
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 34, NO. 1, FEBRUARY 2004

Component-Based Execution Environments
of Network Elements and a Protocol

for Their Configuration
 Spyros Denazis,Stamatis Karnouskos, Toshiaki Suzuki, and Satoshi Yoshizawa

Abstract—It has been more than a decade since the introduction
of programmability in the network elements as the basis for pro-
viding rapid deployment and customization of new services across
heterogeneous networks. Different fields, research initiatives and
fora at different or same points in time have attempted in their own
way to give their definition of programmability and how it should
be realized to facilitate service deployment. Although these efforts
seem, from the outset, as antagonistic to each other, and most of
the time heavily dependent on the underlying networking tech-
nology, strong evidence points toward common features, that when
put together, as pieces of a puzzle, give rise to a common picture
which, we believe, is representative of the term “programmable
networks.” In this paper, we are going to bring out and elaborate
on a number of such features, arguing are they are the ingredients
that serve as building materials and principles to the next genera-
tion network element architecture enabled to realize the yet elusive
rapid service deployment. Our analysis will draw from the state of
the art and our experiences in working in the future active IP net-
work (FAIN) [37] project. As a result, we will take advantage of
these observations and propose a new protocol that allows a pro-
grammable network to be configured in such a way that new func-
tionality may be requested and installed, thus, extending the capa-
bilities and the services offered by the network.

Index Terms—Active networks, component-based architectures,
execution environments, programmable networks, service compo-
sition protocol.

I. INTRODUCTION

I T has been almost a decade since the introduction of pro-
grammability [38] in the network elements (switches,

routers, etc.) as the basis for the rapid deployment and cus-
tomization of new services. As we are moving toward the next
generation of a heterogeneous network engineered to facilitate
the integration and delivery of a variety of services, programma-
bility becomes more than ever the most important property of

Published in IEEE T-SMC Journal, Feb 2004

S. Denazis is with the Hitachi Sophia Antipolis Laboratory, Hitachi Europe
SAS, 1503 Route Des Dolines, 06560 Valbonne, France (e-mail: Spyros.De-
nazis@hitachi-eu.com).

S. Karnouskos is with Fraunhofer Institute FOKUS, Kaiserin Augusta Allee
31, D-10589 Berlin, Germany (e-mail: Stamatis.Karnouskos@fokus.fraun-
hofer.de).

T. Suzuki and S. Yoshizawa are with the Network Systems Research De-
partment, Central Research Laboratory, Hitachi Ltd., Tokyo 185-8601, Japan
(e-mail: toshiaki@crl.hitachi.co.jp, yoshi@crl.hitachi.co.jp).

networks to the degree that the term programmable networks
will become synonymous of the next generation network.

Advances in programmable networks have been driven by a
number of requirements that gave rise to a new business model,
new business actors and roles [3]–[5]. More specifically, we
are moving away from the “monolithic” approach whereby
systems are vertically integrated to a component-based ap-
proach whereby systems are made of multiple components
from different manufacturers, which may interact with each
other through open interfaces to form a service [6]. The result
is a truly open service platform, possibly with intelligence
[44], representing a marketplace wherein services and service
providers compete with each other, while customers may select
and customize services according to their needs.

The problem space of programmable networks may well be
represented by a two-dimensional (2–D) model. Along the first
dimension is the communication model that consists of packet
header processing and forwarding, quality of service, and
congestion control mechanisms. Programmability along this
dimension has been exercised by introducing service models
like ATM, or Diffserv, [8] operating at the transport plane and
then using the control plane to customise them, resulting in
different forwarding behaviors as perceived by the users.

Along the second dimension, the computational model
consists of “active” technologies emerged from the areas
of programming languages, object oriented and distributed
programming, and operating systems. Recently, new hardware
technologies like network processors [9], [10] pushed the
computational model even lower and closer to the physical
interfaces of the networks elements. The computational model
advocates higher amounts of computation and processing than
the communication model as a means of pushing additional
functionality inside the network to meet customer require-
ments. Programmability along this dimension is exerted by
treating the network element (router, firewall, switch etc.) as a
programming environment, wherein service components may
be deployed carrying out advanced.

Two distinct schools of thoughts, that address this problem
space, can be identified. The first is represented by the Opensig
community and was established through a series of international
workshops [2], while the second one, active networks (ANs) [1],
is the result of a series of projects under the auspices of the De-
fense Advanced Research Projects Administration (DARPA).
Although these efforts seem from the outset as antagonistic to

Fig. 1. P1520 reference model and the L-interface abstraction model.

each other and most of the time heavily dependent on the un-
derlying networking technology and implementation, strong ev-
idence point toward common features, that when put together as
pieces of a puzzle they give rise to a picture that we believe is
representative of the “programmable networks.” Recently such
features have become the main focus of standardization activi-
ties and in particular the IEEE P1520 [3] and the IETF ForCES
protocol working group [12].

In this paper, we are going to bring out and elaborate on a
number of such features arguing that they are the ingredients that
serve as building materials and principles to the next generation
network element (NE) architecture enabled to realize the yet
elusive rapid service deployment. The ingredients identified are
the execution environment, the building block approach and the
separation principle among the different operational planes nec-
essary to support interoperability. Our analysis will draw from
the state of the art and our experiences in working in the future
active IP network (FAIN) EU project.

We also argue that because of strong evidence regarding the
versatility of the building block approach, there is a specific type
of EE that is going to be dominant in the next generation of
programmable networks assisted by the widespread adoption of
network processors. As a result we are going to propose a new
network element reference architecture that not only does it ex-
tensively uses this particular type of EE but also acts as a ref-
erence model to be used by service deployment mechanisms.
Using this model we argue about the need for a configuration
protocol for deploying service components in the network ele-
ments followed by its description.

More specifically, in Section II, we review results from the
two schools of thought, namely, the Opensig and in particular
P1520 and ForCES, and the Active Networks followed by a dis-
cussion. In addition, we attempt to link P1520 with ForCES al-

though P1520 preceded ForCES but we argue that they both
aim at the same objectives using very similar if not identical
approaches. Section III, briefly describes the FAIN network el-
ement reference architecture that has been influenced by the two
communities while focuses on one important feature, that of the
execution environment (EE) and its particular type proposed by
FAIN. In Section IV we describe the new configuration pro-
tocol. Finally, Section V summarizes our conclusions and out-
lines the future work.

II. TWO SCHOOLS OF THOUGHT IN

PROGRAMMABLE NETWORKS

A. Open Signalling

1) IEEE P1520: The original motivation behind Opensig
networks has been the observation that monolithic and complex
control architectures may be restructured according to a min-
imal set of layers where the services residing in each layer are
accessible through open interfaces thus, providing the basis for
service creation (composition). Eventually, a number of results
out of the Opensig community were formalized by the IEEE
Project 1520 standards initiative for programmable network
interfaces and its corresponding reference model [3]. The IEEE
P1520 reference model (RM) provides a general framework for
mapping programming interfaces and operations of networks,
over any given networking technology. Mapping diverse
network architectures and their corresponding functionality to
the P1520 RM is essential. The IEEE P1520 RM, depicted in
Fig. 1, defines the following four interfaces.

• CCM interface: The connection control and management
interface is a collection of protocols that enable the ex-
change of state and control information at a very low level
between the NE and an external agent.

• L-interface: This defines an application program interface
(API) that consists of methods for manipulating local net-
work resources abstracted as objects. This abstraction iso-
lates upper layers from hardware dependencies or other
proprietary interfaces.

• U-interface: This mainly provides an API that deals with
connection setup issues. The U-interface isolates the di-
versity of connection set-up requests from the actual algo-
rithms that implement them.

• V-interface: It provides a rich set of APIs to write highly
customised software often in the form of value-added ser-
vices.

