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Abstract -- Active networks allow user-controlled 
network programmability. A security framework has to 
assure that our infrastructure will behave as expected and 
will efficiently deal with malicious attacks, unathorized 
attempts to execute active code etc. We present here a 
security architecture that is designed within the FAIN 
project and aims at supporting multiple heterogeneous 
execution environments. We argue for the pros and cons 
as well as why we have selected the specific components 
and also take a look at their interworking in order to 
provide the security services to the execution 
environments our active network node hosts. 
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1 INTRODUCTION 
Basic AN principles have serious consequences for 

the operation of an Active Network (AN). The possibility 
of loading and executing active code in Active Network 
Nodes (ANNs) imposes considerable threats to expected 
operation of AN/ANN due to flaws in active code, 
malicious attacks by unauthorized users, and conflicted 
code execution. Thus, security in AN deals mainly with 
protecting system (AN infrastructure) from malicious 
(unauthorized) and erroneous use. The central objective of 
FAIN [1] security architecture is to guarantee 
robust/secure operation of AN infrastructure despite the 
unintentional or intentional misbehaving of users, i.e. their 
respective active code/active packets.  

Fulfilling these objectives is fundamental for the 
usability of ANs. Clearly, if it is trivial for any user to 
intentionally degrade the performance of an AN or any 
single ANN, or to bring down the AN/ANN, then ANs are 
not really usable. Note the difference between degrading 
performance of (disabling) an ANN and that of an AN. It is 
possible that specific network service, i.e. the respective 
active code, is consistent with local security policy of an 
ANN; however, due to global, network wide behaviour of 
the protocol, it can degrade the performance of (part of) 
network or even completely disable it. Furthermore, if an 

unintentional error in the design of a new network service, 
its implementation (active code), or its configuration can 
degrade performance of an AN/ANN or disable an 
AN/ANN, then ANs are not really usable. 

Finally, if a malicious or unintentional misbehaving 
of any user can severely degrade or even disable the 
network services perceived by other user(s) of an AN but 
with no affect on the ANN/AN, then again, ANs are not 
really usable. The threat model for active networks covers 
three broad classes of security issues: protecting AN 
infrastructure from users and active code, protecting users 
and active code from other active code, and protecting 
users and active code from AN infrastructure. However, 
the scope of initial FAIN security architecture is limited 
mainly to the first class, i.e. protecting AN infrastructure 
from users and active code. 

2 FAIN ACTIVE NODES 
The FAIN Reference Architecture consists mainly of 

AA, VE, EE and Node OS:  
• Active Applications/Services (AA) are applications 

executed in Active Nodes. An AA is often referred to 
also as Active Code (AC). 

• Execution Environments (EE) are environments 
where application code is executed. A privileged EE 
manages and controls the Active node and it provides 
the environment where network policies are executed. 
Multiple and different types of EE are envisaged in 
FAIN. EEs are classified into Virtual Environments 
(VEs), where services can be found and interact with 
each other. VEs are interconnected to form a truly 
virtual network.  

• NodeOS is an operating system for active node and 
includes facilities for setting up and management of 
channels for inter–EE and AA-EE communications, 
manages the router resources and provides APIs for 
AA/EEs, isolates EEs from each other. Through its 
extensions the NodeOS offers: 
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Resource Control Facilities (RCF). Through 
resource control resource partitioning is 
provided. VEs are guaranteed that consumption 
stays within the agreed contract during an 
admission control phase static or dynamic. 

♦ 

♦ 

♦ 

♦ 

Security Facilities. Main part about security is 
authentication and authorisation of using the 
resources and other objects of the node like 
interfaces and directories. Based on the policy 
profile of each VE security is enforced. 

Application/Service code deployment 
facilities. As flexibility is one of the 
requirements for programmable networks partly 
realised as service deployment either on the fly 
or static, the NodeOS must support it. 

Demultiplexing facilities. It filters, classify and 
divert active packets. Flows of packets arrive at 
the node and they should be delivered to the VE 
and consequently to the service inside the VE 
they are destined for.  
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Figure 1: FAIN Active Node Reference 

Architecture 
Figure 1 describes the main design features of the 

FAIN nodes. In FAIN a number of node prototypes are 
under development as follows: 

• A high performance active node, with a target of 
150 Mb/s  

• A range of flexible and very functional active 
nodes/servers, with the objective of supporting 
multiple VEs and hosting heterogeneous Ees. 

The common part of the prototypes (the FAIN 
middleware) is the NodeOS with the relevant extensions. 

