
Web-Service Enabled Wireless Sensors in SOA Environments

Domnic Savio and Stamatis Karnouskos
SAP Research

Vincenz-Priessnitz-Strasse 1, D-76131, Karlsruhe, Germany
{domnic.savio, stamatis.karnouskos} @sap.com

Abstract

Enterprise applications support business activities in
companies, so that they can manage complexity and be more
effective. The service oriented architecture (SOA) concepts
empower modern enterprises and provide them with flexi-
bility and agility. These concepts nowadays expand towards
the shop-floor activities, down to the device level. By imple-
menting web services on the devices natively, we are able
to push down at item level SOA concepts. In this work we
focus on implementing web services on the SunSPOT wire-
less sensor nodes and coupling it with enterprise level ser-
vices. The presented methods could be used as experimental
platform to evaluate new SOA-based paradigm for factory
automation and enterprise computing. The goal is to seam-
lessly integrate heterogeneous hardware on the shop floor
and the business intelligence via the SOA approach.

1. Introduction

Web services are used mainly in enterprise environments
to support interoperable e.g. machine to machine (M2M)
interaction while hiding the details of the implementation
at each end-point. Enterprise applications use web services
as basic blocks to create more sophisticated services e.g.
to glue together cross-organizational functionality. Several
standards exist, but most of them do not assume embedded
systems as an implementation platform. Therefore, when
first drafts of implementing web services on devices came
up, a consortium led by Microsoft had the home and office
automation hardware in mind when they proposed the De-
vice Profile for Web Services (DPWS [13]).

One domain struggling with heterogeneity and propri-
etary protocols, while thousands of embedded devices exist,
is that of factory automation; thus it appeared appealing to
try to use web services on devices in this domain [8]. The
DPWS was picked up by a number of research efforts, most
notably projects such as SIRENA (www.sirena-itea.
org), SODA (www.soda-itea.org) and SOCRADES

(www.socrades.eu). The key idea is to provide the
same interoperability and easiness of integration of devices,
focusing exclusively on the functionality they offer at the
shop floor and not on the device-specific implementation as
such. As a result, any device could be broken down to some
basic services depicting its basic functionality used by other
devices or entities. These services would then be offered as
web services from the device itself, to other devices or enti-
ties in higher layers.

It is clear that this approach could create a new paradigm
at the shop floor, where integration efforts focus on the ab-
stract functionality offered and are not bound to a specific
device. This would encourage not only the development
of new devices on the automation industry that have web
services embedded [9][17], but would kick-start collabo-
ration at the lowest level i.e. among devices themselves,
offering new opportunities and effectively connecting the
vendor-locked isolated islands of today.

Bringing such flexibility at device layer is coupled with
several non-trivial challenges. One of these is the quest
for common understanding of the functionality the services
offer as well as the correct interpretation of the offered
data. The temperature data that comes from a microwave
oven and the same data coming from a temperature sen-
sor mounted on a robotic arm have different meanings and
usability based on the context they operate. Not only the
consequent actions are different, the speed of the incom-
ing data, payload, time needed to act - all have significant
meaning and are mission critical on the shop floor rather
than in the home kitchen. As such ontologies describing the
produced data, as well as timely evaluation of it is needed.

When different services are then orchestrated to form a
complex process flow, WSDL and SOAP make it comfort-
able to achieve, although these services might have been
implemented using different languages. This leads to an in-
creasing number of services that can be realized by relying
on very simple ones that are implemented on-device, even
on those with constraint resources such as computing capa-
bility. As the shop floor gets populated with web services
coupled to the functionality of the existing devices, enter-



Figure 1. A cross-layer web-service mashup

prise services could easily, directly and on-event basis get
critical information needed e.g. to plan the next set of pro-
duction orders more efficiently.

In this paper, we focus on aforementioned concepts and
show in practice how this can be realized. We take wireless
sensor nodes and industrial programmable logic controllers
(PLCs) and offer some of their services as web services.
These services are then used to orchestrate a process flow
in which an Enterprise Resource Planning (ERP) software
is acting as a consumer of the services to provide business
logic. It must be pointed out that our efforts as depicted in
the rest of the paper refer mostly to the management plane
while control is tackled but only in an indirect manner i.e.
no hard real-time control issues are considered.

