
Security-enabled code deployment for heterogeneous networks 
 

Stamatis Karnouskos 
 

Fraunhofer Institute for Open Communication Systems 
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany 

Stamatis.Karnouskos@fokus.fraunhofer.de  
 
 

Abstract 
 
Future services on converged heterogeneous 

networks are expected to increase the demand for code 
distribution, on the fly installment and dynamic 
management. Component discovery, download, 
installation, revocation, and profiling are critical in 
supporting next generation enabling technologies and 
application evolvement. We present here the 
architecture of an active component manager and 
discuss on metadata that should be used to describe 
components and their capabilities. Furthermore we 
elaborate on XML digital signatures as an integral part 
of secure component distribution. Finally we investigate 
topologies for component distribution and how 
emerging technologies like peer-to-peer could be used 
in the context of active component manager. This paper 
is motivated by the vision of Google-like code discovery, 
and flexible management of it, within the future 
semantic web context. 

 
Keywords: XML Digital signatures, component 

deployment, active networks, Dublin Core, Resource 
Description Framework, metadata, code discovery. 

1 Introduction 

Reduction of the time-to-market services, as well as 
their customization lead to the introduction of the 
programmability in the network elements. Today we 
witness integration between the services offered in 
telecom networks and those in data networks, driven 
mainly by a service-oriented market that seeks 
granularity and interoperability. The need will become 
more evident in 3G and beyond networks (as envisioned 
also in the WWRF book of vision - 
http://www.wireless-world-
research.org/general_info/BoV2001-final.pdf) where 
users and their session might roam over wired, wireless 
and mobile networks.  

Active and programmable networks [4] introduce a 
new network paradigm where network-aware 
applications and services can be not only distributed, 
but also can configure the heterogeneous network to 

optimally respond to a task’s requirements. We are able 
to utilize within the network a) computation as we are 
able to compute on data received from active nodes and 
b) programmability, as we can inject user code into the 
network nodes in order to realize customized 
computation. Being able to achieve the above, we 
succeed in decoupling network services from the 
underlying hardware, deploy fine-grained customized 
services, relax the dependencies on network vendors 
and standardization bodies and generally open the way 
for higher level network-based application 
programming interfaces. 

However, as active networks promote user injected 
code deployment, they also reveal an infrastructure that 
is far more vulnerable than the current passive networks 
if not protected appropriately. Security and trust 
management in such a heterogeneous environment 
becomes an extremely sensitive issue. In this paper we 
will analyze the active code deployment, and present an 
approach on its secure handling based on digital 
signatures, public key infrastructure and state of the art 
cryptographic protocols and algorithms. 

2 Motivation 

Current active network research is heading towards 
component based execution environments [5] that can 
be dynamically configured. In such an infrastructure the 
need to discover, update, reuse existing code and bind 
components1 is fundamental. Therefore, future services 
and networks are expected to increase the demand for 
code distribution and management. This is not limited 
only to Internet services and related technologies such 
as active/programmable networks but extends to the 
general area of mobile user support context, especially 
in 3G and beyond infrastructures. As depicted in Figure 
1, the user has a “user context” to which several devices 
are attached with a high heterogeneity in hardware and 
software. All these devices are expected to host more or 
less an execution environment (EE) of some kind, 
where code executes providing the ability to build 

                                                           
1 Components are seen as a collection of generic code entities with 

dependencies. Components and code are interchangeable meanings 
within the context of this paper. 

Page 1 of 10 

mailto:Stamatis.Karnouskos@fokus.fraunhofer.de


sophisticated services. The code to be used as such, 
resides in Internet code repositories (e.g. open source 
repository SourceForge - sourceforge.net), in legacy 
web and ftp servers, in Usenet archives etc, depending 
on the mean that the author has chosen to distribute his 
code. As now the user can download, inject and execute 
code (on its PDA, Java enabled mobile phone or in an 
active node) it is expected that the following matters 
will arise with an exponential growth: 
 The need to find code based on criteria e.g. author, 

execution environment, platform, technology, 
description, performance, etc 

 The need to describe the developed code based on 
widely acceptable templates and vocabulary. Using 
these, the vision of semantic web is promoted and 
also the automatisation of tasks such as search, 
management etc can be delegated to intelligent 
technologies e.g. intelligent mobile agents. 

 The need to provide a way of making widely 
known the code existence. Nowadays there is wide 
variety of code available on the Internet, which 
remains mainly unknown due to the fact that there 
is no standardized description of it, nor code-
specific search engines that can parse its metadata 
based description. 

 The need to provide indexing of code modules 
available e.g. on the Internet based on best effort 
(for code that does not provide metadata about its 
description – something done by all search engines 
today for legacy web pages) and on specific 
semantics that the authors, managers etc of the code 
provide. 

