3.2 On-Demand Service Injection on Devices

In case that even after forced network discovery of de-
vices no service instances that match the query have been
found, the system tries to generate appropriate instances
by injecting (i.e. remotely installing) the identified service
types. This involves finding devices that are capable of host-
ing the service, and actually installing them in a platform-
dependent way. This is possible if the descriptions of the
service types identified in previous steps include installa-
tion instructions and executable software artifacts.

In the Service Repository, for each service type, we pro-
vide data structures for deployable artifacts, including (dy-
namic and static) hardware requirements and dependency
relations between services. These requirements are com-
pared with the capabilities and states of the currently avail-
able devices. An efficient service to device mapping is cal-
culated and platform-specific injection actions are taken to
change the system according to the mapping. Once the in-
jection finished successfully, control is handed back to Ser-
vice Instance Ranking, which will use the Service Monitor
again to discover the newly installed Service Instances.

In a concrete example, the service description of a fire
detection service could include both DPWS bundle for in-
stallation on an DPWS-enabled sensor platform and a rule
set for a rule-based sensing system. Meta information
makes sure that the bundle and the rule set are only applied

6



to the appropriate platforms. Further information for de-
ployment can be included, like the desired coverage (e.g.
80 % of all nodes), dependency on other services, e.g. a
temperature measurement service and a fire shutter control
service. If the service to be deployed is annotated to depend
on other services, those can be deployed as well. Further
metadata may include the flash or RAM memory required
to install the new service. Service mapping and injection is
described in greater details in [7].

4 Process Evaluation

A prototype of the described process was implemented
and integrated into the SOCRADES Integration Architec-
ture. The prototype implementation was developed in Java
and deployed on a Java Enterprise Application Server (SAP
NetWeaver) in two different locations.

The first step in evaluating the implementation of the
process was to get a number of DPWS-enabled devices of-
fering services to search for. Unfortunately, since DPWS
is a rather new standard, its adoption on industrial devices
is still ongoing. Thus, we decided to simulate a number
of devices that one could expect finding in industrial envi-
ronments. Since developers usually write the description
of Web Services themselves [3], we selected 17 project-
neutral developers and asked them to write the description
of a selected device and of at least two services it could of-
fer. The developers were given the documentation of a con-
crete device according to their own skills and professional
background. Based on these descriptions we generated 30
types of services (described in WSDL containing DPWS
metadata) for 16 different smart devices ranging from RFID
readers to robots and sensor boards. Out of these, 1000
service instances were simulated at the two deployed loca-
tions. A proof of concept evaluation of the whole process
was done using this prototype implementation and the sim-
ulated data.

4.1 Evaluation of Types Query

In the evaluation of the Query Augmentation module we
wanted to know whether: 1) Augmenting user input with re-
lated keywords could help in finding more real-world Web
Services, and 2) What type of query strategies is the most
suitable. Two different types of Query Strategies have been
compared. In the first type, we used a human generated in-
dex (Wikipedia), and in the second a robot generated index
(Yahoo Web Search). The input keywords were selected by
7 volunteers, all working in the IT domain. They provided
71 search terms (composed of one or two words) that they
could imagine using when searching for services provided
by the 17 devices. These terms where entered one by one
and all the results were logged.

Figure 4. Results of the Query Augmentation
with Yahoo and Wikipedia.

The trend extracted from these experiments is shown on
Figure 4. Two results can be identified: First, the Query
Augmentation process does help in finding more real-world
services. Without augmentation 75% of the service types
were found, using the query augmentation up to a 100%.
However, Query Augmentation generates a number of false
positives, i.e. service types that are returned even if they are
not related to the provided keywords. Thus we identified
the need for restricting the number of keywords added to
the initial ones. The observed optimum was between 5 and
10 added keywords, resulting in 95% percent of types of
services found for less than 20% false positives. Secondly,
although Figure 4 suggests that using Yahoo seems to per-
form slightly better than Wikipedia, that result needs to be
explained. The main reason is that about 50% of the key-
words used against Wikipedia did not lead to a page because
they did not have dedicated articles yet. However in those
cases, where results were actually extracted from Wikipedia
pages, they appeared more relevant to searched real-world
services. Furthermore Wikipedia grows at a rate of about
1500 articles per day1. Thus, a good solution would be to
chain the strategies so that first human generated indexes
are called and then, as a fallback, robot generated ones in
case the first part did not lead to results.

4.2 Evaluation of On-Demand
Service Provisioning

Our implementation of the on-demand provisioning part
was done using adaptations of well-known algorithms. The
service to device mapping has been proven to be NP hard
[7]. Both probabilistic / efficient (O(n · k)) and complete
/ inefficient (O(nk)) algorithms have been implemented.
Some evaluation was done using test scenarios, in which the
probabilistic algorithms produced results close to the opti-

1http://en.wikipedia.org/wiki/Wikipedia:
Size of Wikipedia

7



mum, in regards to a given objective function. A proof of
concept implementation showed the service mapping and
deployment both on simulated and real, PDA-scale devices.
Flexibility is achieved by using exchangeable strategies for
each step of the mapping process that can be exchanged at
run-time through configuration. Besides, this approach is
scalable, since most of the components can be easily repli-
cated and distributed across different locations. A detailed
evaluation and discussion of the on-demand service provi-
sioning is given in [7].