2. Business Implications

As we are moving towards the ”Internet of Things” [18],
where millions of devices will be interconnected, provide
and consume info available on the network and cooper-
ate, new capabilities are opened. As these devices need to
interoperate, the service-oriented approach seems to be a
promising solution i.e. each device offers its functionality in
a service-oriented method, while in parallel it is possible to
discover and invoke new functionality from other services
on-demand. By considering the set of intelligent system
units as a conglomerate of distributed, autonomous, intel-
ligent, pro-active, fault-tolerant and reusable units, which
operate as a set of co-operating entities, a new dynamic in-
frastructure that is able to provide a better insight to its com-
ponents to the higher levels and flexibly react to dynamic
business changes can be realized.

The convergence of solutions and products towards the
SOA paradigm adopted for smart embedded devices, con-

tributes to the improvement of the reactivity and perfor-
mance of industrial processes, such as manufacturing, lo-
gistics and others. This will lead to information being avail-
able as it happens, on an event-driven basis, and in business-
level applications that are able to use high-level information
for various purposes, such as diagnostics, performance in-
dicators, traceability, etc. These future vertical integration
capabilities will also help to reduce the effort required for
integration of the affected systems in the sense of the given
business scenario.

We assume that in the future, web services might be the
common denominator everywhere. As such, the factories
will transform towards web service mashups, where com-
posed services can be created in a cross-layer way. Business
processes running at ERP level, will be able to interact and
take timely decisions with services running at enterprise,
network or even device level. This will effectively lead
to the realization of high-resolution enterprise, increasing
not only the visibility in all layers but also the collaboration
among them.

As depicted in Figure 1, the functionality of multiple de-
vices will be available either as a service abstraction via
a middleware (classical connectivity efforts today) or by
providing their functionality as a set of web services them-
selves. Furthermore it will be possible to communicate in
a peer-to-peer way among them. Sophisticated services can
be created at any layer (even at device layer) taking into ac-
count and based only on the provided functionality of other
entities that can be provided as a service.

Having such a dynamic infrastructure has a significant
effect on the way we design and implement enterprise ser-
vices and applications. Increasing amount of information
coming from the shop floor can enhance the efforts such as
remote diagnosis, maintenance etc. Actions such as start-
ing, stopping and pausing automation devices are also en-
tering the shop floor [2, 3]. With the increased usage of
pervasive and ubiquitous computing devices, automation in
the shop floor is getting more intelligent, IP-networked, and
hosted services report events happening in the their envi-
ronment to subscribers on remote locations [4]. As a result,
software applications like the Enterprise Resource Planning
(ERP) which reside normally on the top of the automation
IT pyramid, could benefit from real time events on the shop
floor and provide meaningful timely reports that could be
used to plan production more accurately [1, 3, 5]. This adds
more flexibility and supports the on-demand nature of the
market.

To execute and maintain devices on the shop floor, Man-
ufacturing and Execution Systems (MES) play a dominant
role, often acting as a middleware gateway, reporting di-
rectly to the enterprise resource planning software such as
the SAP ERP. Due to globalization and high demand of flex-
ibility, enterprise applications change their building blocks



by breaking them into further small components, empower-
ing them with service oriented paradigm and strongly glu-
ing them (e.g. the SAP portfolio is based on enterprise SOA
approach). As the trend shifts more to SOA, with devices
in the shop floor hosting a variety of services, the business
software components benefit themselves by consuming in-
formation from the shop floor in a timely manner.

3 Web Services on Devices

In the past there have been efforts (e.g. Jini, UPnP)
to integrate devices into the networking world and make
their functionality available in an interoperable way. The
latest one, coming from UPnP and attempting to fully in-
tegrate with the web-service world, is DPWS, which de-
fines a minimal set of implementation constraints to enable
secure web service messaging, discovery, description, and
Eventing on resource-constrained devices. DPWS is an ef-
fort to bring a web services on the embedded world taking
into consideration its constrained resources. Several im-
plementation of it exist in Java and C (www.ws4d.org,
www.soa4d.org), while Microsoft has also included a
DPWS implementation (WSDAPI) by default in Windows
Vista and Windows Embedded CE.

