Dynamically optimized production planning using cross-layer SOA

Domnic Savio !, Stamatis Karnouskos !, Daniel Wuwer ? and Thomas Bangemann 2

L'SAP Research
Vincenz-Priessnitz-Strasse 1, D-76131, Karlsruhe, Germany
{domnic.savio, stamatis.karnouskos} @sap.com

2 ifak - Institut f. Automation und Kommunikation e.V. Magdeburg
Werner-Heisenberg-Strasse 1, D-39106, Magdeburg, Germany
{daniel.wuwer, thomas.bangemann} @ifak.eu

Abstract

Responding to the dynamic requirements of the chang-
ing market and optimising costs are two challenges faced by
corporate manufacturing plants globally. In order to be ag-
ile, modern manufacturing plants employ optimized supply
chain mechanisms to reduce the response time of the mar-
ket needs. However bringing changes to the shop floor after
a production is planned is costly. In this paper we demon-
strate how Service Oriented Architecture (SOA) driven ap-
proaches offer the flexibility to adapt manufacturing plants
based on a dynamic production plan in close cooperation
with a backend system. The methods discussed were de-
ployed on a prototype test rig and integrated with SAP ERP.
The results introduce dynamic behaviour of the production
plan by adapting to the changing nature of the shop floor,
and at the same time, providing the real time status of the
machines to the enterprise services which optimize further
the production plan dynamically.

1. Motivation

In any industry, major manufacturing giants take effec-
tive steps in breaking up and outsourcing production activi-
ties in the effort to be more agile and achieve redundancy
and performance [2]. To respond quickly to the market
demands, there is a need to be able to dynamically rear-
range product lines. Supply Chain Management offers a
variety of strategies to minimize cost and optimize produc-
tion planning. However most of the approaches followed
are static based on pre-calculated global production plan-
ning and have no control on the changes that happen on the
shop floor. These changes could range from the breakdown

of a machine to the production excess of a particular prod-
uct. By having real-time information provided to the back
end system and in parallel be able to partially control the
production line could provide significant advantages.

SOA is a well known approach for enterprise systems,
which is actually investigated to be expanded towards the
lower levels within the production systems hierarchy like
the control or even field level [1]. Web services are suit-
able and capable of running natively on embedded devices,
providing an interoperability layer and easy coupling with
other components in highly heterogeneous shop-floors. De-
vice Profile for Web Services (DPWS [5]) and OPC UA [6]
are emerging technologies for realizing web service enabled
controllers and devices.

As the initial DPWS consortium had partners from the
printer industry, DPWS was considered mostly for the home
automation industry. However, as microcontrollers form
the basis of any automation unit, the extension to equip-
ment suitable to other automation domains is to be in-
vestigated, while considering those specific characteristics,
among others, like real-time aspects, availability, security
or safety. Several projects such as SIRENA (www.sirena-
itea.org), SODA (www.soda-itea.org) and SOCRADES
(www.socrades.eu) provide a platform to develop a DPWS
stack targeting the industrial automation devices on the shop
floor [3]. The goal is to provide the same interoperability
and easiness of integration of devices (from now on in this
paper the term is used to refer mainly to different automa-
tion equipment like field devices, controllers and similar),
focusing mostly on the functionality they offer at the shop
floor. Therefore any functionality could be represented as a
host of services offered by the device itself.

Integration of the devices on the functional level allows
us to focus on orchestrating services based on their role in

a process, and not the device per se. Devices can host a
variety of services needed at different level of manufactur-
ing units. Collaboration is enhanced among the entities on
the shop floor i.e. among the devices, as well as among
the devices and any other services offered or consumed at
different production system level. This leads to the mini-
mization of isolation islands of heterogeneous devices and
boosts interoperability [7]. However the whole approach
poses some significant challenges as well. Understanding
the semantics as well as evaluating them against a specific
context is needed while communicating vertical across dif-
ferent layers as well as horizontal on the same level. For
example temperature control in a coffee maker and that of
an industrial boiler is characterized by different operational
and application dependent characteristics and consequently
would need different severity of attention.

The devices that host web services might have their func-
tionalities implemented using their proprietary tools in dif-
ferent languages. In case control and field level get popu-
lated with web services, enterprise services could easily get
critical information that might be very valuable for report-
ing and performing manufacturing analytics. Another inter-
esting issue is the support of the eventing in all web service
enabled layers ranging from device up to enterprise services
[4]. By supporting an event instead of a pull infrastructure,
we are able to minimize traffic, while tailored fine grained
solutions can be realized. First at all this reduces the ef-
fort and network traffic related to management applications
like production or asset management. Influences from using
eventing for distributed control are currently investigated.