CCM and L-interfaces fall under the category of NE inter-
faces, whereas U- and V-interfaces constitute network-wide in-
terfaces.

Initial efforts through the ATM sub-working group (P1520.2),
focused on telecommunication networks based on ATM and
introduced programmability in the control plane [13]. Later,
The IP Sub-working group extended these principles to IP net-
works and routers. Fig. 1 also suggests a possible mapping of
the P1520 RM to IP routers. However, their efforts focus on cre-
ating a generalized framework for designing interfaces not just
for routers but also for any NE the core functionality of which
is forwarding of traffic, e.g., switch, gateway etc [14]. For the
remaining of this section we will focus on the activities of the
IP working group as the most relevant to this paper.

When the IP sub-working group (P1520.3) first met, they
faced two critical questions: a) which of the interfaces of the
RM is the most important one in terms of maximizing openness
of the RM, and b) which is the right approach to achieve it.

Eventually, they decided that NE interfaces (CCM and L) are
the most critical ones as they abstract the functionality and the
resources found in the NE, thereby, creating a kind of interop-
erability layer among different vendor’s equipment and most
importantly, allowing the requirements of network services re-
siding in higher layers to be mapped in many different ways onto
the capabilities of heterogeneous NEs.

The second question faced was the most complex one. Tra-
ditional packet and flow processing have long been the default
network behavior. However, with increasing intelligence being
pushed into NEs, emerging devices will perform multiple
functions, thereby defining a new class of network elements that
extend behavioral functionality within the network transport.
Thus, traditional routers and switches are going to be subsumed
with next generation NEs capable of dynamically adapting
to multi-function requirements. They are expected to include
address translation, firewall enforcement, advanced flow dif-
ferentiation, proxy activation, load balancing, and advanced
monitoring.

Furthermore, in order to meet with the speed of the ever-rapid
advancement in the technological frontiers, both in network de-
vices and services/applications, an approach in specifying a stan-
dard should be based on a software architecture that allows exten-
sive reusability of its modules. In other words, the development
effort required to extend (i.e., proprietary or otherwise) the API
should be minimized, so as not to hinder or delay deployment
of emerging technological advances. The fundamental require-
ment levied on the standardization process of the API, is that the

standardization itself shall not interfere with the future advance-
ment and development of related technologies. In other words, it
is required to be extensible. Furthermore, the extensible nature
has to be available at all levels of abstraction within the API hi-
erarchy. The standard API has to be extensible to accommodate
new network devices, while at the same time be able to accom-
modate newly developed network services and applications. The
former includes, for example, a proprietary hardware mechanism
to accelerate a particular functionality, which could be realized
by software in a “conventional” IP router.

Concluding, to make a standard extensible for keeping up
with the pace of innovation and differentiation you must make
the composition mechanism part of the standard thus enabling
seamless extensions of the API in the future.

Following this decision, P1520.3 also selected L-interface as
their initial target for specification. In addition, the approach that
was proposed to provide an answer to the second question is
the building block approach [15], [16], which consists of three
layers of abstraction that define a model for specifying the API
(Fig. 1).

The model enables network device programmability from
two complementary perspectives, corresponding to an asso-
ciation with the layers of the L abstraction model, primarily
service-specific and resource. This allows, for example, upper
level interfaces to create or program completely new network
services using generic resource abstractions or modify existing
services using service-specific abstractions, which are them-
selves built on generic resource abstractions. The third layer
is introduced to facilitate common device programmability by
means of composition, via a standard set of base building block
abstractions, which both the service-specific and resource
layers are built.

More specifically, the upper part of the L interface is the ser-
vice-specific abstraction layer of the NE. The service-specific
building block (SSBB) abstractions at this layer expose “sub”-in-
terfaces associated with underlying behaviors or functions, state
or policies on the local node that have concrete meaning within
the context of a particular supported service (e.g., differenti-
ated services). The idea here is that an administrator or Internet
service vendor (ISV) need only program the device within the
context of the service (i.e., preferably industry standardized),
rather than deal with low-level abstractions associated with fun-
damental resources (e.g., scheduler, dropper) of the network de-
vice. Thus, to deliver the required service-specific behavior, he
or she needs only modify, update or provision the service ab-
straction at the level that they understand or have a need (or
privilege) to supplement.

Alternatively, the middle part of the L interface abstraction
model is the resource abstraction layer of the NE. The abstrac-
tions here are termed resource building blocks (RBBs), from
which primitive behaviors (e.g., Diffserv PHB [8]) or new be-
haviors can be built. We envision the programmer is a sophisti-
cated ISV developer or network software architect, who is aware
of underlying resource abstractions (not implementation) of a
NE (e.g., router), and can construct new behaviors or functions,
change state or policies within the context of the generic ab-
straction, without specific knowledge of the underlying vendor
device implementation.

Fig. 2. ForCES architectural representation of NE.

The maximum degree of abstraction is achieved at the lowest
layer of the abstraction model. It is at this layer that the com-
position mechanism is abstracted and becomes part of the stan-
dard. The idea behind the base building blocks (BBB) is to have
abstractions that have no service or resource significance from
a NE behavioral or packet processing perspective. These base
blocks serve the needs of the programmer, only in an inheritance
fashion such that the abstractions above the base layer (namely
resource or service-specific) can be designed appropriately to
create new functional service behaviors or resources or modify
(enhance) existing ones in a consistent, standard object-oriented
manner.

As a result of the approach a number of APIs are defined at
each layer with the ones at the BBB layer providing methods
that allow RBBs to be composed in such a way that they form
SSBB’s constructs. In this way, using the APIs of the BBB
layers and defining as RBBs components like classifier, meter,
shaper, queue, and scheduler, one can create a Diffserv SSBB
the API of which will be the collection of the APIs of the in-
dividual RBBs. To this end, by standardizing a small set of
RBBs one can create any SSBB that is required by specific net-
work services. Alternatively, new RBBs may be introduced by
means of inheritance from the BBB layer and deployed in the
NE in order to support new network service requirements or en-
hance/extend existing functionality.

2) IETF ForCES: The Opensig community have long ad-
vocated the benefits of a clear distinction between control and
transport plane. Recently, a working group of IETF, called for-
warding and control element separation (ForCES) was formed
with a similar objective to that of P1520, namely, “by defining
a set of standard mechanisms for control and forwarding sepa-
ration, ForCES will enable rapid innovation in both the control
and forwarding planes. A standard separation mechanism al-
lows the control and forwarding planes to innovate in parallel
while maintaining interoperability” [12], [17].

According to [17], the NE is a collection of components
of two types: control elements (CE) and forwarding elements
(FE) operating in the control and forwarding (transport) plane,
respectively. CE’s host controls functionality, like routing
and signalling protocols, whereas FEs perform operations on
packets, like header processing, metering, scheduling etc when
passing through them. CEs and FEs may be interconnected with
each other in every possible combination (CE-CE, CE-FE, and
FE-FE) thus, forming arbitrary types of logical topologies (see
Fig. 2). Every distinct combination defines a reference point,
namely, , , and . Each one of these reference points may

define a protocol or a collection thereof, but ForCES protocol
is only defined for the reference point.

However, FEs do not represent the smallest degree of granu-
larity of the NE functionality. Furthermore, as they implement
the ForCES protocol they must facilitate CEs to control them in
terms of abstracting their capabilities, which, in turn may be ac-
cessed by the CEs. It is at this point that the ForCES group faced
a similar challenge as the IP working group in P1520 which they
formulated it as follows: Since FEs may manifest varying func-
tionality in participating in the ForCES NE, “the implication is
that CEs can make only minimal assumptions about the func-
tionality provided by its FEs” [18]. As a result, CEs must first
discover the capabilities of the FEs before they can actually con-
trol them.