3 GENERAL FAIN MODEL AND SECURITY 
REQUIREMENTS 
The fundamental property of FAIN AN is the 

possibility to dynamically inject active code known as 
active application (AA), that implements new 
functionality, into the network. This code is executed or 
interpreted by specific execution environment within 
ANNs and this way it provides end-user applications with 
application specific network services. Many different 
active applications can coexist in an active network. We 
assume that FAIN AN consists of unlimited number of 
network nodes and some of them are active (ANN). Active 
code is injected into the network via active packets, which 
carry active code itself or its reference, which is used by 
ANNs to install the code from code repository. Code can 
be executed in the nodes within the packet path. Execution 
provides new functionality in the network, which can be 
temporary or permanent. It can also produce new packets. 
Each execution uses some of the ANN and AN resources, 
like CPU, storage and bandwidth, again temporarily or 
permanently. Specific code in an ANN can be injected, 
removed or replaced by explicit or implicit request. 
Additionally, the following properties apply to generalized 
AN model [2]: 

• an AN is a distributed system 
• an AN is a packet-switched network, as opposed 

to circuit-switched 
• not all nodes in an AN need to be active 
• an AN explicitly provides for computation inside 

the network, but 
• the primary goal of active networks is 

communication, not computation 
• the contents of an active packet can legally 

change inside ANNs1 
• not all packets are active 
• an AN consists of multiple domains, each 

controlled by a different administration. 
 

Active networking supplies the users with the ability 
to install and execute program code within a network node. 
That by its nature is a security critical activity. In such an 
infrastructure the security implications are far more 
complex than in current static environments. In AN the 
author of the active code, the user who deploys it, the 
owner of the node hardware, the owner of the execution 
platform can all be different entities governed by different 
security policies. In such a heterogeneous environment 
security becomes an extremely sensitive issue. The 
possibility of loading and executing active code in ANNs 
imposes considerable threats to expected operation of 
AN/ANN due to flaws in active code, malicious attacks by 
unauthorized users, conflicted code execution etc. Thus, 
security in AN deals mainly with protecting system (AN 
infrastructure) from malicious (unauthorized) and 
erroneous use. The central objective of FAIN security 

                                                           
1 In ANNs the payload (data part) can be changed also, not just 

header fields. 
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architecture is to guarantee robust/secure operation of AN 
infrastructure despite the unintentional or intentional 
misbehaving of users, i.e. their respective active 
code/active packets. 

Active Code (AC) is transferred to the node or is 
itself mobile e.g. in the form of a mobile agent. Therefore 
the attacks that AC and also the EE are susceptible to are 
more than those in current passive networks. 

In general we can have: 
• Misuse of an active network node by the active 

code 
• Misuse of active code by other active code. 
• Misuse of active code by an active network node. 
• Misuse of active code and/or execution 

environment by the underlying network 
infrastructure. 

• Misuse of the Active Network as an entity. 
Finally a combination of the above categories is 

possible. These kinds of attacks (the complex and 
collaborative ones) are very difficult to detect, let alone to 
prevent or effectively tackle. Classical examples include 
the co-operation of various hosts and ACs against another 
EE or AC. Threats can also be analysed from the 
perspective of a single ANN, and from the network-wide 
perspective. Of course, threats to a single ANN apply also 
to the whole AN (domain). However, network-wide threats 
can be more subtle and harder to combat, since they are 
based on the global, distributed nature of network 
protocols, and thus, their respective active codes. 

In the initial phase of the FAIN project, only high 
priority security requirements have been addressed in 
detail:  

• authentication  
• authorization  
• policy enforcement  
• active code/packet integrity  
• code verification  
• audit. 
We have compiled this list in light of the main 

objective of the FAIN security architecture, which is to 
provide secure and robust operation of FAIN AN 
infrastructure in spite of unintentional and malicious 
misbehaving of AN users, i.e. their respective codes. From 
this perspective, our criteria in assigning priorities can be 
summarized as follows:  

• How subtle is particular security requirement, i.e. 
the respective threat “behind'' the requirement?  

• More subtle yields lower priority. 

3.1 AUTHENTICATION, AUTHORIZATION AND 
POLICY ENFORCEMENT  

FAIN ANN is essentially a multi-user computing 
system. As in any such system, enforcement of access 
control is a requirement of high significance within every 
FAIN ANN. On the other hand, FAIN aims at developing a 
flexible system. In order to achieve the desired level of 
granularity we decompose access control in authentication, 
authorization and policy enforcement. These three security 

requirements have the highest-priority within FAIN 
security architecture.  