While introducing new concepts it is essential to con-
sider the integration of components already existing or be-
ing based on alternative and well established technologies.
For several reasons like investments, skills of persons, or
others it is the usual case not to replace complete instal-
lations. These are extended using the same or improved
technologies. The integration of non web service enabled
automation components is done using gateways or media-
tor, as done in the case described hereafter.

We demonstrate the above ideas in a real time production
prototype, a test rig, which checks for red and black tokens
from a magazine, is considered. The rig performs four dif-
ferent operations before the final product is stored in its re-
spective magazine. The entire rig is controlled by a Siemens
S7-300 Programmable Logic Controller (PLC). On top of
this controller is an OPC based interface that provides ac-
cess to PLC related data (I/O and internal data). This inter-
face is accessed from a Mediator (through an OPC client).
This Mediator currently supports DPWS to offer production
site related services to the SAP ERP System. It is intended
to enhance the Mediator to provide an OPC UA conformant
interface.

SAP NetWeaver/ Ml

SAP SCM PP DPWS GUI

SAP Ml

[~A\U
OPC :

T Cllenl] oPC
T g | Mediator ; Server
- eo» BEEWEE.
| DPWS Client J
i

i T

Mediator
DPWS Server

Figure 1. Architecture Overview

2. Architecture

The SAP Supply Chain Management (SCM) Production
Planner (PP) system supports manufacturing by optimiz-
ing throughput times and bottleneck capacities using new
scheduling processes (supply optimization) and by achiev-
ing online integration of production planning and control
activities. This provides a transparent overview of the en-
tire order network. To have an optimized schedule in the
production plan, the SAP SCM PP needs data about the
available resources from the shop floor to cross boundary
locations, in a globally located manufacturing plant. The
quality and validity of the information is far more important
to reach the real time simulation of the shop floor resources.
To achieve this, SAP has added Manufacturing Intelligence
and Integration (MII [8]) as an integration middleware be-
tween the Manufacturing Execution Systems (MES) on the
Shop Floor and the SAP ERP landscape. MII also of-
fers bidirectional connectivity between the control and field
level devices and the ERP system. As a result, the man-
ager could have an overview of which current orders are
being executed and what is the status of the executing ma-
chine. Moreover intelligent information can be extracted
from manufacturing analytics and performance factors pro-
vided by the SAP MII.

As depicted in Figure 1, the SAP MII is connected to the
Mediator software over a shared database. The database
is wrapped via web services that can handle DPWS in-
vocations and subscribe to its events. Those services are
provided by the Mediator. An alternative access path us-
ing OPC UA is currently being developed. Supervision
and control of the PLC is done using SIEMENS SIMATIC
WinCC [9], that is connected to the PLC via an OPC in-
terface. The PLC controls the five main modules of the
test rig: The loader, distributor, inspector, processor and the
repository. Each module has a distinct task to be executed

= Disposal from raw material
stock

= Transport on a conveyor belt
= Machining of the part
» Testing the finished part

= Sorting finished parts
depending on the quality

Figure 2. Main Operations

and is interconnected to the process flow of the other mod-
ules. The Mediator software monitors the process status and
hosts routines that control the flow of execution on the PLC.
It also exposes three main functions as a web service i.e.:

1. starting the production
2. stopping the production

3. subscribe to events occurring at the test bed

3. The testbed

The test rig consists of a suite of pneumatic based hard-
ware that does operations like picking, placing, moving,
drilling, proximity sensing and stocking. The overview of
the hardware is pictured in Figure 2. The test rig is sup-
ported by a 10 bar compressor and operates in 24 V DC
from the PLC power supply unit. It is assumed that it pro-
duces tokens which are drilled with a hole in the centre.
The tokens are supplied from a magazine which drills the
hole, checks its colour and material, and sorts it to the cor-
responding storage magazine.

The main parts of the test rig (also seen at Figure 3) are:

e Input magazine and distributor: This module consists
of a shoving out cylinder operated pneumatically, a
pile magazine which stocks the red and black tokens
and a swivel arm. As the tokens come down, the shov-
ing out cylinder separates them from the pile magazine
and pushes it against a control switch (micro switch).
When vacuum is applied, the swivel arm sucks the to-
ken and swings it from the position ’distribution’ to
position ’proofing’. Then the vacuum is switched off
so that the token moves to the next module over the
conveyor.

e Proofer: The proofer module consists of the proof sta-
tion, a rejection cylinder and a conveyor. As the token
reaches the proof station, a capacitive proximity sen-
sor senses it. This sensor then activates the PLC to

read the data that comes from a colour sensor. The
PLC registers the colour of the token. The material is
also checked by an inductive sensor which energizes at
the presence of metals. The third measurement is ded-
icated to the size of the token. In case the size is not
within the limits, the rejection cylinder is activated and
it pushes the token into a rejection bin. In case the size
is ok, the conveyor is activated and it moves the token
to the rotating work table.