The solution they suggest is captured in the form of an FE
Model [18], while two of its requirements that must satisfy per-
tain to the problem of an extensible standard. The first mandates
that the FE model should provide the means to describe existing,
new or vendor specific logical functions found in the FE’s, while
the latter demands to describe the order in which these logical
functions are applied in the FE [5]

In the ForCES FE model, they use a similar approach to the
building block approach of the P1520.3 working group, by
encapsulating distinct logical functions by means of an entity
called, FE block. When this FE block is treated outside the
context of a logical function, it becomes equivalent of the base
building blocks. When someone looks what is inside every FE
block then it becomes a resource building block. Similarly, FE
blocks eventually are expected to form an FE block library—in
principle extensible which will be part of the standard and the
basis for creating complex NE behaviors, although dynamic
extensions thereof, may be possible. Of course there are differ-
ences between the two initiatives but the main ideas are very
close so we expect that in the future they will fully converge.

A type of model like the FE model is useful when CEs at-
tempt to configure and control FEs. ForCES has identified three
levels of control and configuration, namely, static FE, dynamic
FE, and dynamic extensible FE control and configuration. The
first assumes that the structure of the FE is already known and
fixed, the second one allows the CE to discover and configure
the structure of the FE although selecting from a fixed FE block
library, whereas the third one is the most powerful that allows
CE’s to download additional functionality, namely FE blocks,
onto FEs at runtime. Currently ForCES is mainly, focusing on
the first level of control and configuration.

B. Active Networks

Active Networks transform the store-and-forward network
into store-compute-and-forward network. The innovation here
is that packets are no longer passive but rather active in the sense
that they carry executable code together with their data pay-
load. This code is dispatched and executed at designated (ac-
tive) nodes performing operations on the packet data as well
as changing the current state of the node to be found by the
packets that follow. In this context, two approaches can be iden-
tified based on whether programs and data are carried discretely,
namely within program and data packets (out-of-band) or in an
integrated manner, i.e., in-band.

Fig. 3. Active node architecture.

In the discrete case, the job of injecting code into the node
and the job of processing packets are separated. The user or net-
work operator first injects his customised code into the routers
along a path. Then the data packet arrives, its header is exam-
ined and the appropriate preinstalled code is loaded to operate
on its contents [19], [20]. Separate mechanisms for loading and
executing may be required for the control thereof. This separa-
tion enables network operators to dynamically download code
to extend node’s capabilities, which in turn they become avail-
able to customers through execution.

At the other extreme lies the integrated approach where code
and data are carried by the same packet [21]. In this context,
when a packet arrives at a node, code and data are separated,
and the code is loaded to operate on the packet or change the
state of the node. A hybrid approach has also been proposed
[22].

Active networks have also proposed their own reference ar-
chitecture model [23] depicted in Fig. 3. According to it an ac-
tive network is a mixture of active and legacy (nonactive) nodes.
The active nodes run the node operating system (NodeOS) –not
necessarily the same, while a number of execution environments
(EE) coexist at the same node. Finally a number of active appli-
cations (AA) make use of services offered by the EEs.

The NodeOS undertakes the task of simultaneously sup-
porting multiple EEs. Accordingly, its major functionality is
to provide isolation among EEs through resource allocation
and control mechanisms, and providing security mechanisms
to protect EEs from each other. It may also provide other basic
facilities like caching or code distribution that EEs may use to
build higher abstractions to be presented to their AAs. All these
capabilities are encapsulated by the Node interface through
which EEs interact with the NodeOS. This is the minimal fixed
point at which interoperability is achieved [24].

In contrast EEs implement a very broad definition of a net-
work API ranging from programming languages to virtual ma-
chines like the Spanner VM in Smart Packets and bytecodes, to
static APIs in the form of a simple list of fixed-size parameters
etc [25]. To this end, EE takes the form of a middleware toolkit
for creating, composing and deploying services.

Finally, the AN reference architecture [23] is designed for si-
multaneously supporting a multiplicity of EEs at a node. Fur-
thermore, only EEs of the same type are allowed to commu-
nicate with each other, whereas EEs of different type are kept
isolated from each other.

C. Discussion on the State-of-the Art

The purpose of the state-of-the-art presented in this paper
is not to provide a thorough analysis and evaluation of pro-
grammable networks 1 but rather to identify those ingredients
that may serve as building materials and principles to the next
generation NE architecture.

First and foremost, we consider the concept of EE as the basis
of the next generation NE architecture that greatly facilitates the
definition of a reference architecture. Such architecture acts as
a reference point that service deployment algorithms need in
order to make decisions about where service components can be
deployed, which is the appropriate implementation technology
of these components, how the deployed components are linked
with existing ones that are running in the NE etc.

But what exactly is an EE, what elements is it comprised
from and are these elements part of the architecture or part of
its chosen implementation? Furthermore, is it possible to iden-
tify specific types of EEs that are implementation independent?
In the literature we can trace a variety of answers regarding the
exact characteristics of an EE.

Conceptually, an EE is the active network’s programming en-
vironment [26] when instantiated it becomes the runtime envi-
ronment of a process or a process itself [27]. This programming
environment may be centred on a particular language and may
export some API that encompasses elements like a Java Virtual
Machine [23], [26], toolkits used for building AAs (services)
[19], [27] or even interfaces to access generic services that AAs
may customise building value added services. EEs have also
been proposed as extensions of the NodeOS for those that are
allowed to be extensible [24]. The latter has an impact on where
to draw the boundary between EE and NodeOS known as the
node interface.

The fact that the AN reference architecture [23] simultane-
ously supports multiple EEs, implies that EEs are also treated
as principals based on which authentication, authorization and
resource control takes places. Services and users that use an EE
are represented by this principal, which is the only valid entity
allowed to access NodeOS facilities. To this end, the EE con-
cept is overloaded with the characteristics of a virtual environ-
ment. Prototypes proposed in [28], [29] may be interpreted in
this way. Finally, EEs have been characterized not by the choice
of technologies but rather by the services they offer and the ar-
chitectural plane they operate at, namely, control, management,
and transport [30], [31].

The boundaries between architecture and implementation are
sometimes blurred that, in turn, makes it is very difficult to come
up with a clear definition of an EE. Lack of an unambiguous def-
inition impedes any effort to propose a reference NE architec-
ture that not only does it encompass most of the research efforts
so far, but also it is instrumental in designing a middleware for
service creation and deployment. We are going to deal with this
issue in Section III.

The second of these ingredients is the right approach based
on which EEs must be designed. As it has been argued, the ap-
proach must satisfy the requirements for composability, exten-
sibility, and vendor independence. We believe that the building

1A thorough analysis and comparison of programmable networks may be
found in [7] and [11].

Fig. 4. FAIN NE reference architecture.

block approach is the right one for designing EEs. Recently, a
new research activity has been reported in [32] which uses a sim-
ilar approach applied to redesign of protocols that do not imply
a layered IP architecture.

The final ingredient mainly deals with the problem of interop-
erability and the NE itself. It comes in the form of the separation
principle among the different operational planes and the abstrac-
tion of the functionality at each one of the planes by means of
open interfaces.

III. FAIN NE REFERENCE ARCHITECTURE

The FAIN NE reference architecture depicted in Fig. 4 de-
scribes how the ingredients identified previously may synergis-
tically be combined in building next generation NEs capable of
seamlessly incorporating new functionality or dynamically con-
figured to change their behavior according to new service re-
quirements.