 The need to integrate security and trust from day 
one within all the above matters, and possibly in a 
later step introduce digital rights management 
(DRM). 

 

Code
Authors, 

Managers etc

Code
Authors, 

Managers etc

Users, 
Systems, 

EEs

Users, 
Systems, 

EEs
Service 

Providers
Service 

Providers

Code
Repository

CodeCode
RepositoryRepository

Web / FTP
Server

Web / FTPWeb / FTP
ServerServer

ACMACMACM

Manage 
Code 

(e.g. publish, 
updates)

Query Search 
Engines (dynamic 

discovery)

Code
Search
Engine

CodeCode
SearchSearch
EngineEngine

Internet
Search
Engine

InternetInternet
SearchSearch
EngineEngine

Indexing of
Code

Query known
Repository

(a priori knowledge)

Push Services 
(e.g. subscription)

Usenet 
Mail

Archives

Usenet Usenet 
MailMail

ArchivesArchives

 
Figure 1 - Code Distribution 

 

Special care has to be taken with regard to the 
security concerns that arise with component/code 
distribution. Active networks promote distributed 
services and ease the network code deployment. This 
code needs to be found, fetched, installed and managed. 
As downloading and on the fly installing code on 
running systems will be a future commodity, we have to 
make sure that malicious parties do not take advantage 
of these capabilities. Furthermore a single point of code 
distribution such as the web site of the distributor, might 
not be a viable case when millions of nodes try to 
download the updates. Therefore trust needs to be 
inserted in the code package, which can be then 
distributed by third parties and simultaneously allow the 
user to verify that this is the same as the original release.  
Therefore we have to harden with security mechanisms 
all steps involved in an active code deployment 
scenario. A detailed analysis on the threat model as well 
as the security requirements of the active networks can 
be found in [1], where also various solutions are 
proposed. However here we do not focus on mobile 
code (e.g. agents), but we rather take a general approach 
on the matter of code distribution in open programmable 
infrastructures such as active networks. For the security 
part we have to take care of the following fundamental 
principles:  
 Integrity: Data consistency should be maintained. 

Compromised components jeopardize the stability, 
safety and security of the systems. 

 Authentication: We must have the capability of 
getting the credentials of the entities related to the 
code and be able to validate these credentials 
against some authority. Successful validation 
speaks for an authenticated entity and is further 
used for authorization decisions. 

 Authorization: We must be able to make policy-
based decisions on the deployment of code based 
on the authenticated entity. Only authorized entities 
should be able to deploy and manage the 
components. 

 Non-repudiation: The author of the component 
should not be able to deny authoring the specific 
component or even its expected behaviour. 

 Confidentiality: If it is desired, no one else can 
access or copy the data related to a component. 

Furthermore we need to investigate technologies, 
topologies and approaches so that the code deployment 
is done in the most flexible but also promising way in 
order to be open for future application needs. Since 
active networks offer such a programmable 
infrastructure, our approach is based on their 
characteristics for proof of concept, but clearly the 
target is broader and tackles generally selective code 
deployment issues in heterogeneous networks. 

Page 2 of 10 



3 Active Component Manager 

As users are allowed to inject components within an 
active node, we realize that code deployment is a 
fundamental issue within the active network 
community. Therefore, somehow all AN approaches are 
expected to feature an Active Component Manager 
(ACM) or its logic at node or even EE level. The basic 
functions (also depicted in Figure 2) include:  
 Installation : The Uniform Resource Identifier 

(URI as defined in RFC 2396) of the component to 
be installed is passed to the ACM. The ACM 
fetches and installs the requested component if it 
doesn’t already exist in its local database (DB).  

 Deinstallation: The requested component is 
removed from the ACM DB. 

 Retrieve: The requested component that is stored 
in the ACM DB or its profile is returned to the 
requestor. This could be done for several reasons 
e.g. if one wants to transport it to another node that 
does not feature an ACM compatible API. In that 
case a mobile agent implements the missing 
functionality and transports the component from 
node to node. Another possibility would be to have 
a stationary agent that wraps the missing 
functionality, is permanently active on the remote 
node, and handles the ACM communication. These 
are design decisions based on user’s requirements. 

 Search: The ACM DB is searched for existing 
versions of components. The search is done based 
on fields defined in the component’s profile as 
presented in section 4. When an Index is requested 
the ACM returns all visible for the requesting entity 
components (policy-based authorization) existing 
locally. Depending on the search parameters, the 
ACM can use this interface to search other ACMs 
on neighbouring nodes in order to find nearby code 
(function similar to peer-to-peer networks).  

 Notification: This is used for a twofold purpose. 
Firstly, the ACM is able to accept external 
notifications for the components it hosts e.g. when 
a new version is available. Secondly, it is possible 
to allow local users or external ACMs to subscribe 
and get notified for events like code removal, code 
upgrade etc. This allows mirroring of ACMs which 
is useful for networks with identically configured 
active nodes. 