5 Conclusion and Future Work

In a future highly populated by networked embedded de-
vices, finding real-world services that can be dynamically
included in enterprise applications will be a challenging
task. In that view, we have presented here an approach
that would facilitate this task for developers, allowing them
not only to search efficiently for services running on em-
bedded devices, but also to deploy missing functionalities
when needed. The comprehensive process demonstrated in
this article shows that we can extend the reach of enterprise
computing to the real world. To achieve this, we suggest
to use Web Services standards to easily integrate physical
devices into existing enterprise information systems. Web
services on devices (in particular DPWS) can be used to dy-
namically register devices and the service(s) they provide.
We have suggested to use queries to search services meta-
data that has been gathered by the network discovery of de-
vices. Furthermore, we have designed and evaluated au-
tomatic augmentation of the search queries with strategies
that extend queries with related keywords found on knowl-
edge databases available on third party web sites. With this
extension we have shown that significantly more services
can be found without overloading devices with description
data. We also show how context is important for real-world
services and explain its use within the service discovery
process. Finally, we presented how missing functionalities
can be injected on devices upon developers’ request.

Future work will include a thorough evaluation of the
whole process and its architecture, focusing on perfor-
mance, scalability and usability. Finally, we are deploying
the architecture in real-world trials in order to better under-
stand the uses and limitations of the approach.

Acknowledgments

The authors would like to thank the European Com-
mission and the partners of the European IST FP6
project Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices SOCRADES (www.
socrades.eu), for their support. Thanks also to Dr. Pa-
trik Fuhrer (University of Fribourg, Switzerland) for his

help on the software engineering part of the process.

References

[1] C. Atkinson, P. Bostan, O. Hummel, and D. Stoll. A prac-
tical approach to web service discovery and retrieval. In
Proc of the International Conferent on Web Services (ICWS
2007), pages 241–248, 2007.

[2] H. Bohn, A. Bobek, and F. Golatowski. SIRENA - ser-
vice infrastructure for real-time embedded networked de-
vices: A service oriented framework for different domains.
In Proc. of the International Conference on Networking, Sys-
tems, Mobile Communications and Learning Technologies,
page 43. IEEE Computer Society, 2006.

[3] M. Crasso, A. Zunino, and M. Campo. Easy web service
discovery: A query-by-example approach. Science of Com-
puter Programming, 71(2):144–164, Apr. 2008.

[4] L. M. S. de Souza, P. Spiess, D. Guinard, M. Koehler,
S. Karnouskos, and D. Savio. Socrades: A web service
based shop floor integration infrastructure. In Proc. of the
Internet of Things (IOT 2008). Springer, 2008.

[5] W. K. Edwards. Discovery systems in ubiquitous comput-
ing. IEEE Pervasive Computing, 5(2):7077, 2006.

[6] E. Fleisch and F. Mattern. Das Internet der Dinge. Springer,
1 edition, July 2005.

[7] T. Frenken, P. Spiess, and J. Anke. A Flexible and Extensible
Architecture for Device-Level Service Deployment, volume
5377 of LNCS, pages 230–241. Springer, December 2008.

[8] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, Nov. 1994.

[9] M. Hatler, D. Gurganious, C. Chi, and M. Ritter. WSN for
Smart Industries. OnWorld Study, 2007.

[10] M. Hepp, K. Siorpaes, and D. Bachlechner. Harvest-
ing wiki consensus: Using wikipedia entries as vocabulary
for knowledge management. Internet Computing, IEEE,
11(5):54–65, 2007.

[11] F. Jammes, A. Mensch, and H. Smit. Service-oriented device
comunications using the devices profile for web services. In
Proc. of 3rd International Workshop on Middleware for Per-
vasive and Ad-Hoc Computing (MPAC05) at the 6th Inter-
national Middleware Conference, 2005.

[12] M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza,
J. Muller, P. Spiess, S. Haller, T. Riedel, C. Decker, and
G. Stromberg. Decentralized enterprise systems: a multi-
platform wireless sensor network approach. Wireless Com-
munications, IEEE, 2007.

[13] R. Monson-Haefel. J2EE Web Services: XML SOAP WSDL
UDDI WS-I JAX-RPC JAXR SAAJ JAXP. Addison-Wesley
Professional, Oct. 2003.

[14] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny
web services: design and implementation of interoperable
and evolvable sensor networks. In Proc. of the 6th ACM con-
ference on Embedded Network Sensor Systems, pages 253–
266, Raleigh, NC, USA, 2008. ACM.

[15] H. Song, D. Cheng, A. Messer, and S. Kalasapur. Web ser-
vice discovery using General-Purpose search engines. In
Web Services, 2007. ICWS 2007. IEEE International Con-
ference on, pages 265–271, 2007.

8