3.2 ACTIVE CODE/PACKET INTEGRITY 
Active code is executed within an ANN and performs 

actions on behalf of a user. Therefore, active code is the 
“carrier of activity” and as such, it is a powerful tool when 
misused by malicious users, which can potentially tamper 
with active code while it is in transit over the network. For 
instance, the whole access control system could be 
circumvented, if the original active code can be modified 
or swapped with any other code. Similarly, there are ways 
to obviate access control system by tampering with active 
packets, such as cut and paste attacks and replay attacks. 
This is why protecting integrity of active code and packets 
deserves a high-priority.  

3.3 CODE VERIFICATION 
Protecting the active code integrity is a first step to 

ensure non-modification of the transient code. However 
this is considered pretty basic and we need to go beyond 
that in order to achieve a high level of security. The active 
code has to be somehow marked and tightly coupled with 
one or more entities, based on which further security 
decisions can be made. The code carries credentials from 
these entities, which have to be verified in order to set the 
security context within which this active code can execute. 
As code verification is critical into taking further security 
decisions, this is considered a high-priority requirement for 
the FAIN security architecture. 

3.4 AUDIT 
The Audit Manager component is an integrated part 

of the security architecture. Via this component  
a) all events occurring from the usage of the security 

subsystem are implicitly logged for further future 
usage. 

b) It also provides an interface to explicitly log any 
other events coming from other parts of the FAIN 
architecture in a clear and homogeneous way. 

Modern computer systems do not emphasize enough 
on the significance of the audit facilities. However audit 
tools help in realizing possible security leaks (or even 
preventing some) and make sure that mistakes are not 
repeated. We feel that within the AN community special 
care has to be taken with audit activities and therefore it is 
also considered a high-priority security requirement. 

4 TECHNICAL ASPECTS OF ACTIVE 
NETWORK SECURITY 

4.1     AUTHENTICATION 
Authentication is a process of verifying an identity 

claimed by or for a system entity. Symmetric or 
asymmetric cryptography can be used for authentication. 
Symmetric cryptography is suitable only for closed 
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systems due to its scalability problems. Thus, we use 
asymmetric cryptography in FAIN. This requires every AN 
user to have a public/private key pair and a valid public 
key certificate. Nevertheless, common remote 
authentication protocols employ a handshake, i.e. a two 
way communication in order to perform authentication. In 
active networks this would require an end-host to perform 
an authenticating handshake protocol with every ANN en 
route, which is clearly unacceptable. Thus, we propose the 
use of “unidirectional” procedure, where authentication is 
based on digital signatures and one-way communication 
from end-host to an ANN. Overview of this authentication 
scenario:  

• User employs its private key to digitally sign the 
static part of an active packet and adds a signature 
to the packet it transmits 

• ANN uses the public key certificate to verify the 
validity of the user’s public key.  

• If valid, ANN employs user’s public key to verify 
the digital signature of the packet 

A PKI infrastructure is needed to support authentication 
based on digital signatures. 

4.2   AUTHORIZATION 
There will be several enforcement engines in FAIN 

ANN, each of them residing in a different FAIN ANN 
subsystem and responsible for mediating access to 
functions and resources of the respective subsystem. On 
the other hand, authorization component can be either 
integrated with policy enforcement or separated from it. In 
the former case, there would also have to be one 
authorization engine per ANN subsystem. In the latter 
case, only one, general-purpose authorization engine can 
be implemented and used by all policy enforcement 
engines. 

We have adopted the latter approach for FAIN due to 
the following reasons: 

• no duplication of work; this is especially 
important if we consider that design and 
implementation of  any security  component is a 
difficult and subtle task 

• inherent flexibility as a consequence of separation 
of authorization from enforcement 

• possibility of reuse of existing tools. 

4.3   POLICY ENFORCEMENT 
In the initial phase our discussion is limited to 

enforcement mechanisms up to and including FAIN Node 
facilities level, i.e. we currently omit the discussion of 
policy enforcement within EEs/VEs. Policy enforcement is 
the active component of security architecture that enforces 
authorization decisions and thus enforces the use of ANN 
resources, which is consistent with local security policies. 
We distinguish two types of resources, hardware and 
functional resources. Hardware resources include basic 
low-level ANN resources such as memory, storage 
capacity, CPU cycles and link bandwidth. Functional 
resources are high-level resources in the sense that they 

consume some portion of hardware resources. However, 
with functional resources it is not important how much 
memory or storage space they consume but rather what 
purpose they serve within an ANN, i.e. what function they 
provide. Examples of functional resources include:  

• special purpose files, such as configuration files,  
• policy entries in the policy database,  
• ANN state,  
• ANN API functions themselves, etc.  
We note that all resources in an ANN, hardware and 

functional, are accessible at certain node interface. In order 
to prevent unauthorized use of ANN resources, policy 
enforcement has to be scattered across different ANN 
subsystems that provide specific subsets of ANN API 
functions. Thus, basic technical approach to policy 
enforcement is to add an “adaptation'' software layer on top 
of every subsystem API, which then mediates access to 
node API functions. Whenever an ANN function is called 
by an “external'' entity (such as VE, EE, active code), this 
software layer:  
• intercepts the request (call to node function) and 

suspends it  
• provides call parameters to authorization engine 

effectively asking for authorization decision; 
parameters include caller ID, called function name, 
object(s) name, amount of requested hardware 
resources, etc.  