 Update: This interface is used for automatic 
upgrades. The request issued here triggers the ACM 
to search if a new version of the specified 
component is available on the Internet. Assuming 
that the new component version is backwards 
compatible, the ACM can remove existing versions, 
install the new one and notify the affected parties.  

 

The ACM has an interface available for 
communicating with requests coming from the 
execution environments. All requests are authorized 
against the policies that exist for the local node via a 
security manager. The security manager evaluates both 
the policies of the local node and the policies of the 
execution environment that the request is coming from. 
Further entities that are bound to the security manager 
include the credential manager whose task is to verify 
the security credentials supplied either via a request at 
ACM (e.g. the user k requested to install component x in 
execution environment n) or from ACM (e.g. verify that 
the signer of component x has a valid certificate). The 
Audit manager handles all logging requests while the 
resource manager takes care of the resource 
management requests (e.g. if the profile of the 
component sets the minimum disk space to be used at 
10 MB and the available disk space is only 8 MB – the 
component installation fails due to resource mangle). 
The resource manager is expected to do even more 
interesting things like real-time monitoring of the 
consumed resources and enforcement of resource usage 
policy. Some early thoughts on the generic relations and 
functionality of this architecture can be found on earlier 
work [2]. Finally all components and their profiles are 
stored in one or more databases e.g. the component is 
stored in a relational DB but its RDF description in an 
RDF-capable DB (http://www.w3.org/2001/05/rdf-
ds/DataStore) accessible via the ACM. 

…

Active Component Manager

• Install
• Deinstall
• Search
• Index
• Notification
• Retrieve
• Update

External 
ACM

EE 1 EE 2 EE n

Postgre
SQL External

Repository

Policy M
anager

C
redential M

anager

A
udit M

anager

R
esource M

anager

Security Manager

API services

Push/Pull

http(s),ftp(s),
ldap(s)…Open

RDFMySQL

Database Farm

JDBC API

ODBC …

 
Figure 2 – Active Component Manager 

Architecture 

In order not to bring the node in an unstable state 
e.g. when a component is removed while there still exist 
services that use it, we have two directions. The 
simplest one installs a component for each user that 
requests so. Although this is flexible, it doesn’t scale 
well as in an active node with x users we have x times 
the same component. Therefore the ACM installs only 
once a specific component and keeps a list of users that 
use it. Even if one user deinstalls a specific version, this 

Page 3 of 10 



is marked as inactive for the user but is not actually 
removed from ACM. The actual removal takes place 
when the last user of the list requests also that this 
component should be deinstalled. Different versions of 
the same component are handled as different 
components when it comes to installation/deinstallation. 

As the ACM maintains a list of the components 
installed locally and is able to query other ACMs, we 
are able to build a living network of ACMs that are able 
to exchange component profiles as well as the 
component code. In this respect of dynamic discovering 
and downloading components the peer-to-peer 
technology seems appealing as explained in section 7. 
Finally via the Update interface we are able to realize 
automatic upgrades of components. This is vital in 
keeping our node up-to-date with the latest releases and 
bug-fixes of software. Since the existing approach is 
primitive (deinstalls the old versions, installs the new 
component, makes it the default one and notifies the 
affected parties) we are not able to realize sophisticated 
upgrades where dependencies exist or even better online 
upgrades (e.g. the OMG approach as depicted in 
http://www.omg.org/cgi-bin/doc?orbos/02-01-01), but 
existing solutions could be integrated. Despite that, it 
seems that ACM can be one of the core components 
upon which more sophisticated approaches can be built. 

4 Metadata for Component Distribution 

It is not cool to be different, at least not when code 
distribution in Internet is concerned. The vision of 
future Internet incorporates the seamless component 
distribution, indexing and integration. Unfortunately, 
this is not the case today.  Once a component is 
developed and needs to be publicly available, one 
comes up to the obstacle of describing his component’s 
capabilities in a universally acceptable way. Therefore 
we need metadata for the component in an expressive 
and extensible way that will also cover future needs. 

 
Figure 3 - Description of DDoS Component 

Today there are some efforts guiding towards the 
universal component description, but are mostly stand-
alone, site-specific, too complex or not widely used 
templates. E.g. iBiblio.org (former sunsite.unc.edu) 
requires from all Linux software package developers to 
fill-in the Linux software map entry template 
(http://www.ibiblio.org/pub/linux/LSM-TEMPLATE). 
Others like freshmeat.net (www.freshmeat.net), Trove 
(http://www.catb.org/~esr/trove/), provide similar text-
based descriptions or even stand-alone XML such as 
Portable Application Description (PAD - 
http://www.asp-shareware.org/pad). These efforts 
provide some basis but the descriptions are ambiguous 
and obsolete. The Open Software Description Format 
(OSD - http://www.w3.org/TR/NOTE-OSD) is XML-
based and features “a vocabulary used for describing 
software packages and their dependencies for 
heterogeneous clients” and comes a step closer to the 
target. The Open Source Metadata Framework (OMF - 
http://www.ibiblio.org/osrt/omf) aims at describing data 
(metadata is data that describes data) about Open Source 
documentation so that they can be easily used by 
applications like ScrollKeeper 
(scrollkeeper.sourceforge.net). OMF uses XML and the 
Dublin Core Metadata Initiative (DCMI - 
www.dublincore.org). The Dublin Core metadata 
standard is widely used and consists of a simple element 
set for describing a wide range of networked resources. 
Furthermore the Dublin Core vocabulary can be used to 
define additional semantics about the resources 