e Rotating work table: This module consists of a turn
table, a drill press with clamping cylinder and a pis-
ton that checks for a hole in the token called the proof
cylinder. The rotating table stops at four positions:
conduct, boring, checker and dispatcher. The token
delivered from the proofer passes through a narrow
conduct to the rotating table which moves the token
to the drilling press. A hole is then drilled and then
the token is passed on to the checker. The piston in
the checker moves itself to the centre of the token to
prove if there is a hole in it. If there is a hole, then
the dispatcher moves the token to the rejection bin. If
the token passed this test, then it is rotated to the dis-
patcher position.

e Dispatcher: The dispatcher reads the colour informa-
tion from the PLC and calculates the trajectory of the
vertical and horizontal motion of the linear actuators.
It then picks up the component and moves the actua-
tors towards the storage magazine where the tokens are
stored respective to their colour. The dispatcher indi-
cates to the PLC that the token had finished its passage
through the production street. This is noticed by the
Mediator who updates this information to the SAP MII
over web service events along with colour information.

At the end of each operation, there are events generated
by the Mediator to SAP MII. Either the successful comple-
tion of the operation or the failure of a task is reported.

4. The prototype integration

Our main effort was to integrate via web services the
shop floor and the test rig. To that extent, we have used
DPWS to connect the enterprise software and test rig via
the mediator.

Enterprise level software: The SAP MII software per-
forms the basic interconnection between the shop floor and
the ERP landscape. It reads the data sent by the DPWS in-
terface layer over the common database. It also connects
to the SAP SCM PP system over the datasource connectors
which are provided using BAPI interfaces. SAP MII also
hosts a GUI which is a web interface running on NetWeaver
Web Application Server (NW WAS) 6.0. The web interface

Process
Module

Inspect
Module
Distribute
Module

Figure 3. Material flow

Shop Floor Status

Completed Orders

Planned Production Orders Asset Status

Kl =G =

Statistics: Module operating time

Figure 4. Plant manager’s Mil view

runs a suite of applets to display the status of the modules in
the test rig. The applets wrap SAP MII transactions which
run queries in the database. The transactions also analyze
the result using a complex business rule which is developed
using the MII business logic editor. The rules check which
token (red or black) is produced and check against the corre-
sponding production order. If there are more red tokens pro-
duced than the ones required in the production order, they
are stored and then logically deducted in the next production
plan which is already designed and ready to be executed and
on the pipeline. This does not increase the production time,
rather neutralizes the delay. The MII also shows the status
of the test rig modules. Figure 4 presents the snapshot of
the SAP MII GUI that is visible to the plant floor manager.

Mediator : The Mediator is used to aggregate various
services in SOAs. As such, a Mediator can be seen as a

gateway except that it hides (or surrogates) many devices
and not just one. However, Mediators go beyond gateways
since they introduce semantics in the composition. They
aggregate, manage and eventually represent services based
on some semantics; in our case used to aggregate various
non WS-enabled devices. This way, higher level application
could communicate with the Mediator via DPWS, instead
of communicating to devices with proprietary or standard
fieldbus interfaces. Using a Mediator introduces another
level of abstraction and aggregation between the clients and
devices. A service mediator is understood to be a device
that controls a set of lower-level non-web-service-enabled
devices, which it uses to implement a process of which
it exposes a service interface. Thus the individual lower-
level devices are invisible outside of the mediator. Thus,
seen from the outside, there is no essential difference be-
tween a service mediator and a composite service that relies
on a set of service-enabled devices. The Mediator is build
based on a layered approach starting on the base level with
device proxies representing individual non-web-service en-
abled devices. Upon this level, object instances represent
compositions of devices like a machine or a part of a plant
exposing functionality through a web service interface (in
this cases based on DPWS). Below the device proxy level
interfaces to access different standard or propriatory com-
munication channels are supported. In our case OPC is used
to access the test rig. The Mediator monitors data within
the Siemens S7-300 PLC using the OPC interface. It also
controls the start and stop operations of the PLC. The Medi-
ator exposes the start and stop operations as a web service.
These operations can be invoked from the SAP MII soft-
ware. The mediator retrieves the status information from the
SIMATIC software. It propagates this information as web
service events through DPWS interface which then write it
to the database finally visible to the SAP MII software. The
mediator hosts a DPWS server to expose the start, stop and
the events as a web service representing operations of the
plant. In parallel the WinCC hosts a GUI to display the cur-
rent status of the operations that are carried out on the PLC.