• when authorization decision is returned  
if request is authorized, enforcement layer 
resumes the execution of the request  

♦ 

♦ if request is not authorized, enforcement layer 
discards the request and thus prevents 
unauthorized actions from taking place  

In addition to this “high-level'' operation, policy 
enforcement also has to operate at low-level in order to 
enforce proper usage of low-level hardware resources. At 
the “lower level'' enforcement is embodied in a more 
complex policing algorithm(s), which can control the 
scheduler(s) for specific resource and thus impose limits 
on resource usage by an entity.  

4.4 ACTIVE PACKET/CODE INTEGRITY 
In general, protecting integrity of active packet/code 

while in transit over network involves cryptographic 
operations. The most common approach is as follows:  
• at the sending end---generate integrity protection 

token (data):  
• calculate a hash of the packet/code  
• encrypt the hash to protect it from modifications  
• send the encrypted hash together with the active 

packet/code  
• at the receiving end---verify the integrity of the 

packet/code:  
• decrypt the hash that accompanies the received 

active packet/code  
• calculate a hash of the active packet/code,  
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• compare the two hashes; if they differ active 
packet/code has been modified and should not be 
processed or allowed execution.  

The hash value, which is carried along with active 
packet/code and is used for integrity, can be protected 
either by applying asymmetric encryption or symmetric 
encryption.  

If asymmetric encryption is used, integrity protection 
is provided by digital signatures and there is no need for 
ANNs to maintain a private/public key pair.2 ANNs only 
need to be able to obtain the certificate chain, which 
verifies the validity of the public key of the party signing 
the active packet/code. Thus, the advantage of asymmetric 
encryption is that it eases management of encryption and 
decryption keys. However, the downside is that 
asymmetric encryption is on the order of two magnitudes 
slower than symmetric encryption.  

In case symmetric encryption is used, the encrypted 
hash is known as a MAC3 value. However, this requires 
each ANN to maintain a non-compromised private/public 
key pair and a public key certificate. ANN uses 
asymmetric encryption to establish a shared secret key 
with the sending end. Thus, asymmetric encryption in this 
case is still used, but this time only to set-up a secret key 
for symmetric encryption. Additional downside of 
symmetric encryption is that integrity protection requires a 
negotiation phase before active packet/code can be injected 
into the AN.  

In FAIN we have used a combination of asymmetric 
and symmetric encryption for active packet/code integrity, 
in order to leverage the advantages of both. The proposed 
approach is as follows:  
• each ANN has a public/private key pair and a public 

key certificate  
• each ANN maintains a shared secret key with every of 

its direct neighbouring ANNs; neighbouring ANNs 
employ asymmetric cryptography for establishing and 
updating shared keys  

• the sending end signs active packet/code (using 
asymmetric encryption) and injects it into the AN  

• the ingress ANN fetches the public key of the signer 
and verifies it against its certificate  

• the ingress ANN then uses this key to check integrity 
of the received active code  

• if active code is intact, ingress ANN calculates a MAC 
value, using a secret key it shares with the next hop 
ANN  

• ingress ANN sends MAC value along with active 
packet/code and its signature  

• every subsequent ANN  
� uses the secret key it shares with previous-

hop ANN and checks integrity  
� calculates new MAC values using the secret 

key it shares with the (physical) next hop 
ANN  

                                                           
2 Note that other security requirements may/will impose this. 
3 Message Authentication Code. 

� sends the new MAC value along with the 
active packet/code  

This approach represents a trade-off between FAIN 
goals of security and performance. On one hand, the 
described approach is based on the assumption that trust 
exists between ANNs, which obviously reduces the level 
of security. However, this is a valid assumption at least in 
a single domain, which is under the control of a single 
authority. The trust within domain is applied by per-hop 
symmetric encryption. On the other hand, this approach is 
advantageous for ANN performance, since it leverages 
high speed of symmetric encryption algorithms. 
Furthermore, because (pre-established) per-hop shared 
keys are used, it effectively eliminates the symmetric key 
negotiation phase. Note that per ANN public/private keys 
and per-hop cryptographic calculations are used. However, 
since some parts of an active packet are dynamic, i.e. they 
can change at every hop, they cannot be protected with 
digital signatures and, thus, per hop integrity will have to 
be used, anyway.  