Page 4 of 10 



described within a Resource Description Framework 
(RDF - http://www.w3.org/RDF) fragment. RDF co-
evoluted with DCMI and can be seen as complementary 
approaches within the web’s metadata architecture. 

RDF or a similar more expressive schema language 
like DARPA Agent Markup Language (DAML - 
www.daml.org) is expected to form the foundation of 
the Semantic Web (http://www.w3.org/2001/sw) vision. 
XML forms the basis by being the transport schema, 
while RDF, DAML and alike, provide the information 
representation framework. XML is an expressive 
language that has a well defined grammar for defining 
message structures accompanied with many tools for 
generating, consuming and working with XML 
documents. OSD and OMF set a good basis for partially 
providing what we need. However since as standalone 
solutions none of them is sufficient, we need to combine 
their abilities and extend them in order to cover 
emerging requirements. Although the RDF/DCMI 
combination (including the DCMI’s element 
refinements) are probably enough to describe the 
component distribution context, no general template up 
today exists in order to be used by the community.  

 Figure 3 describes in XML/RDF a software 
prototype that we developed. The Dublin Core 
vocabulary is used to define additional semantics about 
the resources described within the RDF fragment. The 
prototype is a Distributed Denial of Service (DDoS) 
Attack response system and as it can be seen useful info 
are contained within the XML description such as name, 
description, author’s contact details, download location, 
other software packages that it might require such as 
Java, Grasshopper mobile agent platform 
(www.grasshopper.de) and ethereal network analyzer 
(www.ethereal.com). This profile is by no means 
complete but is used here as a proof of concept. In the 
future a more complete profile specifically for 
describing the software packages and active node 
specific characteristics has to be developed and used. 
Now if a metadata-capable search engine crawls the site 
and parses this profile, it will be able to accept requests 
like “search for all components authored by Mr. 
Karnouskos”, or more complex ones like “search for all 
java-based v1.3 and above software that requires 
ethereal”. An intelligent agent that parses this profile 
could also check the “requires” section and not only 
fetch the DDoS component but also fetch the required 
packages that are not installed locally. Once one has  the 
capability to describe in a machine-readable way richly 
enough his components, there will be many others that 
will invest the required time to make intelligent 
decisions based on the data they are able to acquire. 
This brings us one more step closer into making a 
reality the vision of the Semantic Web, and in our case 

for active and programmable networks at node or even 
EE and active application level. 

5 XML Digital Signatures 

Digital signatures can be used for 
 Identification 
 Proof of involvement in the act of signing 
 Associate the signer with a document 
 Provide proof of the signer’s involvement with 

the content of the signed document. 
 Provide endorsement of authorship. 
 Provide endorsement of the contents of a 

document authored by someone else 

SignatureSignature SignatureSignature

ObjectObject

XML ObjectXML Object

XML 
Document

XML 
Document

SignatureSignature

Enveloped Enveloping Detached

 
Figure 4 – Arts of XML Digital Signatures 

The XML signature is a method of associating a key 
with referenced data. XML Signatures can be applied to 
any digital content (data object), including XML. An 
XML Signature may be applied to the content of one or 
more resources. Signed data can be located within the 
XML that includes the signature or elsewhere. Based on 
this location, there are three different types of signatures 
(depicted in Figure 4) i.e. Detached, Enveloping and 
Enveloped signatures: 

 An enveloped signature is enclosed inside the 
XML element it signs. The enveloped signature 
must take care not to include it's own value in 
the calculation of SignatureValue; 

 Enveloping signatures are over data within the 
same XML document as the signature; An 
enveloping signature is a signature, which 
includes the object to be signed within it, and 
identifies it via an URI or a transform (i.e. 
XPath); 

 Detached signature is a signature over a 
content external to the signature element and is 
identified through an URI. This description 
applies also if the signature and the object 
reside in the same XML document as sibling 
elements. 