One of the key concepts defined by the FAIN architecture is
the EE. In FAIN, drawing from an analogy based on the con-
cepts of class and object in object-oriented systems, we distin-
guish EEs between the EE type and the EE instances thereof.
An EE type is characterized by the programming methodology
and the programming environment that is created as a result of
the methodology used. The EE type is free of any implementa-
tion details. In contrast, an EE instance represents the realiza-
tion of the EE type in the form of a runtime environment by
using specific implementation technology, e.g., programming
language and binding mechanisms to maintain operation of the
runtime environment. Accordingly, any particular EE type may
have multiple instances while each instance may be based on
different implementations. Such distinction allowed us to ad-
dress the issue of the principles that must govern and the prop-
erties that must be possessed by next generation NE’s, from the
issue of how to build such systems.

The programming methodology that was used as part of the
FAIN EE type was the building block approach according to
which services break down into primitive, distinct blocks of
functionality, which then may be bound together in meaningful
constructs. To this end, services can be rebuilt from these
primitive forms of functionality, i.e the building blocks, while
building blocks may be reused and combined together in
a series of different arrangements as this is dictated by the
service itself. The result of this process is the creation of a
programming environment like the one depicted in Fig. 5. In
FAIN we have built two different EE instances, a Java EE and
a Linux kernel-based EE, of this particular EE type [33].

FAIN architecture also allows EEs to reside in any of the three
operational planes namely, transport, control and management
while they may interact and communicate with each other either
across the planes or within a single plane. In fact, it is not the
EEs that communicate but rather distributed service components
hosted by them part of deployed network services which can
be accessed by applications or higher level services by means
of the network API they export. EEs (instances) are the place
where services are deployed. Services may well be extensible
in the sense that the programming methodology and the cor-
responding environment (EE type) support service extension
while they can access services offered by other EEs to achieve
their objectives and meet customer demands. For example a ser-
vice uses the code distribution mechanism to download its code
extensions. The extension API then becomes part of the overall
service interface.

Furthermore, FAIN separates the concept of the EE from that
of the virtual environment (VE). We argue that the concept of
an EE as defined previously and that of a VE are orthogonal
to each other. In fact a VE is an abstraction that is used only
for resource management and control. Therein, services may
be found and interact with each other. From the viewpoint of
the operating system, the VE is the principal responsible for the
consumption and use of resources, the recipient of sanctions in
the event of policy violations and the entity that is legal to re-
ceive authorization when services accessing control interfaces.
Similar conclusions may be found in [28], [29]. In other words,
a VE provides a place where services may be instantiated and
used by a community of users or groups of applications while
staying isolated from others residing in different VEs. Within a
VE many types of EEs with their instances may be combined to
implement and/or instantiate a service.

Another property of the reference architecture is that it makes
no assumptions about how “thin” a VE is. It may take the form of
an application, or a specialized service environment, e.g., video
on demand, or even a fully-fledged network architecture as pro-
posed in [30], [31]. Finally, a VE may coincide with an imple-
mentation (EE instance) that is based only on one technology,
e.g., Java technology. In either case this is a design decision dic-
tated by customer requirements and/or the VE owner.

Out of all the VEs residing in a node there must be a privileged
one that is instantiated automatically when the node is booted up
and serves as a back door through which subsequent VEs may
be created through the management plane. This privileged VE
should be owned by the network provider, who has access rights
to instantiate the requested VE on behalf of a customer through

Fig. 5. EE type: The programming environment.

a VE Manager (VEM). From this viewpoint the creation of VEs
becomes a kind of meta-service.

The other major and most important component of the ref-
erence architecture is the NodeOS. It offers all those facilities 2

that are necessary to keep all the other components together, and
provides resource control, security, management, active service
provisioning (ASP) of service components, and demultiplexing.
More details may be found in [33], [34]. All these facilities in
the NodeOS cooperate to deliver the overall functionality of the
NodeOS to achieve its goals.

Between VEs and NodeOS lies the node interface that en-
capsulates all the capabilities offered by the NE. Its objective
is to create programmable abstractions of the underlying NE
resources, whereby third-party service providers, network ad-
ministrators, network programmers or application developers
can exert or extend node control through the use of higher-level
APIs. This interface coincides with the L-interface and its spec-
ification must be implemented by EEs in order to achieve inter-
operability among different NEs. Finally, between the NodeOS
and the hardware NE there might be the open router interface. Its
scope coincides with the scope of the CCM interface of P1520.

The FAIN reference architecture is the starting point from
which a detailed node architecture specification follows. Ac-
cordingly, it is complemented by the system architecture re-
quirements, design and specification. This, together with cus-
tomer/user/application requirements determines the degree of
programmability to be built in the NE and the choice of tech-
nologies.

The previous two ingredients, namely the EE instances and
the open interfaces require a NE to reside in. Packets arriving
at the node have to follow different data-paths inside the node.
At every part of the node, EEs have been instantiated imple-
menting the programming methodology of their corresponding
EE types with some of them creating component-based pro-
gramming environments. This gives rise to a new generation of

2We use here the word facilities to refer to services offered by the NodeOS to
VEs and distinguish from services found inside EEs.

network elements with architectures that are component-based.
Such trend has been accelerated by the advent of innovative net-
work products like the network processors (NP), which are ca-
pable of hosting an EE without the cost of performance degra-
dation. Fig. 6 depicts this new situation in the form of a possible
NE representation.

In FAIN we have designed and built a prototype of an AN
node that adopts the scenario above. Instead of an NP we have
built one EE at the kernel space and another one at the user
space. Both EEs support the building block approach and re-
ceive packets, which are then directed to specific components
as part of their data-path NE traversing. More detailed descrip-
tion may be found in [33].

A. Discussion on FAIN

The FAIN NE reference architecture serves as a way to
manage and control overall service deployment. Based on the
ability to combine different EEs as part of the service creation
and deployment not only may specific service components be
deployed but also the whole programming environment (EE
instance) which is bound with existing EE instances. To this
end, different functional models may be mapped onto the same
physical NE infrastructure. One example could be that an EE
instance is deployed in an NP while another is represented by
an ASIC. This constitutes a departure from the active networks
reference architecture where only EE instances of the same
type are allowed to communicate.

Furthermore, the separation between VE and EE allowed us
to separate the resource control from the specifics of a tech-
nology used by EEs as well as multiple EEs may be hosted by
one VE and still being able to allocate resources as these are as-
signed to VE.

Returning back to the ForCES working group and in partic-
ular their architectural representation of an NE built around the
CEs and FEs as well as the proposed FE model [18], it is clear
that the EE definition in FAIN is also valid for an FE definition

Fig. 6. Network element representation.

as inferred from the current state of the IETF working group. In
addition, an EE that resides in the control plane may well rep-
resent CEs since such control EEs are used for controlling EEs
in the transport plane.

Accordingly, the issues of FE control and configuration, es-
pecially those that pertain to dynamically extensible FE’s, are
identical with those in FAIN. As such the mechanisms for ser-
vice deployment built in FAIN which facilitate configuration
and control of EEs (in the transport plane) may also be used for
the same purposes within the context of the ForCES activity.

For realizing the full interaction between control and trans-
port plane EEs, or in other words constructing (configuring)
data-paths by binding together service components, a new pro-
tocol is needed. The description of such a protocol is the subject
of the remaining paper.

IV. ACTIVE PROTOCOL3 FOR CONFIGURING

EXECUTION ENVIRONMENTS

In the FAIN network, the active NEs, and, in particular, EEs,
execute programs representing universally identified modules,
which interact with the received packet or the NEs environment.
The active nodes decide, which programs should be executed
and in which order to the received data packets by checking
processing requests either carried by the packet itself (in-band)
or submitted previously (out-of-band). As a result, the NE ana-
lyzes and evaluates the request in order to configure the EE by
means of creating the data-path that encompasses the requested
processing modules in the right order. The proposed protocol
captures the semantics of configuring EEs of type like the pro-
gramming environment depicted in Fig. 5.