In the SOCRADES project, we have used it on automa-
tion devices like programmable logic controllers (PLC) and
on the SunSPOT wireless sensor nodes. Although our ef-
forts are based on implementing it natively at device level,
or creating a gateway for devices that cannot host it due
to resource mangle, an appealing idea is also to consider
implementing the DPWS Stack on an ASIC chip as a hard-
ware. The DPWS stack supports the following Web Ser-
vice Standards: WSDL 1.1, XML Schema, SOAP 1.2, WS-
Addressing, WS-MetaDataExchange, WS-Transfer, WS-
Policy, WS-Security, WS-Discovery and WS-Eventing. As
a result, dynamic device and service discovery can be re-
alized, while the metadata exchanged can provide detailed
information about the devices and its functionality. This
is well supported in DPWS with the inclusion of the main
data discovery and transfer protocols such as WSDL, SOAP,
WS-Transfer etc. Therefore not only custom made device
drivers can be eliminated to a large extend, but also these
devices can now be easier and better used by ERP applica-
tions via widely used technologies such as web services.

As the shop floor gets rapidly populated with SOA-ready
devices, to manage them is a fluctuating task load on the
ERP system, depending upon the number of devices and
their reporting frequency. Another important task is to pro-
vide the ERP system with meaningful business relevant data
and not raw info e.g. just temperature information in a
tag format. We have developed DPWS-based extensions to
the SAP Manufacturing Intelligence and Integration (MII)
product, that realize exactly this part of subscribing to de-

Figure 2. SunSPOT acting as a gateway con-
trolling other devices

vices on the shop floor that support web services and col-
lecting data from them. MII then encapsulates the data
with proper syntax that can be clearly understood by SAP
ERP products like Supply Chain Management (SCM). This
offers the shop floor manager a comprehensive overview
about which production order is getting executed on a par-
ticular machine and the status of components on that ma-
chine. Moreover correlated information can be extracted
from manufacturing analytics and performance factors are
provided by the SAP MII [10].

Sensor Networks are seen as one of the most promis-
ing technologies that will bridge the physical and virtual
worlds enabling them to interact. This effectively leads to
the avoidance of media breaks especially between the real
and the enterprise world. Sensors not only have informa-
tion about themselves but more importantly about their en-
vironment. In conjunction with the actuators, they can also
act on their environment, controlling/managing it. We also
witness a high number of sensors not as standalone devices
but as part of more complex machines. As such it is ex-
pected that in future infrastructures at work, home, factory
etc, thousands of sensors will be available, eventually be-
ing able to sense and act with respect to their context and
capabilities. As the sensors get Internet access (via a gate-
way or the complex device that hosts them), they can be
easily coupled with enterprise systems, eventually allowing
them to monitor and manage almost in near real-time the in-
frastructure. This brings us one step closer to the so called
”real-time” enterprise that minimizes or avoids any media
gaps, and is agile. The soft “real time” data acquisition and
evaluation in this context offers transparency to the shop
floor by integrating the devices or process execution sys-
tems and the ERP Connectivity frameworks like SAP MII



which act as middleware systems.

4. Experimental Setup

For the integration of web services and wireless sensor
networks in this paper, we used the SunSPOTs from Sun
Microsystems [11]. The SunSPOTs consist of a base sta-
tion which is terminated to a normal PC and connected to
it via an USB port. Several remote nodes use this base sta-
tion to interact with applications running on the PC and get
Internet access via it. The remote node hosts a set of sen-
sors such as temperature, light and accelerometer. It also
has 8 GPIO pins and a set of high current drivers to turn on
125 mA relays. As such SunSPOTs can be used as control-
ling devices for more simple ones e.g. proximity sensors
etc and act as a gateway for their functionality. As a proof
of concept for the gateway role of the SunSPOT we have
integrated it with a servo motor and two proximity sensors,
all of which (including the native functionality of the sen-
sors e.g. temperature sensor) are offered by the SunSPOT
as separate web services to any other entity.

As depicted in Figure 2, a SunSPOT remote node was
connected to a servo motor over a 6V DC relay. The mo-
tor needs a 6VDC and 220mA. Since this was a heavy load
for the battery operated SunSPOT, separate power supplies
were given to the motor and the power was switched on us-
ing a 6V relay which can handle an input voltage of 2.5V.
The wire connecting the SunSPOT and the relay was termi-
nated to the high current pin of the demo board connector.
To enable the high current output the pins +5V and the VH
have to be shorted to enable the high voltage output pin of
the ARM. In this way, setting the H0 pin would energize the
relay and trigger the output terminals that would connect the
power to the motor. Hence the motor could be turned on by
the SunSPOT. The motor could be also made to turn in the
reverse direction if the power terminals are interchanged.