Page 5 of 10 



Enveloping and detached signatures seem more fit 
for our purpose. Generally in component distribution, 
digital signatures can be deployed with 

a) the component profiles that float around the 
network or  

b) the component package itself.  
In the semantic web it is expected that descriptions 

of components similar to the one presented in Figure 3, 
are freely distributable among interested parties, copied 
in non author controlled sites and are indexed by search 
engines such as HotMeta 
(http://www.dstc.edu.au/Research/Projects/hotmeta) that 
are able to parse the metadata they contain. We have to 
make sure that these component profiles are not altered 
in any non-intended way, be able to traceback the author 
of the profile and make authentication/authorization 
decisions based on the data that we extract from it. 
Therefore one possible way is to sign the XML file by 
using digital signatures.  

Towards this direction work is done within the 
WWW consortium. Specifically, XML digital 
signatures (http://www.w3.org/TR/xmldsig-core) can be 
deployed to guarantee integrity over untrusted networks 
such as the Internet, help with the authentication, 
authorization and the non-repudiation activities. Figure 
5 depicts the digitally signed version of the XML 
depicted in Figure 3. We have used IBM’s Security 
Suite (http://alphaworks.ibm.com/tech/xmlsecuritysuite) 
and X509 Certificates. The new XML file (depicted in 
Figure 5) integrates all info from the original one and 
contains also a X509 certificate of the user that signed 
it. One can extract the certificate, verify it and use its 
data for authorization decisions. This is even more 
powerful in case of attribute certificates that bring in the 
benefits of a privilege management infrastructure [6]. In 
the approach demonstrated above we have signed the 
component profile and protected it. But what happens if 
one of the resources changes e.g. the binary gets 
corrupted? It is also possible to actually sign the exact 
location of the component and its other network 
resources by calculating the digest of each resource, 
including them in the final XML file and signing it. In 
this way we make sure not only that the component 
profile is safe but also the links that it contains to 
resources (e.g. binary code) have also not changed. This 
of course has the obvious side-effect, that the profile is 
tied up to specific versions of external resources and if 
e.g. a new version of a component is released (which 
hopefully is backwards compatible) the profile will still 
point to the older version of it. Practically that means 
that the verification for this specific changed resource 
will fail, as it is different from the original one that was 
used when the component profile was signed. Therefore 
a different URI needs to be used for each component. 
The latest version could be retrieved by other means e.g. 

a static location of a profile and the respective URI that 
point always to the latest available version. 
Alternatively the component could be also integrated in 
the same XML file having its profile, but this might 
create bandwidth problems since most requests are 
expected to target the informational data of the profile 

and few of them will go one step further in downloading 
the code, therefore is seems a better idea to keep 
component profiles and their actual implementations 
apart. 

Figure 5 - Digitally Signed Component Profile 

Furthermore the XML encryption 
(http://www.w3.org/TR/xmlenc-core) can be used in 

Page 6 of 10 



order to keep secret the component description (in 
whole or partially) and make them available only to 
selected parties. XML encryption can even address 
areas that are not covered by SSL/TLS, Internet’s de 
facto communication standard, namely a) encrypting 
part of the data being exchanged and b) secure sessions 
between more than two parties. By combining XML 
Encryption with XML Signature we can provide both 
message digest and message authentication 
functionality. 

IBM’s Security Suite implements also the XML 
Access Control (XAC) which aims at providing XML 
documents with a sophisticated access control model 
and access control specification language (XACL). This 
makes it possible via the access control policies to 
control how an XML document appears. The policies 
also ensure that the XML document is securely updated 
as specified by the security programmer. In our case this 
means that via authorization architecture we firstly are 
able to specify who is actually able to see which fields 
within our XML document, namely the component 
profile. Being able to control per XML element 
authorization requests, we introduce both security and 
flexibility within our approach. 

6 Topologies for ACM 

The last years Internet has exploded into the largest 
decentralized computer system. Various architectures 
have emerged that are based on the two edge 
approaches namely the centralized and decentralized 
ones. ACMs are considered to be the component 
distribution marketplaces within the AN community and 
therefore their topology matters. Learning from the 
Internet distributed computing paradigm we can 
distinguish the following: 

Centralized: Similar to existing approaches, the 
code is fetched from a central location. This location is 
usually controlled by the author of the code or by a 
trusted entity within a network domain (e.g. network 
administrator). The code is placed there so that clients 
can request it. Therefore the location of the code as well 
as the protocol that it can be used for its retrieval is 
usually a priori known. This approach offers easy 
management and can be easily secured. The big 
drawback however it that it is not fault tolerant and 
difficult to extent.  

Decentralized: More than one servers host the code 
to be fetched. The client may have a reference to the 
code’s location but this is relative and the actual 
location of the code is resolved the moment the client 
makes the request. This could be done for several 
reasons, including load balancing, survivability, 
network capability etc. With this approach we can take a 

step further and even keep the protocol that can be used 
for the downloading of code relative (selection from 
different URIs). This approach offers fault-tolerance 
and is easily extensible. Unfortunately it is difficult to 
manage and tends to be insecure in the sense that it is 
easy for a node to join the network and provide 
malicious data. Therefore an extra security level has to 
be issued here in order to have basic services e.g. 
authentication. This doesn’t necessarily have to be the 
case in centralized systems where one can verify the 
node one connects to, and extent this trust to the 
components downloaded in a secure way from this 
node. 