DPWS Integration: The DPWS integration layer consists
of a client that discovers and subscribes to the server hosted
on the mediator gateway. This layer of the software builds
the SOAP messages to invoke the start and the stop opera-
tions of the mediator. The Mediator, upon receiving these
SOAP requests, issues commands to the OPC interface of
the PLC to start the pneumatic pusher that moves a token
from the input magazine to the conveyor belt. The DPWS
layer also de-constructs the SOAP messages from the sta-
tus event and writes the data to the database over the JDBC
interface. The status event is pre defined to a set of error
codes which represent the health of individual modules and
the results of the operations done by them. SAP MII reads
these events from the database and executes a transaction

that verifies the event and decides what could be the next
operation that the test rig has to execute. The DPWS layer
reads data from the database periodically. This is done to
execute the commands of the SAP MII which writes the re-
sults of the business intelligence into the database.

5. Final thoughs and conclusions

Deploying web services on devices (Mediator represents
devices close to the process) in the shop floor e.g. a PLC
operation and connecting it to enterprise systems was pre-
sented. Via the web services backend systems are able to
subscribe to events and take advantage of real-time infor-
mation flow e.g. for optimization of production planning
or reaction to unexpected changes. The clear advantage of
pushing SOA concepts down to mediator level, is that busi-
ness application developers can design and implement new
functionality in enteprises without focusing on the devices
but on the services they provide. As such another abstrac-
tion layer based on well-known and used web service stan-
dards will ease the integration of backend and shop-floor
systems. The scenario depicted in this paper is a proof of
concept for this easier and tighter integration. The results
show that the dynamic nature of the shop floor can be uti-
lized efficiently to plan further production orders and even
implement last minute changes on the production line using
real time data (real time reconfiguration based on the appli-
cation needs). As all higher level communication is done
via web services (in our case DPWY) it is easy for other
entities (whether they are services or devices) to subscribe
and get the necessary info while in parallel being agnos-
tic to the actual implementation details. This greatly in-
creases interoperability and reduces costly integration time.
In our next steps we plan to further work on better web ser-
vice integration, also with the usage of OPC UA as well
as improvements regarding fulfillment of typical industrial
automation specific requirements like real-time constraints,
reliability, safety or security. Special attention will be paid
to improve easy configuration of integration components
like gateway or mediator based on device description tech-
nology known within industrial automation. This will pave
the way for auto-configuration on the gateway and mediator
level and enhance integration of legacy systems into higher
level management applications.

6. Acknowledgments

The authors would like to thank the European Com-
mission and the partners of the European IST FP6
project “’Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices” (SOCRADES -
www.socrades.eu), for their support.

References

[1] F. Jammes and H. Smit, ’Service-oriented paradigms in
industrial automation”, IEEE Transactions on Industrial
Informatics, 1:62-70, 2005.

[2] Manufuture: A vision for 2020, Report of the High
Level Group, November 2004, European Com-
mission, Brussels, Belgium, ISBN 92-894-8322-9
http://www.forum—manufuturep.org/
documentos/manufuture_vision_en.pdf

[3] Stamatis Karnouskos, Oliver Baecker, Luciana Mor-
eira Sa de Souza, Patrik Spiess, “Integration of SOA-
ready Networked Embedded Devices in Enterprise Sys-
tems via a Cross-Layered Web Service Infrastructure”,
12th IEEE Conference on Emerging Technologies and
Factory Automation, September 25-28,2007, Patras,
Greece

[4] Luciana Moreira Sa de Souza, Patrik Spiess, Moritz
Koehler, Dominique Guinard, Stamatis Karnouskos,
and Domnic Savio, "SOCRADES: A Web Service
based Shop Floor Integration Infrastructure”, Inter-
net of Things 2008 Conference, March 26-28, 2008,
Zurich, Switzerland.

[5] J. Schlimmer, et al, ”Devices Profile for Web Services”,
Feb. 2006, http://specs.xmlsoap.org/ws/
2006/02/devprof/DevicesProfile.pdf

[6] OPC Unified Architecture (OPC-UA), OPC Foundation
http://www.opcfoundation.org/UA

[7] Microsoft Embedded CE 6.0R2: Beckhoff au-
tomation help with introduction, Control Engineer-
ing http://www.controleng.com/article/
CA6508859.html

[8] SAP Manufacturing Integration and In-
telligence (MII), http://www.sap.
com/solutions/manufacturing/
manufacturing-intelligence-software

[9] SIEMENS SIMATIC WinCC, http://www.
automation.siemens.com/hmi/html_76/
products/software/wincc