4.5 CODE VERIFICATION 
Verification can enable us to trust to some extent that 

the active code will behave safely and properly and that we 
can have some guarantees on its resource usage on the 
node and in the network. But we shall say in general that 
verification provides only enhanced trust in proper and 
safe code execution, which is usually not related to the 
trust in the user on behalf of which the code is executing. 
Code verification can help an ANN decide whether to run 
the newly received code. If the code fails the verification 
test, it is not trusted and it is dropped or alternatively it can 
run in an EE with minimal facilities available. In the latter 
case the EE is the same one that will be used to run 
anonymous active code. Broadly, code verification 
techniques can be classified into two groups: 
1. Digitally signed code, so we trust the user, 

organization or repository that has signed the code. 
Digital signature can be checked at the NodeOS level, 
immediately after it is available.  

2. Various other mechanisms that can enhance the trust 
in proper and safe execution. These mechanisms 
mainly operate within EEs, and include techniques 
like proof carrying code, JAVA bytecode verification, 
and restricted languages.  
If there is resource consumption estimate available, 

simple resource check is also possible. Since the scope of 
initial FAIN security architecture is limited to the NodeOS 
level, we propose the use of first approach, which employs 
digital signatures for code certification.   

4.6 AUDIT 
The information gathered by the audit manager are 

stored into the audit database and via a policy controlled 
way are available for further use.  Decomposition of  
auditing activity in this way allows the active node base 
code to be simpler as it does not have to implement 
complex handling of audit messages. Audit logs should be 
securely stored not only locally on the node but also 
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in a distributed scheme as this offers better survivability to 
attacks against the node. Apart from the node audit, the 
active code may perform its own auditing and possibly 
report it via an interface to the node’s audit facilities. 

5 FAIN SECURITY ARCHITECTURE  
Figure 2 depicts a FAIN active network node; all 

shaded components are part of security architecture. As 
depicted, FAIN security architecture roughly comprises 
three parts: security subsystem, other ANN security 
components, and external security support facilities. Note 

that the scope of initial FAIN security architecture does not 
include EE layer of FAIN ANN architecture.  

5.1 SECURITY SUBSYSTEM 
Most of security critical decisions are made by 

security subsystem, which is one of several subsystems 
within an ANN. The Security subsystem is also 
responsible for management of security critical data, such 
as encryption keys, credentials, and policies.  

 

 

 Authorization 
Authority 

(AA) 

 
Figure 2: FAIN Security Architecture

 

This subsystem is the core of FAIN security 
architecture and includes the following components: 
1. Crypto Engine: performs the actual cryptographic 

operations, such as symmetric encryption/decryption, 
asymmetric encryption/decryption, and hashing. It 
implements various cryptographic algorithms, which 
are used by other components in the security 
subsystem. 

2. Security Environment (SE):  in a secure fashion 
stores various encryption keys, which are required by 
crypto engine. For example, SE stores ANN’s public 

key pair (private and public key) and all secret keys 
that an ANN shares with its neighbours (one per 
neighbour). 

3. SE Manager: is used for managing the keys in SE. SE 
manager can provide facilities for manual 
configuration of encryption keys and can also 
automatically manage keys, e.g. by triggering a key 
exchange protocol with neighbouring ANN. 

4. Integrity Engine: checks the integrity of active 
packets and active code. It depends on integrity 
protection data contained within an active packet and 
on crypto engine to do the necessary cryptographic 
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operations.  
5. Verification Engine: performs code verification (at 

NodeOS level), if any. It may depend on special data 
contained within an active packet and on crypto 
engine to do the necessary cryptographic operations. 

6. Authentication Engine: verifies the authenticity of 
active packets. It depends on authentication data 
contained within an active packet and on crypto 
engine to do the necessary cryptographic operations. 

7. Authorization Engine: is responsible for making a 
decision whether a given user request to execute 
specific action or to access/manipulate particular 
object within an ANN is authorized or not. 
Authorization engine provides this “service” to all 
policy enforcement engines in an ANN. 

8. Policy database: stores security policies, which 
govern who can do what in an ANN. 

9. Policy Manager: when asked by the authorization 
engine, searches policy DB and returns all security 
policies, that are relevant for a particular request, 
which is currently subject to authorization. It also 
provides facilities for editing entries in policy DB, 
either manually by an authorized user, or 
automatically, i.e. download policies from a 
centralized policy server.   