 

Centralized Topology

Decentralized Topology Hybrid Topology

 

Figure 6 – ACM Network topologies 

Hybrid: Here we refer to all the multi-layered 
approaches that lie between the centralized and 
decentralized ones. The combinations of existing 
centralized, decentralized, ring and hierarchical 
topologies in different layers are infinite. Each one of 
these could have pros and cons, depending on the 
environment in which they are deployed. For instance in 
Figure 6 we have secondary nodes that are connected in 
a centralized way to one main node. The main nodes 
however are connected in a completely decentralized 
way. 

The Active Component Manager as presented in this 
paper supports all above approaches. However the 
hybrid approach seems more interesting. The ACM 
stores in its DB info about existing code. The code 
could be locally stored (and accessed via the filesystem 
utilities) or rely in an external location. The later allows 
a plethora of protocols to be used for the code 
downloading such as ldap(s), http(s), ftp(s) etc. 
Furthermore instead of having a fixed external location, 
the ACM could point to another ACM hosted in another 
AN node within the network. Therefore we can create a 
virtual web of ACMs (e.g. in P2P style) where entries in 
their database are hyperlinked. This is a hybrid form 

Page 7 of 10 



could be pushed even further by having the ACMs 
exchange queries with each other in the effort of trying 
to find a specific component. This task is eased by the 
fact that each ACM has an index of all components that 
it knows, and can be queried via the search interface. By 
linking the ACMs together we create a web of 
components. The search function of each ACM can be 
conceived as a locally based search machine. We can 
foresee in the future network-wide services that 
implement a sort of “search engine” for components.  

7 Peer-to-peer (P2P) for ACM 

Active and programmable networks promise 
computation in distributed networks. Within this 
context, P2P is a promising technology that can be 
applied in the component deployment. Although P2P 
isn’t exactly new2, as architectures more that two 
decades old could be today hosted under this label, is 
gaining momentum. P2P is a set of technologies that 
enables direct exchange of services and data between 
computers. The successful examples of distributed file 
servers like Freenet (freenet.sourceforge.net) and 
Gnutella (www.gnutelliums.com) could be used within 
the ACM context. The idea is that ACMs act as P2P 
nodes and create their own P2P overlay networks. This 
offers enhanced flexibility for code deployment.  

First of all, metadata that describes each file and the 
elements within it holds the key of success. This should 
be done in XML as it is a good foundation because it 
offers a flexible syntax. It gives us the capability of 
creating customized schemas that structure our content 
the way we want it. XML schemas can be created by 
standardization committees, but they can also be made 
by individuals or communities for widespread usage. By 
having this flexibility we can bypass lengthy 
standardization procedures when these schemas are 
widespread. ANs do exactly the same thing when it 
comes to deployment of new protocols (by agreeing on 
abstract computational model one does not have to be 
protocol specific). RDF/DAML and XML-based 
protocols for real-time messaging and presence 
notification like Jabber (www.jabber.org) are 
particularly promising ways to deploy metadata, but 
communities must agree on tags. Finally the current 
state of P2P is evolving into the hybrid approach 
described above that takes advantages of the pros and 
cons of centralized and decentralized approaches, i.e. 
Gnutella now has superpeers, Freenet  provides 

                                                           
2 Back in 1981, IBM began to introduce communication standards 

that developed into a peer-oriented network architecture called 
Advanced Peer-to-Peer Networking (APPN), a significant change from 
the traditional top-down hierarchical Systems Network Architecture 
(SNA) model. 