A. Graph-Based Processing

A graph is a finite set of nodes (also known as vertices)
connected by links called edges (or arcs). Throughout this
paper we imply a general graph whose nodes are the processing

3Note that a European patent for the new protocol by Hitachi

Fig. 7. Data-path graphs in EEs across different layers.

modules (service components) that will be acting on the
active packets and the edges denote bindings between these
modules. A data-path of an EE may be represented by means
of an acyclic graph that shows the particular way that service
components are connected (Fig. 7). This has implications on
the possible ways that the graph may be traversed and defines
the overall behavior of the data-path. Some steps can be done
in sequence while others can be done in parallel. A packet may
select a particular route within a graph or a number of different
routes. The graph may also act as a policy in the sense that
specific processing must take place either in a specific order or
between components that are not directly connected, e.g., if a
graph node indicates a decryption action and another one “virus
scanning” it is clear that we have to first decrypt the incoming
flow and then use the virus scanner.

Data-paths are instantiated in EEs while service components
of a data-path may belong logically to different layers, e.g., link
layer, network layer, application layer (Fig. 7). To this end, the
data-path may span across multiple conventional layers. This
has also been lately advocated in [32]. Accordingly, the data-
path has become the primary abstraction, which at the EE level

Fig. 8. Active packet taxonomy.

binds together service components by means of a graph. As a
data-path may not be confined within an EE but may span the
whole NE and eventually the network (end-to-end data-path),
we can also generalize the concept of the data-path by creating
a hierarchy whereby the data-path at the next level (NE level)
is the concatenation of data-paths of the lower level (EE level)
(Fig. 6). To this end, graphs may be composed of simpler ones
and can be combined to specify end-to-end services in a plat-
form independent way. Using graphs to specify services allows
us to dynamically deploy them through reference. For instance
an arriving packet may carry a reference to a graph, which can
be deployed before processing this packet, or others that follow.

Realising a graph requires a mapping between the topology
thereof and the capabilities of the network or the NE. For this
we need a model similar to the FAIN reference architecture or
ForCES. In FAIN we have created a service deployment archi-
tecture that supports this functionality [34].

A data-path (graph) in theory can span several EEs hosted in
the same or different NE’s, bus since we haven’t fully inves-
tigated the implications that arise in such an environment, we
consider (without evident loss of generality) in the rest of the
paper that the “graph” keyword is equivalent to data-path, which
in turn, is confined within an EE.

B. Processing-Based Taxonomy of Active Packets

Active code is encapsulated within the active packet and can
either be miniature programs or pointers to executable code that
has to be fetched and executed. Via the program execution, the
packet data may be modified or not. Based on this fact, as well
as on the way a packet is processed, we have come up with the
taxonomy depicted in Fig. 8.

An active packet may be processed by the active NE (Type I)
or passively forwarded to the next hop without processing (Type
II). The later is a typical case for active packets that cannot (or
are not intended to) be processed by the specific NE, e.g., en-
crypted packets, and is the default action for nonactive (legacy)
packets. We further categorize the packets to i) Type I(A) if their
process results in payload change and to ii) Type I(B) if this
doesn’t happen. Once the packet processing decision is taken,
we can have single processing where only one module will op-

erate on the packet and its data (this is the simplest case), or
multiple processing where several modules will operate on the
packet. Finally the processed packet according to one of the
methods mentioned above may have its payload changed or not.

The multiple processing is done conditionally, based on a path
in a graph that provides the interconnections between the com-
ponents that process the packet. The graph-based processing in-
troduces a dynamic way of packet processing, which can be se-
quential, parallel or even mixed (arbitrary) multiple processing.
In sequential multiple processing (SMP), the packet is processed
by multiple program modules sequentially, while the processing
order may or may not be important.

In contrast, the parallel multiple processing (PMP) as its
name implies, allows several program modules to operate on
the packet in parallel, thus, resulting in less overall processing
time. Here the order with which program modules operate on
the packet is not usually important and this is the typical case
where several modules need to process the same packet. In
parallel processing, one can clone the packet at some point,
distribute it to the appropriate modules and discard the clones
once the processing has been done. The last implies that the
incoming packet will not be modified by any of the processing
modules (or at least at the part of the graph where this parallel
approach will be applied). Finally the mixed multiple pro-
cessing (MMP) is a graph that has several steps of which some
can be done in parallel and some other sequentially. MMP is
the most challenging due to the possible high complexity of
the graph, but also the most interesting as we will be able to
apply graph theory algorithms and always seek the optimal
way to find the best paths within a graph (optimal processing
of a packet).

The graph-based approach allows us to decide which one of
all possible component combinations is optimal for configuring
our EE. The graph that describes the binding of processing mod-
ules that will process the packet can be carried by the packet or
be selected from the available combinations of modules the ac-
tive NE offers (the packet instead of a graph description carries a
reference to the specific graph). Please note that this approach is
technology independent, i.e., only the name of the components
(service) and the way components are connected is described.
The enforcement of the graph in the NE implies the existence
of a functional entity in the node that maps the technology inde-
pendent graph to a technology dependent one. This is possible,
since this functional entity knows exactly the EE instance that
has been deployed in the NE and the binding mechanism that
applies to it. Accordingly, it will fetch the right implementation
of the requested component for this particular EE instance, load
it, and bind it with the other components, thus configuring the
EE according to the request. In order to use this approach, we
must have an a priori knowledge of the existing graphs (know
what processing we want to apply to the packet) or dynamically
discover it once the packet is on the NE. Furthermore we need a
global namespace for the graph and its elements (the processing
modules), be able to discover which modules are present to the
NE and describe their binding (graph) in an appropriate repre-
sentation (e.g., GraphML [43]). Finally we need a graph evalu-
ation scheme to check the graph correctness and its implemen-
tation (instantiation/binding of the required modules) as well as

an optimization scheme in order to select the optimal path. In
FAIN we have designed and implemented such an entity, called
service creation engine (SCE), which performs this operation
[34].

The arrival of the packet at the NE, signals the graph selec-
tion. If the NE is not aware of the graph, its semantics need to be
downloaded. What follows is the graph evaluation, i.e., we have
to check that the necessary hardware and software perquisites
are there, that the components requested by the graph can in-
deed be bound and then if everything is in place, the packet
process can start. In our implementation we have taken the sim-
plest case of multiple processing, i.e., the sequential multiple
processing and a single static graph in order to start experi-
menting. Ongoing FAIN work will expand the ideas presented
here to a fully-fledged graph deployment and evaluation as a
proof of concept.

C. Multiple Packet Processing Methods

FAIN envisions that future network elements will be com-
prised of multiple heterogeneous Execution Environments that
operate at high speeds based on complex computational models.
The multiple processing approach is the most challenging and
we focus on this. The single processing approach is a subcase
of multiple processing as it assumes that only one module will
operate on the active packet, and it is what most of today’s ac-
tive network architectures in practice do. The processing can be
done in three different ways: In the first the packet is agnostic
of the computation that will be applied to it, in the second the
packet provides instructions on how its payload may be pro-
cessed, and in the third we use a combination of the other two,
i.e., we transform a non active flow to an active one by attaching
to it the necessary headers in order to be handled as an active
packet on which single or multiple processing can be applied.
More specifically we have:

1) A Priori Binding of Processing Components: In this
method, the binding between the various components that
will perform the computations on the received packets is done
before the flow arrives. Since we have a priori knowledge of
the arriving flow, we are able to optimize the processing (e.g.,
specific algorithms selection) based on the characteristics of
the flow. The approach is inflexible for standalone packets
but the processing speed can be very fast for persistent flows,
since the path for multiple processing is already fixed when
data arrives to the NE. In this approach the network manager
has pre-configured the EEs of the active NE (has selected
the path in the graph that will be applied in order to process
incoming packets) for specific tasks and the packets that arrive
are agnostic about their payload handling from the NE side. In
this approach the packet doesn’t need to refer to the graph that
will be used for its processing as a default selection already
exists, or the administrator of the active NE may even discard
any such references and use its own graphs (binding models)
to process any incoming packets, if the graph proposed by the
packet is not in its allowed graph lists (graph selection based on
policy). The last can be done in order to avoid specific graphs,
e.g., that are NE-safe but not network-safe.