To assist a controlled behavior, a Pepperl-Fuchs NPN
proximity sensor was also terminated to the input pins of the
SunSPOT. The proximity sensor is activated when a metal
object is present near its surface. This sensor is powered
by a separate power supply and his output was sent to a
voltage divider. The voltage divider makes sure that the
output voltage does not exceed 2,5V DC which is still un-
der the maximum limits of the SunSPOT input pin. The
programmable logic hosted on the SunSPOT assumes that
when H0 is turned ON, the input pin D0 to which prox-
imity sensor is terminated is constantly checked for volt-
age. When voltage is present on this pin, H0 is immediately
turned down. This could be used in a scenario of a con-
veyor belt where, the conveyor could move on the torque of
the motor and when the object to be moved had reached the
destination, the sensor could turn off the conveyor.

We have shown how a SunSPOT can act as a gateway

Figure 3. Components and their interactions
vertically

for other devices and sensors; now we will focus on show-
ing how they can cooperate with other devices and be in-
tegrated in enterprise scenarios. To demonstrate this, a re-
mote SunSPOT is mounted on a robotic arm and is pro-
grammed to report the temperature of it to the base station
over the wireless link telemetrically. An industrial based
programmable logic controller (PLC) from Schneider Elec-
tric, controls the movement of this robotic arm. The PLC
is terminated to the network over the Industrial Ethernet
connection to a normal PC which hosts web services that
encapsulate the commands that the PLC needs to control a
process. The base station is also enhanced with web ser-
vices to subscribe and report temperature information from
the remote SunSPOT. As such both the wireless sensor and
the PLC appear as web service enabled devices on the net-
work, offering their functionality as such.

5. Middleware Integration

The functions of individual components are shown in
Figure 3. DPWS clients discover the devices using WS-
Discovery. Once the devices on the shop floor are discov-
ered, the WSDL which describes the services and opera-
tions hosted by the device servers are available. Using the
WSDL, service proxies were developed to consume these
services. For this experiment, certain generic interfaces like
start, stop, reset and failure (as event) were defined on the
device server. These operations invoke the service and then
write data to a network predefined database table. For ex-
ample, the event, failure is initiated by the device server.
The client subscribes to this event and upon receipt it writes
this event to the database with the time stamp when the
event was received. The database is visible in the SAP MII
system which acts as a middleware between the devices and
the ERP System. There is a latency in milliseconds here



from the time when the actual event had occurred till, the
time it was registered by the client in the database. This
is due to the fact that in the meantime the event goes thru
a series of steps like, construction of the SOAP message,
identifying subscribers and sending it to the end point ref-
erences. The server would in turn need to decode the SOAP
message and call the appropriate function which consumes
the event and in this case it is a write to the database. During
the whole process, there are several non-deterministic fac-
tors involved like, network traffic, SOAP construction, size
of the SOAP Message and the bandwidth of the network,
processing of the SOAP at the client and retrieval of the data
from the SOAP message. In between the data from the de-
vices have to be converted from binary to ASCII. This time
interval which contributes a major part to the latency of the
events and service invocation can be reduced by standard-
izing transfer protocols like SOAP for embedded devices.
Binary SOAP is a good candidate for further experimenta-
tion as its applicability in other domains shows [14]. Once
the data is available in the database tables, they can then be
fetched by the SAP MII that queries the database for any
events or updates from these devices periodically e.g. each
1 second. The time for doing a polling was further enhanced
by deploying an http call to SAP MII from the DPWS Client
once the event was received (so we don’t have to unneces-
sarily poll the DB if no events occur). Other standards e.g.
OPC DA are widely used as current practice in the industry.

The use of wireless devices gives the possibility to place
the devices remotely and monitor their performance even
under hazardous conditions often seen on the shop floor.
The overview of the software components and their associ-
ated hardware is seen in Figure 4. In this experiment only
a few devices were considered. However in previous work
approx 25000 devices were simulated and integrated in the
similar fashion to evaluate the performance of device dis-
covery and service invocation [16]. Increasing the number
of devices on the shop floor would increase the complexity
of managing the services hosted on the devices. To han-
dle this complexity WS-Management could be used. The
specification is based on DMTF open standards and Inter-
net standards for web services [15]. WS-Management uses
SOAP to manage systems that include web services.