gateways and JXTA (www.jxta.org) search creates a 
hierarchy of servers for better efficiency. The same will 
be true for the P2P-based network of ACMs. The ACMs 
will be able to discover new software releases from the 
components they possess and upgrade themselves. They 
also will be able via Instant Messaging (IM) to be 
passively notified for bugs and actions to be taken. Not 
rare is the phenomenon where one of the entities 
involved in the component distribution context either as 
user, implementer or distributor, wants to revoke 
component or replace it with a new version that has 
several bugs fixed. E.g. the administrator that discovers 
a malicious version of a specific component that is 
deployed in the network issues an IM notification and 
all nodes deinstall the specific software. Such capability 
will give birth to new approaches where the patches or 
updates are directly pushed to nodes by authorised 
entities, the moment they are released in a distributed 
way. Viruses, worms, vulnerability attackers etc today 
getting more sophisticated and we are heading towards 
zero-day attacks [7]. Therefore we will need to act in a 
very short time and update an immense number of 
nodes, which will result in heavy network load if this is 
handled by a single site and possibly create bottlenecks 
within the network. By using P2P technology, better 
load balancing could be achieved, but then the problem 
of trust on the updater arises, since we do not want to 
intentionally allow attackers to insert Trojans in our 
nodes. The approach presented here partially covers 
these issues, since the update instruction can come from 
an authorized entity (e.g. a Cyber Center for Disease 
Control as proposed in [8]) and the patch can be 
distributed by third parties and verified by the end users. 
Therefore a P2P-enabled ACM would allow us to act 
proactively and quickly when new vulnerabilities are 
found and apply on-demand patches in a significantly 
shorter time-frame to a greater network segment even 
without user intervention and without waiting for the 
user to query single site (which might be too late). 
Finally, in a more intelligent scenario users will be able 
to search metadata capable engines or directly the 
ACMs that are online and discover new software that 
they can integrate. For the developer also this is the 
ideal way to distribute and make widely known the 
software component he has developed. 

8 Discussion 

We have been commenting to the design decisions 
while describing code/component distribution, 
discovery and management. Special care was taken to 
bring forward the security concerns, and we have 
commented on the future directions and possible impact 
such an approach might have. 

Page 8 of 10 



8.1 Related work 
Existing efforts like Enterprise Java Beans 

(http://java.sun.com/products/ejb/), .NET 
(http://www.microsoft.com/net/) and CORBA 
Component Model (CCM - 
http://www.omg.org/technology/documents/formal/com
ponents.htm) tackle a more extended area; that of 
service deployment where the components are 
instantiated and realize services. We address a more 
narrow area which is part of the above approaches 
namely only the component distribution one. The 
component dependency problem is tackled partially, 
meaning that one component in order to function will 
need another one installed locally and this can be done 
dynamically. The network wide dependencies are not 
investigated and give avenues for future work. 

The digitally signed code approach for active 
networks exists also in other approaches e.g. PANTS 
[3] but the code itself or its identifier is carried within 
the capsule. This approach introduces not only 
interoperable freely distributable secure profiles for 
describing the components and their capabilities, but 
also dynamic component discovery, upgrade and leaves 
to the user the topology of the ACMs in order to better 
suit his needs. 

8.2 Benefits 
We believe that the approach presented here 

provides the foundation for a scalable, robust, extensible 
solution that tackles current interoperability problems 
and is open to future challenges. The major benefits 
provided are: 

Middleware for Component Distribution: The 
ACM as presented here forms a sort of middleware 
service that can be used in order to deploy components 
on an active node. Therefore the clients do not need to 
implement themselves routines that discover/download 
the components and check their security credentials. 
The ACM’s interfaces can be used instead, hence we 
have thinner, easier to implement and inexpensive to 
maintain clients. The instantiation of the component is 
not covered here, and is technology specific. 

Optimized software distribution:  The ACM is 
able to allow reuse of one component by many users 
instead of downloading many times and handling as 
different each component installation the user requires. 
Although the future networks are expected to provide 
high bandwidth, the mobile ones will still provide users 
with limited bandwidth allocation (at least until the 3G 
infrastructure is widely used) in order to optimize the 
resource usage. 

Automatic Discovery/Indexing: The ACM is able 
to provide indexes of the code itself hosts or is available 
within a domain. It can query metadata enabled search 

engines or other ACMs in order to find the desired code. 
It can also build P2P networks of ACMs that exchange 
info and discover other components. Furthermore the 
ability to search for new code based on the profile 
inspection may prove interesting to the developers.  

XML-based metadata: Instead of deploying 
application specific home-grown solutions to represent 
information about the components, ACM uses XML and 
RDF together with DCMI in order to provide 
interoperable widely accepted flexible profiles. 

Security awareness: The ACM is able to 
deploy/use digitally signed XML profiles. The digital 
signature owner can be extracted and further used for 
authorization decisions. Furthermore it is also made sure 
that the resources that the profile refers to have not been 
altered. Interesting are also the implications of the 
XACL and the new capabilities it offers within the 
whole process which have not yet been adequately 
investigated. 

Safety:  The ACM indirectly takes care of the safety 
of the active network node. It makes sure that no 
untrusted or compromised code is installed. Although it 
cannot control on runtime the executed code, it can via 
policy permit only to the administrator to install code he 
has tested and is sure that runs safely for the systems 
configuration. Furthermore the upgrade functionality, 
although primitive, allows quick deployment of the 
latest version of the components that can be pushed to 
active network infrastructures once made available. 

Openness/Dynamicity: The ACM by using 
promotes openness and supports on demand component 
downloading. Therefore it eases the tasks of future 
services and dynamic environments e.g. where the 
protocols of the active nodes that recently joined the 
network have to be adapted and the missing 
functionality to be fetched.  