10. Credential database: stores users’ credentials, such 
as public key certificates and attribute certificates. 

11. Credential Manager: when asked by authorization 
engine, searches credential DB and returns all 
credentials, that are relevant for a particular request, 
which is currently subject to authorization. It also 
provides facilities for editing credential database, 
either manually by an authorized user, or 
automatically, i.e. search and download credentials 
from an external credential repository.   

12. Audit database: stores an audit log of security critical 
events. 

13. Audit Manager: will be the place where all security 
architecture’s components audit their function in order 
to be used later in resolution of problems or even to 
make decisions. E.g. an Intrusion Detection System 
would use a view of the audit DB in order to recognize 
attacks against the system. The audit could be also 
distributed for survivability reasons. 

5.2 OTHER ANN SECURITY COMPONENTS 
The second part of security architecture includes 

components that are part of ANN but are external to 
security subsystem. This includes policy enforcement 
engines and various components providing environment 
variables, e.g. resource usage monitor. Various subsystems 
within an ANN offer their services and objects for use by 
users via their interfaces. Access to these objects and 
services is governed by security policies. Thus, 
enforcement of node security policies has to be performed 
at the point where they can be violated, i.e. at interfaces. 
At every ANN subsystem interface, a policy enforcement 
engine acts as an adaptation layer, which is responsible for 
mediating access to subsystem services and objects based 

on the authorization decision. While authorization is only a 
decision making, enforcement is an active process that 
prevents access to services and objects by unauthorized 
users. The Enforcement engine suspends the request at 
interface, asks the authorization engine whether this 
request is allowed and acts upon authorization decision, 
i.e. either allows or denies execution of the request. 

In addition to these “high-level” enforcement 
engines, there are also “low-level” enforcement engines, 
which are tightly coupled with specific hardware resources 
available within an ANN and therefore they are considered 
as part of Resource Control Framework (RCF). Finally, 
there are some components in an ANN, which provide 
authorization engine with necessary data to make 
authorization decision. For example, resource usage 
monitor provides data on current hardware resource 
consumption by particular user, and a clock provides 
current time and date. 

5.3 EXTERNAL SECURITY SUPPORT FACILITIES   
In the initial security architecture, we envisage these 

security support facilities:  
• Certification Authority (CA) 
• Authorization Authority (AA) 
• Credential repository 
Authentication based on digital signatures requires a 

user to have a public key pair and a valid public key 
certificate. Public key certificate binds a public key and an 
identity of its owner; these certificates are issued by a 
trusted third party called Certification Authority (CA). 
When a user enters an ANN, he must present his public 
key certificate to authentication engine. Alternatively, he 
can provide a pointer to his public key certificate in the 
form of a reference to certificate repository.  

In the initial phase of FAIN, a single CA is sufficient 
for demonstration and testing purposes. This can be later 
extended with more CAs forming a fully-fledged Public 
Key Infrastructure (PKI).   

Similarly, a scalable approach to authorization 
requires a user to have one or more attribute certificates. 
Attribute certificates bind public keys directly to 
privileges, which can be exercised by the owner of the key. 
Attribute Certificates are issued by a trusted party called 
Authorization Authority, which may not necessarily be the 
same as the Certification Authority.  When a user enters an 
ANN, he must present one or more attribute certificates 
either directly or by reference to a repository. Later, when 
a user tries to execute an action, attribute certificates are 
used by the authorization engine to decide whether he has 
the necessary privileges.  The Credential repository can 
store both, public key certificates and attribute certificates. 
Repository can be implemented in many ways, such as a 
directory service or a web repository.  

6 OPERATION OF SECURITY 
ARCHITECTURE 
Basically, there are two checkpoints where security 

functionality from figure 2 is employed to protect an ANN: 
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when a user enters an ANN and when a user tries to 
execute some action within an ANN.  The former is 
represented by an arrival of an active packet in ANN and 
we call it entry-level protection. The latter occurs when a 
request for certain operation arrives at NodeOS interface 
and we call it execution-level protection.  

In addition to these two types of security protections, 
one can distinguish two operations, which do not directly 
provide any security protections. Rather, these two are a 
sort of “backplane” operations, which support entry- and 
execution-level security protections. These support 
operations are: setup of a shared secret key between 
neighbouring ANNs and obtaining the missing credentials 
from a node external repository. A secret key, which is 
shared by a pair of neighbour ANNs, is used for hop-by-
hop symmetric encryption of portions of active packet, 
which is leveraged e.g. for integrity protection. To setup a 
shared secret key between two ANNs, any key exchange 
protocol can be used. Key exchange has to be performed 
when a new ANN is added to/removed from the AN and 
whenever the key lifetime expires. 