The software used to program the SunSPOTS is written
using Java on the NetBeans IDE (www.netbeans.com).
The SunSPOT development kit also comes with a SDK, that
provides APIs that ease the access to the GPIO ports and the
temperature sensor e.g.:

private ITemperatureInput tempSensor =
EDemoBoard.getInstance().getADCTemperature();

The acquired data can then be transmitted using methods
like,

Radiogram rdg = xmit.newDataPacket(PING_REPLY);
rdg.writeInt(linkQuality;
xmit.send(rdg);

Figure 4. Overview of the Architecture using
SunSPOTS and PLC

Figure 5. The dashboard at the SAP MII

Where, PING_REPLY is a telemetry command that both
the base and remote nodes can understand.

6. Services at Enterprise Level

The actual sensing algorithm on the SunSPOTs is writ-
ten using Java. The web services are deployed on top of
the base station class files on a host PC. Since the web ser-
vices are exposed over the network and accessible using
SOAP messages, SAP MII should communicate to web ser-
vices by constructing SOAP messages to make requests and
parse them to read the responses from them [6]. Hence a
middleware to discover and subscribe to these web services
was developed, that also constructs the SOAP messages to
make invocation and parses them when events are received.
The received data is then deposited in the database which is
then queried by the SAP MII. In this way, the SAP MII is
fully aware of the changes happening on the shop floor. Any
faults or completion of tasks are updated as status messages
to the SAP MII. Figure 5 shows a snapshot of the graphical
user interface on the shop floor.

The temperature sensor from the SunSPOT periodically
reports the temperature information to the base station
which is then sent to the Web Service client. This data is
then retrieved by SAP MII and then compared if this data
is beyond certain critical value (according to the business



Figure 6. Business rule modelling in SAP MII

logic running in SAP MII). If the data is beyond a critical
value, it writes back to the database to stop the whole pro-
cess as the temperature is too high. The web service client
then constructs a SOAP message and sends to the PLC to
stop the operation of the robotic arm. SAP MII provides
this possibility of modeling the business rule using its Busi-
ness Logic Editor. A snapshot of the specific business logic
modeled in this editor Figure is depicted in 6

The scenario described here can be easily extended to
any complex automation process. ERP applications like
Supply Chain Management (SCM) Production Planner can
use the status of the shop floor to plan further new orders
coming from different locations of its sales organization.
Hence a distributed SOA architecture can enhance the pro-
duction planning process of a multi-located manufacturing
facility with ”just-in-time” data from the shop floor. Ad-
ditionally the services in shop floor are also correlated in
SAP MII with business data so that the shop floor manager
is fully aware of which production order is currently be-
ing executed and which ones are on the pipeline. Further
manufacturing analytics can be performed on shift bases to
identify performance of different locations on near real time
basis.

7 Final Thoughts and Conclusions

Providing web services on the shop floor is effectively
bringing the business logic closer to it . The use of sen-
sor data on the shop floor serve as parameters to make
timely decisions on the next operation of the processes with
or without human intervention. As such visibility in the
whole enterprise is increasing, as now events happening are
quickly propagated to the relevant services and applications
that affect them.

However, when the number of devices and services in-
creases on the shop floor, it is often difficult to have an

overview on them. Increased communication may result to
difficulty into subscribing to a particular set of events. Fur-
thermore if too many entities subscribe to services offered
by a device, this can lead to bottlenecks and overloading of
the device itself. Scalability needs to be checked; especially
due to the fact that we usually deal with embedded hence re-
source constrained devices. Semantics pose another signifi-
cant challenge, as the understanding of the data delivered by
web service enabled devices needs to be automated and uni-
versal. Additionally these services have to be governed and
regulated to reflect the process flow of an operation which
calls for more research in this area.

As of today, most sensors are connected via a gateway to
Internet applications. However, with the emergence of IP as
a common denominator, it is a matter of time until it is fit for
embedded devices. IETF’s ongoing work on IPv6 over Low
power WPAN (6lowpan) [19], tackles exactly this category
of devices. Extreme low power (such that they will run po-
tentially for years on batteries) and extreme low cost (total
device cost in single digit dollars, and riding Moore’s law
to continuously reduce that price point) are seen as essen-
tial enablers towards their deployment in networks. Having
these devices offering their functionality via a web-service
interface would lead to a new generation of device-aware
applications. Up to now ArchRock (www.archrock.
com) and Sensinode (www.sensinode.com) have im-
plemented 6lowpan stacks in their sensors, while this is ex-
pected to be also available in the future for SunSPOTs.