2) A Posteriori Binding of Processing Components: In this
method there is no active NE preconfiguration, as the packet

carries all info (including the graph or references to the graph)
that instruct the active NE how to process the packet. Specif-
ically the packet can carry a reference to a graph that implies
a list of processing requests from specific programs that reside
in the NE or are fetched and loaded on demand. The binding
of these programs is done in real time and their execution takes
place after of course the packet arrival. This approach allows the
execution of different multiple processing requests in each data
packet explicitly, which gives full customization on per packet
basis, therefore maximum flexibility but probably with the cost
of higher computation and less performance.

The distinction between a priori and a posteriori approaches
is one of perspective, primarily useful as a basis of comparing
two ways of thinking about configuring EEs and setting up data-
paths. Accordingly, one can use a posteriori binding in the form
of a control active packet to enforce a graph and setup the flow
that will be processed later by the NE upon arrival.

3) Hybrid Binding of Processing Components: The third
method is a hybrid one as it combines both approaches men-
tioned before in the following sense. The graph based on which
the packet will be processed has already been enforced in the
NE and associated with the flow that this packet belongs to
(e.g., distributed by the network manager) as described in the
a priori method. However, the packet also carries in its header
an “Internal header” that allows the packet, or the sub-flow
that it represents, to further customise its graph at runtime, for
instance by avoiding some of the processing modules in the
graph by selecting a different path. To this end, the data with
the attached Internal header (whose visibility is local on the
NE or the local network) is processed on per packet basis as
described in the a posteriori method. With this approach we
increase the granularity of customization in the NE, therefore
offering higher levels of flexibility and programmability. An-
other benefit is that it allows us to “activate” passive flows (by
encapsulating them as active packets and assigning a default
path within a graph), therefore providing a smoother migration
from passive to active networks. Of course here we have some
extra overhead because not only we need mechanisms for
routing the packet into multiple processing components, but we
also need mechanisms for assigning the internal header (and
eventually remove it when its usage ends) to the arriving packet
data.

D. Extending ANEP

A new protocol that configures component-based EEs is re-
quired to encapsulate the semantics and the operations described
in Sections IV-A and C. Today there are two dominating proto-
cols in active networks namely the active packet encapsulation
protocol (ANEP) [36] that is widely used in the ABONE testbed
[40] and simple active packet format (SAPF) [41].

ANEP specifies a mechanism for encapsulating active
network frames for transmission over different media, e.g., an
existing IPv4/IPv6 [39] network infrastructure or transmission
over the link layer. It also allows coexistence of different exe-
cution environments 4 and proper demultiplexing of received

4Here the term execution environment is used according to the definition that
emerges from Section II-B which may be different from the FAIN definition of
Section III.

TABLE I
DEFINED OPTION TYPE

TABLE II
GENERAL IDENTIFIER FORMAT

packets. We have selected ANEP to configure EEs in order
to act on active packets, e.g., perform multiple processing.
This was done because SAPF, due to its simplicity, doesn’t
allow specifying multiple processing components to act on the
packet. In contrast, ANEP allows us to define a new option data
format, thus encapsulating the proposed extension that covers
our goals, i.e., execute multiple processing.

We used the ANEP Option Format to define our own format.
For the Type ID field value of the ANEP packet format we used
the value 10 651 as the FAIN type ID. This type of ID implies
a FAIN network with the architecture depicted in Fig. 4 rather
than an EE according to the intentions of the original ANEP
protocol. To this end, FAIN and ABONE can only interoperate
via a gateway that will perform the necessary adaptations. It
must be noted, that our proposal in this paper describes a general
mechanism for configuring the emerging types of component-
based EEs that provide multiple processing on packets and we
treat this extended version of ANEP as a mean to implement and
experiment with this mechanism. To this end, the same approach
may be adopted by another protocol, e.g., ForCES, to achieve
the same objective.

Table I shows a list that includes the currently proposed op-
tion formats in FAIN and their temporarily assigned values.
Since the global Option Type values are assigned by active net-
works assigned number authority (ANANA) [42], new numbers
should be assigned for global use. The general format for all
types of identifiers that we use is depicted in Table II. All three
identifiers within FAIN, i.e., The virtual environment ID, the ex-
ecution environment ID and the taxonomy ID can be mapped to
this general format.

1) Virtual Environment (VE) Identifier Option: The VE
identifier (format depicted in Table II) option is a must when
the type ID in the active packet header is an identifier for FAIN
active packets (i.e., has a value of 10 651). The option type
field is the value of option type virtual environment identifier.
The option type value is 101 indicates that the option value is
that of the VE ID to which this packet belongs to (in
Table II). The Option Length has a fixed value of two words

(one word for the header and one for the payload of this option
type). The 32-bit VE ID is the identifier indicating
the appropriate VE to which the active packets are dispatched.
The network provider, who is the owner of the network, assigns
through his privileged VE, a VE ID when a service provider
(SP) requests from the network provider to create on his behalf
a new VE. This value is carried by all packets originating from
this SP. The value 0 is reserved for future use and value 1 is
assigned for the privileged VE according to FAIN architecture
and business model.

2) Execution Environment (EE) Identifier Option: The
Execution environment (EE) identifier’s format is depicted in
Table II. Similarly with the VE identifier option, the option
type field is the value of option type execution environment
identifier. When its value is 102, the option becomes the value
of the EE ID that this packet will be processed by. The option
length has a fixed value of 2 words (one word for the header
and one for the payload of this option type). The 32-bit EE ID

is the identifier that identifies the EE to be configured
or that will process the packet.

This is an important field value that must be uniquely recog-
nized throughout the network as it allows us to identify the ex-
ecution environment, which implies usually its capabilities and
possibly other info including technology and the platform used
in every NE. Such information will be used by the functional en-
tity that enforces the graph during the configuration of the EE
for selecting a compatible implementation of the service com-
ponents to be deployed and linked in the EE as mentioned in
Section IV-A.

3) Taxonomy Identifier Option: A taxonomy identifier is de-
fined in order to apply the categorization depicted in Fig. 8.
Table II shows an option format for taxonomy ID. The option
type value for the taxonomy identifier is 103 within FAIN. The
option length value is 2 in 32 bit words (4 bytes). A possible
mapping of our categorization in the taxonomy ID of the pro-
tocol defined here can be as follows.

• Bit 0: It shows how to handle the packets when a NE does
not recognize the VE/EE ID. If the bit value is 0, the active
NE tries to passively forward the data, and if the bit value
is 1, the NE simply discards them.

• Bit 1: It shows whether active packet has an option data
(bit value is 1) or not (bit value is 0).

• Bit 2: It shows whether active packet’s data need pro-
cessing (bit value is 1) or not (bit value is 0). This bit clas-
sifies the packet as Type I or Type II. As an example, a
packet processed by more than one EEs will be submitted
to the first EE who will process it and then resubmit it to
the classifier so that it can be forwarded to second EE.

• Bit 3: It shows whether active packet’s data, after the pro-
cessing, are changed (bit value is 1) or not (bit value is 0).
This bit classifies the packet as Type I(A) or Type I(B).