On some occasions, a situation may arise, when the 
credentials needed to make authorization decision are not 
present in an ANN. In this case, the missing credentials 
have to be searched for and obtained from somewhere in 
the network, usually from a repository service. 

Finally, there is an audit facility within FAIN ANN, 
which is responsible for keeping a log of all security 
critical events within an ANN. This information is required 
for activities such as intrusion detection and analysis and 
assessment of security breaches. 

6.1 ENTRY-LEVEL SECURITY PROTECTIONS 
Figure 3 depicts a sequence of security operations 

that are performed for every packet that arrives at ANN. 
These security checks are aimed at detecting anything 
suspicious about this particular packet and, if so, 
discarding it. A packet is only delivered to appropriate EE 
if it passes all checks. Upon entering an ANN, an active 
packet is first processed in order to extract information 
needed for security checks. This information includes: 

• Digital signatures, which are used for 
authentication, integrity, and verification   

• MAC values, which are used for integrity 
protection 

• Public key certificate(s), which are used for 
checking digital signatures 

• Attribute certificates, which are used for 
authorization 

After this information has been provided to security 
subsystem, entry-level security checks are triggered. The 
security subsystem verifies credentials, checks integrity of 
active packet and active code, performs code verification 
(if any), and performs authentication and returns the result 
of these operations to the de-multiplexing subsystem. Only 
if all these checks are successful, the packet is allowed to 
“enter” an ANN, i.e. it is first processed at NodeOS level 
(e.g. IP processing) and then forwarded to appropriate EE 
for further processing. If any of security checks fails, this 

is reported to de-multiplexing system, which discards the 
packet.  

 : Customer  : Demux  : 
SecurityEngine

 : EE

Inject Packet

Parse Packet

security check

Extract Security Data

check packet integrity

check Code integrity

verify code

verify credentials

security chec k result

process packet

deliver packet for execution

authentication

 
Figure 3: Entry-level Security Checks 

 
Active packet integrity 

 
Integrity protection is based on cryptography. Every 

packet carries along at least one special token, which is 
used for integrity protection. This token is in the form of a 
digital signature and/or a MAC (Message Authentication 
Code). In FAIN bothe techniques are used for packet 
integrity.  This is due to the fact that digital signatures are 
required for authentication, so it is sensible to leverage 
digital signatures for integrity as well. However, this 
applies only to static parts of an active packet, which do 
not change en route and can be signed by the source of the 
packet. For the dynamic parts of an active packet, which 
can change within an ANN, per hop integrity protections 
based on MAC must be used.  
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Integrity engine checks integrity in three steps. 
Firstly, it asks crypto engine, which performs all 
cryptographic calculations, to decrypt the integrity token, 
in this case a MAC value; crypto engine needs to get 
appropriate decryption key from ANN’s security 
environment. This decryption process returns a hash of the 
packet as it was seen by its sender. Secondly, it asks crypto 
engine to calculate hash of the packet. The last step is to 
compare this hash against the decrypted token. If they are 
equal, then integrity of the packet can be assumed. If these 
two values differ, however, then integrity check has failed.  

 
Active code integrity and code verification 

 
Here we check the integrity of the newly received 

active code. Note that integrity checks for active packet 
and active code need to be separate because of the fact that 
these protections are in most cases provided by different 
encryption keys, i.e. different actors. The reason for this is 
that active code can be tampered with even before it is 
included in any active packet. Thus, digital signature 
generated by packet source at packet creation does not 
suffice for active code. Every active code is accompanied 
by at least one special token, which is used for integrity 
protection. This token has a form of a digital signature 
and/or a MAC (Message Authentication Code). It is 
envisaged that both approaches to integrity will be used in 
FAIN. Digital signatures by code provider/manufacturer 
can provide integrity protection until code is injected into 
the active network. From there per-hop MAC protection 
can be used, which is expected to yield performance gains.  
Additionally, the advantage of per-hop MAC protection is 
that it covers both packet and code at the same time. Note 
that we omit the discussion of multi-domain issues in the 
initial phase. 

When active code integrity is provided with digital 
signature generated by code provider, the integrity engine 
must first process code provider’s public key certificate in 
order to extract and validate providers public key. After 
extracting a valid public key integrity engine checks 
integrity in three steps, similar to active packets. First, it 
asks crypto engine to decrypt the integrity token, in this 
case a digital signature. This decryption process returns a 
hash of the code as it was seen by the code provider. 
Second, it asks crypto engine to calculate hash of the code. 
The last step is to compare this hash against the decrypted 
token. If they are equal, then integrity of the code can be 
assumed. If these two values differ, however, then integrity 
check has failed.  