9 Conclusion 

We have presented several directions that we 
consider as challenges for the component deployment 
context within next generation converged networks. 
Active networks, which are also seen as one of the key 
enabling technologies also for mobile networks [3], 
depend on code that has to be discovered, installed, 
deinstalled, indexed, distributed and profiled. The ACM 
as presented here tackles many of these problems in an 
open, scalable, robust and extensible way. We have 
presented the architecture of the ACM and its relation to 
other components such as the security manager and 
other ACMs.  

One could consider that such a liberated dynamic 
framework for code distribution can be considered as a 
disaster recipe that will advance the expansion of 

Page 9 of 10 



viruses and relevant malicious software. However, this 
does not hold true. It has to be pointed out that currently 
users of open source software download updates via a 
well-known sites and their mirrors, which they have to 
trust. The approach presented here allows more 
sophisticated mechanisms to be deployed, since a 
generic policy-controlled framework is in place, which 
can partially enhance existing distributed code 
deployment approaches. As an example we have 
pointed out that P2P enabled ACMs can tackle secure 
on-demand patching to a great network segment 
proactively, therefore minimizing the overall 
vulnerability of the network. Of course the approach is 
very generic and the development was done only to 
prove that the concept is promising. However, the 
author believes that this might be a way that can lead us 
to autonomous patching which will result in more 
secure networks.  Furthermore code-profiling can offer 
richer info upon which more fine-grained policy and 
trust decisions can be made by the end-user at different 
levels. 

What this approach tries to promote is also the 
XML/RDF based profiles for unambiguous description 
of the components and better component discovery, a 
step closer to the fulfilment of the semantic web vision. 
Recently the W3C announced the Composite 
Capability/Preference Profiles (CC/PP) structure and 
vocabularies (http://www.w3.org/TR/CCPP-struct-
vocab), which is definitely a step towards the right 
direction and complementary to our work. By adding 
security and embedding it to the ACM approach 
presented here we may be able to realize powerful 
interoperable code distribution and policy-enabled 
management of it. Finally we envision the future of 
ACM as a P2P network, possibly with Instant 
Messaging capable nodes, that will be able to take 
advantage of the underlying programmable 
infrastructure.  

10 References 

[1] Stamatis Karnouskos, “Security Implications of 
Implementing Active Network Infrastructures using 
Agent Technology”,  Special Issue on Active Networks 
and Services, Computer Networks Journal, Volume 36, 
Issue 1, pp 87-100, June 2001 (ISSN 1389-1286). 

[2] Stamatis Karnouskos, “Realization of a Secure Active 
and Programmable Network Infrastructure via Mobile 
Agent Technology”, Special Issue on Computational 
Intelligence in Telecommunications Networks, Computer 
Communications Journal, Volume 25, Issue 16, pp. 1465-
1476, October 2002 (ISSN: 0140-3664). 

[3] A. Fernando, D. Williams, A. Fekete, and R. 
Kummerfeld, “Dynamic Network Service Installation in 

an Active Network”, Computer Networks, 36:35-48, 
2001. 

[4] Jonathan M. Smith, Scott M. Nettles, “Active 
Networking: One View of the Past, Present and Future”, 
IEEE Transactions on Systems, Man, and Cybernetics (T-
SMC), Volume 34, Number 1, pp. 4-18, February 2004 
(ISSN: 1094-6977). 

[5] Spyros Denazis, Stamatis Karnouskos, Toshiaki Suzuki, 
and Satoshi Yoshizawa, “Component-based Execution 
environments of Network Elements and a Protocol for 
their Configuration”, IEEE Transactions on Systems, 
Man, and Cybernetics (T-SMC), Volume 34, Number 1, 
pp. 82-96, February 2004 (ISSN: 1094-6977). 

[6] B. Blobel, P. Hoepner, R. Joop, S. Karnouskos, G. 
Kleinhuis and G. Stassinopoulos, “Using a privilege 
management infrastructure for secure web-based e-health 
applications”, Computer Communications Journal, 
Volume 26, Issue 16, Pages 1863-1872, 15 October 2003 
(ISSN: 0140-3664).   

[7] Angelos D. Keromytis, “Patch on Demand Saves Even 
More Time?”, IEEE Computer, pp. 94-96, Volume 37, 
Number 8, August 2004  

[8] Stuart Staniford,Vern Paxson, Nicholas Weaver, “How to 
Own the Internet in Your Spare Time”, Proc. of 11th 
USENIX Security Symposium, pp. 149-167, San 
Francisco, August 2002 (ISBN:1-931971-00-5). 

 
 
 

Page 10 of 10 


	Introduction
	Motivation
	Active Component Manager
	Metadata for Component Distribution
	XML Digital Signatures
	Topologies for ACM
	Peer-to-peer (P2P) for ACM
	Discussion
	Related work
	Benefits

	Conclusion
	References