• Bits 4–31: These bits are used in order to refer to the way
the processing will be done. As an example one could map
each these 28 bits to a different processing module (lim-
iting us to 28 components which is inadequate) or even
better map them to a graph that will show how the pro-
cessing is done (number of processing modules, condi-
tional processing, parallel or single steps etc). The later

TABLE III
MULTIPLE PROCESSING OPTION HEADER

can imply different graphs to be selected per packet
if each combination of the 28 bits is mapped to a unique
graph.

Please note that in our efforts up to now we assume the sim-
plest cases in order to experiment with the approach. Therefore
we assume that each packet can select one graph that fully de-
scribes how the packet can be processed. Having been through
the graph-controlled processing, the packet is directed to the
output port. However, more complex processing can be done
and this will give the graph theory area a field to apply its find-
ings. In a more advanced scenario some bits are used to indi-
cate that graphs need to be applied in order to process the
packet, if some steps related to graphs can be done
in parallel or if there is a dependency between them etc. We
expect that research toward this direction will come up with op-
timal algorithms for processing packets that will take full ad-
vantage of software and hardware capabilities within the active
NE. Furthermore it is clear that a namespace is required where
graphs and the respective processing algorithms can be uniquely
identified.

4) Multiple Processing Identifier List Option: Multiple pro-
cessing allows several modules to operate at least once on the
packet’s data. The order based on which they operate on the
packet is defined by specifying the path within the graph that
is selected for multiple processing. Therefore a new protocol
must include a list of multiple processing requests, i.e., point to
the graph(s) that will be used to process the packet and their re-
spective paths (which can be different from the default ones).
In order also to have a status of every processing, i.e., to de-
tect which processing has already been done, the new protocol
must include the status of each processing request. A graph
composed of nodes reveals that modules will need to op-
erate on the packet. Also, in order to detect the length of both
processing list and status bits, the appropriate fields should be
included in the protocol. Table III shows the proposed option
header format for executing multiple processing. When the mul-
tiple processing identifier list option data is set, the NE executes
multiple processing to the active packet data along the order of
the list. The option type field value for multiple processing is
104 in FAIN. The option length field value is defined depending
on the number of multiple processing requests. The 16-bit long
number of multiple processing field value shows how many pro-
cessing requests exist and the length of status bits indicates the

TABLE IV
FLOW IDENTIFIER

length of status bits written in 32 bit words (4 bytes). The list
for status bits of each processing is used if a processing request
exists (in other words, if the value of the number of processing
requests is not zero). The status of each processing request is
shown in this field, i.e., each bit shows whether processing is
executed or not. If the number of multiple processing is not mul-
tiple of 32 (bit), the length of this field must be aligned by filling
it with zeros. Finally, the processing ID value reveals the iden-
tifier for executing processing. The data are listed up depending
on the number of multiple processing. Each such field is 16 bits
long.

Since the new option header includes the list of status bits cor-
responding to each processing, it’s easy to detect if a processing
is completed or not. In addition, it might be possible to further
apply optimization algorithms depending on the local configu-
ration. Optimization is achieved by the selected graph, but if the
NE has special conditions, e.g., two same modules implemented
in different languages with different capabilities (e.g., hardware
support for one and software only for the other) and different
performance exist, it might be of benefit to use both modules
on demand (hardware version for high speed and the software
version for low priority requests). The last makes also possible
to realize execution of multiple processing requests in different
program languages belonging to heterogeneous EEs, as the new
option header includes only the list of processing IDs that should
be executed (possible order is defined by the graph). For real-
ising this, the data is only transmitted based on the Processing
ID similar to data transmission based on the IP port number.

5) Flow Identifier Option: The flow identifier for IPv4 ad-
dress (format depicted in Table IV) includes a source IP ad-
dress (32 bits), a destination IP address (32 bits), a source port
number(16bits), a destination port number (16 bits), a protocol
number (8 bits) and zero stuffing (24 bits). This flow definition
is used for easier identification of the flow to be processed.

6) Example of Multiple Processing: Fig. 9 shows an ex-
ample of multiple sequential processing. The extended ANEP
options we mentioned in Sections IV-D-I–V indicate via the
selected graph that the packet data should be processed by
two processing modules, i.e., the virus check and
the compression modules. The path (module1

module2) of the graph (graph’s nodes are 1, 2, and 3)
is written in the multiple processing identifier list option of
the first ANEP packet data. In this case, the option data is
sent to the component binding manager who after evaluating
the graph path and verifying that the proposed component
binding described is feasible, binds the virus check component
and compression component, in order to execute multiple

Fig. 9. Example of multiple processing.

processing to the specified flow. When the active NE receives
the flow packet, it follows the path and as a result the virus
check and compression processing are executed and process
the packet data (depicted as flow(I) in Fig. 9). Similarly by
selecting another path in the graph (graph’s nodes are 1, 2, and
3) or another graph (subgraph’s nodes are 1 and 3) one could
bind the virus check component and encryption

(depicted as flow(II) in Fig. 9). However, if a packet
proposes a graph that attempts to bind the compression and
encryption components, the binding manager evaluation of the
graph will reject this attempt as in its graph this path cannot be
constructed.

V. CONCLUSION

As we are moving toward a global network engineered to
carry and integrate a variety of services, programmability in the
network is becoming more than ever important to the degree
that we now talk about programmable networks and even the
programmable Internet as the next generation network. In
such a distributed computing infrastructure one can control
all aspects of the distributed computing model. With this
background, different research initiatives and fora were formed
with the fundamental objective of realizing the yet elusive rapid
service deployment, and have successfully created various
networking architectures, concepts and technologies. Further-
more, a specific type of execution environment is emerging
whereby additional processing is injected by means of service
components. Such types of EEs allow network elements to be
dynamically extended with additional functionality customised
for specific services.

In this paper, we proposed the FAIN reference architecture
where we argued and described the way that amalgamates ear-
lier efforts of the research community, ranging from Opensig,
ForCES, and active networks. The FAIN architecture was de-

signed so that it can not only extend the outcome of these seem-
ingly different initiatives, but can also use them in a synergistic
manner to build programmable networks. The key architectural
property of FAIN is flexibility, and in particular composability
and extensibility. It has been achieved by clearly distinguishing
the EE between the EE type and the EE instances, while intro-
ducing the VE as a place in which many types of EEs with their
instances may be combined to implement and/or instantiate a
new service. The EEs can reside in transport, control and man-
agement planes, and with the introduction of the new data pro-
tocol that can flexibly configure multiple EEs, services can be
composed in a multi-EE and multi-processing manner. We have
also shown, that FE’s in ForCES are very similar in nature and
purpose with EEs in FAIN, and as such the protocol proposed
here may well be used for their configuration.

Though we have designed and partly implemented the FAIN
reference architecture and the new data protocol, much work is
still ahead in order to realize a fully functional programmable
Internet. In the architectural aspect, we need to design the
inter-EE model such as the data path among the EEs. As for
the data protocol, we need to implement the frameworks of
the processing components as well as the protocol stacks for
end-user terminals, and also perform extensive evaluation
of the protocol itself. In the mean time, we are planning to
evaluate how other emerging technologies, such as the network
processors, can be effectively applied to the FAIN architecture.

ACKNOWLEDGMENT

The authors would like to acknowledge all FAIN partners
and J. Vicente for his contribution to the P1520.3 working
group, and in particular, for the long discussions and input
in the building block approach. The authors would also like
to express their gratitude to the reviewers for their valuable
comments.

REFERENCES

[1] (1996) DARPA Active Network Program. [Online]. Available:
http://www.darpa.mil/ato/programs/activenetworks/actnet.htm

[2] Open Signalling Working Group. [Online]. Available: http://www.
comet.columbia.edu/opensig/

[3] J. Biswas et al., “The IEEE P1520 standards initiative for programmable
network interfaces,” IEEE Commun., vol. 36, Oct. 1998.