Being able to directly access via a unified way e.g. web
services over 6lowpan any embedded device, and couple it
directly to enterprise services, opens new opportunities for
enterprise applications, but also major challenges that need
to be addressed before these concepts become widely com-
mercially available.

8 Acknowledgments

The authors would like to thank the European Com-
mission and the partners of the European IST FP6
project ”Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices” (SOCRADES -
www.socrades.eu), for their support.

References

[1] Luciana Moreira Sa de Souza, Patrik Spiess, Moritz
Koehler, Dominique Guinard, Stamatis Karnouskos,
and Domnic Savio, “SOCRADES: A Web Service
based Shop Floor Integration Infrastructure”, Inter-
net of Things 2008 Conference, March 26-28, 2008,
Zurich, Switzerland.



[2] J. Bollinger et al, “Visionary Manufacturing Challenges
for 2020”, National Research Council Report, National
Academy Press, Washington, D.C., 1998.

[3] Manufuture: A vision for 2020, Report of the High
Level Group, November 2004, Directorate-General for
Research, European Commission, Brussels, Belgium.

[4] F. Kordon, L. Pautet, “Toward Next-Generation Mid-
dleware?”, IEEE Distributed Systems Online, Vol 6(3),
March 2005.

[5] D. Lea, S. Vinoski, W. Vogels, “Asynchronous Middle-
ware and Service”, IEEE Internet Computing, Jan-Feb
2006, pp. 14-17.

[6] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Ker-
marrec, “The Many Faces of Publish/Subscribe”, ACM
Comp. Surveys, 35(2), 114-131.

[7] H.R. Motahari Nezhad, B. Benatallah, F. Casati, F.
Toumani, “Web Services Interoperability Standards”,
IEEE Computer, May 2006, pp. 24-32.

[8] F. Jammes and H. Smit, “Service-oriented paradigms in
industrial automation”, IEEE Transactions on Industrial
Informatics, 1:62-70, 2005.

[9] Automatic device detection using Microsoft Win-
dows Embedded CE 6.0 R2 and Beckhoff tech-
nology, Beckhoff News, 16th November 2007,
http://www.beckhoff.de/english.asp?
press/news0207.htm

[10] SAP Manufacturing Integration and
Intelligence, http://www.sap.
com/solutions/manufacturing/
manufacturing-intelligence-software/

[11] Sun Small Programmable Object Technology (Sun
SPOT) Theory of Operation, Part No. 820-1248-10, Re-
vision 1.0.8, May, 2007

[12] J.L. Martinez Lastra, “Reference Mechatronic Archi-
tecture for Actor based Assembly Systems”, Doctoral
Thesis. Tampere University of Technology, Finland,
2004.

[13] S. Chan and C. Kaler and T. Kuehnel and A. Reg-
nier and B. Roe and D. Sather and J. Schlimmer
and H. Sekine and D. Walter and J. Weast and
D. Whitehead and D. Wright, “Devices Profile for
Web Services”, Microsoft Developers Network Library,
May 2005, http://specs.xmlsoap.org/ws/
2005/05/devprof/devicesprofile.pdf

[14] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and,
A. Kaup., “An mpeg-7 tool for compression and stream-
ing of xml data”, in proceedings of the 3rd IEEE In-
ternational Conference on Multimedia and Expo, pages
521-524, 2002.

[15] WS-Management Specification, http:
//www.dmtf.org/standards/published_
documents/DSP0226_1.0.0.pdf

[16] Stamatis Karnouskos, Mian Mohammad Junaid Tariq,
“An agent-based simulation of SOA-ready devices”,
10th International Conference on Computer Modeling
and Simulation, 1-3 April 2008, Cambridge, England.

[17] WSD: Plug-and-play for building automa-
tion, Beckhoff News, 9th May 2008, http:
//www.beckhoff.de/english.asp?press/
news0408.htm

[18] E. Fleisch and F. Mattern., “Das Internet der Dinge:
Ubiquitous Computing und RFID in der Praxis: Visio-
nen,Technologien, Anwendungen, Handlungsanleitun-
gen”, Springer, Berlin, 2005

[19] N. Kushalnagar and G. Montenegro and C. Schu-
macher, “IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals”, RFC 4919, IETF, Aug
2007, http://www.ietf.org/rfc/rfc4919.
txt