[4] Requirements, Analysis and Overall AN Architecture FAIN Project
Deliverable 1. [Online]. Available: http://www.ist-fain.org/deliver-
ables/del1/d1.pdf

[5] H. Khosravi and T. Anderson, Eds., (2003) Requirements for
Separation of IP Control and Forwarding. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-forces-requirements-08.txt

[6] N. Bjorkman et al., “The movement from monoliths to component-based
network elements,” IEEE Commun., vol. 39, Jan. 2001.

[7] A. T. Campbell, H. De Meer, M. E. Kounavis, K. Miki, J. Vicente, and
D. Villela. (1999) A Survey of Programmable Networks. ACM Comput.
Commun. Rev. [Online]

[8] (1998) An Architecture for Differentiated Services. [Online]. Available:
http://www.ietf.org/rfc/rfc2475.txt

[9] Intel, IXP Family of Network Processors. [Online]. Available:
http://www.intel.com/design/network/products/npfamily/

[10] IBM Network Processors. [Online]. Available: http://www-3.ibm.com/
chips/products/wired/products/network_processors.html

[11] Initial Active Network and Active Node Architecture FAIN Project
Deliverable 2. [Online]. Available: http://www.ist-fain.org/deliverables/
del2/d2.pdf

[12] IETF ForCES. [Online]. Available: http://www.ietf.org/html.charters/
forces-charter.html

[13] IEEE P1520.2, Draft 2.2, Standard for Application Programming Inter-
faces for ATM Networks. [Online]. Available: http://www.ieee-pin.org/
pin-atm/intro.html

[14] B. Biswas et al.. (2000) Proposal for IP L-Interface Architecture, IEEE
P1520.3, P1520/TS/IP013. [Online]. Available: http://www.ieee-pin.
org/doc/draft_docs/IP/p1520tsip013.pdf

[15] J. Vicente et al.. (2001) L-Interface Building Block API’s IEEE
P1520.3, P1520.3TSIP016. [Online]. Available: http://www.ieee-
pin.org/doc/draft_docs/IP/P1520_3_TSIP-016.doc

[16] J. Vicente, M. Kounavis, D. Villela, M. Lerner, and A. Campbell. Pro-
gramming internet quality of service. presented at Proc. 3rd IFIP/GI
Int. Conf. Trends Toward Universal Service Market. [Online]. Available:
http://comet.ctr.columbia.edu/~campbell/papers/usm00.pdf

[17] (2002) IETF ForCES, Draft-IETF-Forces-Framework-04.txt. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-forces-frame-
work-04.txt

[18] L. Yang, J. Halpern, R. Gopal, and R. Dantu, “ForCES Forwarding Ele-
ment Functional Model,”, 2003.

[19] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. (1998) ANTS: A
Toolkit For Building and Dynamically Deploying Network Protocols
IEEE Openarch. [Online]. Available: ftp://ftp.tns.lcs.mit.edu/pub/pa-
pers/openarch98.ps.gz

[20] D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf, and B. Plattner.
(1999) A Scalable, High Performance Active Network Node IEEE
Network. [Online]. Available: http://www.tik.ee.ethz.ch/~dan/papers/
ieee_ann_1.pdf

[21] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, D. Rockwell, and C.
Partridge. (1999) Smart Packets for Active Networks OPENARCH’99.
[Online]. Available: ftp://ftp.bbn.com/pub/AIR/smart.ps

[22] D. Scott Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith,
“The switchware active network architecture,” IEEE Network, vol. 12,
pp. 29–36, May/June 1998.

[23] K. L. Calvert, Ed., (1999) Architectural Framework for Active Networks
Draft Version 1.0. [Online]. Available: http://protocols.netlab.uky.edu/
~calvert/arch-latest.ps

[24] L. Peterson, Ed., “Node OS Interface Specification AN Node OS
Working Group,”, http://www.cs.princeton.edu/nsg/papers/nodeos-
02.ps, 2001.

[25] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in
active networks,” IEEE Commun., vol. 36, pp. 72–78, Oct. 1998.

[26] J. M. Smith, K. Calvert, S. Murphy, H. K. Orman, and L. L. Peterson,
“Activating networks: A progress report,” IEEE Comput., vol. 32, pp.
32–41, Apr. 1999.

[27] S. Berson, B. Boraden, and L. Ricciulli. (2000) Introduction to the
ABone. [Online]. Available: http://www.isi.edu/abone/DOCUMENTS/
ABoneIntro.ps

[28] J. E. van der Merwe, S. Rooney, I. M. Leslie, and S. A. Crosby, “The
tempest—A practical framework for network programmability,” IEEE
Network, vol. 12, pp. 20–28, May/June 1998.

[29] M. E. Kounavis, A. T. Campbell, S. Chou, F. Modoux, J. Vicente, and H.
Zhang, “The genesis kernel: A programming system for spawning net-
work architectures,” IEEE J. Select. Areas Commun., vol. 19, pp. 49–73,
Mar. 2001.

[30] S. Bhattacharjee, “Active Networks: Architectures, Composition, and
Applications,” Ph.D. dissertation, Georgia Tech., Atlanta, 1999.

[31] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, J. Kann,
and V. Shenoy. (2001) Introduction to the ASP Execution Envi-
ronment (Release 1.5). [Online]. Available: http://www.isi.edu/ac-
tive-signal/ARP/DOCUMENTS/ASP_EE.ps

[32] B. Braden, T. Faber, and M. Handley. (2002) From Protocol Stack to Pro-
tocol Heap—Role Based Architecture. HotNets I, Princeton University,
Princeton, NJ. [Online]. Available: http://www.cs.washington.edu/hot-
nets/papers/braden.pdf

[33] Revised Active Network and Active Node Architecture FAIN Project
Deliverable 4. [Online]. Available: http://www.ist-fain.org/deliverables/
del4/d4.pdf

[34] Specification of Revised Case Study Systems FAIN Project Deliverable
5. [Online]. Available: http://www.ist-fain.org/deliverables/del5/d5.pdf

[35] M. Raguparan et al.. (2000) L+ Interface for Routers That Support Dif-
ferentiated Services IEEE P1520.3, P1520/TS/IP012. [Online]. Avail-
able: http://www.ieee-pin.org/doc/draft_docs/IP/p1520tsip012-1.pdf

[36] The Active Network Encapsulation Protocol. [Online]. Available:
http://www.cis.upenn.edu/~switchware/ANEP/

[37] FAIN—Future Active IP Networks. [Online]. Available: http://www.ist-
fain.org

[38] J. M. Smith and S. M. Nettles. (2003,) Active networking: One view of
the past, present and future. IEEE Trans. Syst., Man, Cybern.. [Online]

[39] S. D’Alu, O. Festor, and E. Fleury. Active Network Encapsulation
Protocol (ANEP) Extension for IPv6. presented at Work in Progress.
[Online]. Available: http://alternic.net/drafts/drafts-s-t/draft-sdalu-
anep-ipv6-00.html

[40] ABONE Testbed. [Online]. Available: http://www.isi.edu/abone/
[41] D. Decasper and C. F. Tschudin. The Simple Active Packet

Format (SAPF). presented at Work in Progress. [Online]. Avail-
able: http://www.ifi.unizh.ch/ikm/abone/sapf/draft.txt

[42] ANANA(Active Networks Assigned Number Authority). [Online].
Available: http://www.isi.edu/~braden/anana/

[43] GraphML. [Online]. Available: http://graphml.graphdrawing.org/
[44] A. V. Vasilakos, K. G. Anagnostakis, and W. Pedrycz, “Application of

computational intelligence techniques in active networks,” in Soft Soft
Computing. New York: Springer-Verlag, 2001, vol. 5, pp. 264–271.