The majority of active code verification techniques 
are specific to particular EE. Since we have limited our 
current scope to NodeOS only, we do not address these 
mechanisms. The only general verification mechanism, 
which can be placed in the NodeOS is based on digital 
signatures by trusted parties. For the initial FAIN security 
architecture we use code providers as these trusted parties. 
This effectively eliminates the need for distinct code 
verification process within the NodeOS, since code 
provider’s digital signature is checked as part of code 
integrity check.  

6.2 EXECUTION-LEVEL SECURITY 
PROTECTIONS 

Once an active packet has successfully passed entry-
level checks, active code(s) can execute and perform 
operations within an ANN on behalf of some user. 
Obviously, some users will have more privileges than 
others, i.e. security policies define who can do what in an 
ANN. In order to protect an ANN it is necessary to prevent 
users from abusing their privileges and violating security 
policies.  

According to the previous paragraph, execution-level 
protection includes two steps: 

• Evaluating every execution request against node 
security policies, which is performed by 
authentication engine and 

• Allowing or denying execution based on positive 
or negative authorization decision, respectively; 
policy enforcement engines are responsible for 
this. 

 
Policy enforcement 

 
Crucial to policy enforcement is the subsystem 

specific enforcement engine, which is implemented as an 
adaptation layer mediating requests at subsystem interface. 
Every request at subsystem interface is intercepted and 
suspended by this adaptation layer. Before execution a 
request has to be evaluated against local security policies. 
Enforcement engine does not itself evaluate whether the 
request is compliant with local security policies. Instead it 
invokes the authorization procedure within the security 
subsystem and feeds it with request information, such as: 
requested action, name of target object and requesting 
caller ID. Only after authorization returns, “request 
authorized” does an enforcement engine allow execution 
of the request by the underlying subsystem. Obviously, if 
authorization returns a negative answer, i.e. “request not 
authorized”, then enforcement engine simply discards the 
suspended request. This way, it prevents execution of 
unauthorized requests and essentially enforces users to 
adhere to local security policies.      

 
Authorization 

 
Here we check everything that is required to 

authorize the request, i.e. to decide whether to grant it or 
not. In flexible access control systems, authorization is not 
integrated with enforcement. Instead it is separated 
logically and in implementation. In this way, a single 
authorization engine can be used by multiple policy 
enforcement engines. 

Authorization decision is based on the following set 
of data: 

• request information (action, object name, caller 
ID) 

• local security policies, which govern the way in 
which particular object can be used 

• credentials associated with particular caller ID 

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 9



• current values of environment variables, such as 
time of day and amount of resources used by 
subject 

Enforcement engine provides the request information 
when it asks for authorization decision. This information is 
used as an “index” by policy and credential managers for 
fetching appropriate policies and credentials, respectively. 
Environment variables are provided to authorization 
engine upon request by facilities, such as system clock and 
resource monitoring module within Resource Control 
Framework (RCF) subsystem. Finally, after gathering all 
the required information, authorization engine processes 
this data according to its internal rules, which return a 
simple result, either saying, “request authorized” or “ 
request not authorized.” This is returned to the calling 
policy enforcement engine, which then acts accordingly. 

6.3 RELATED WORK 
FAIN aims to develop a heterogeneous ANN, 

allowing coexistence of various technologies that enable 
installation and execution of active code within an ANN. 
Consequently, FAIN security architecture is aimed at 
providing a more general solution which provides 
necessary protections for such an heterogeneous system.  
This is reflected by the fact that security architecture we 
have presented does not incorporate details of specific EEs 
that exist in the FAIN ANN.  Its goal is to be as EE 
independent as possible and provide a common set of basic 
security services required by all AN enabling technologies. 
Some research projects on active networks have already 
tried to tackle the issue of security [3][4][5][6]. Contrary to 
FAIN, all these approaches are tied to specifics of 
particular model of programmability. When designing a 
more general AN security architecture, which is the case in 
FAIN, these specifics can not be assumed. Java Security 
Architecture [7] proved to be useful for AN security, but 
again it is technology specific and it also has some 
drawbacks [5]. There has also been some more general 
work on AN security [8]. This work is still in the early 
phase. 

7 CONCLUSIONS 
We have presented in this paper a security 

architecture for future IP active networks as it is done in 
the context of FAIN project. We try to tackle the high 
priority security requirements such as authentication, 
authorization, policy enforcement, active code and active 
packet integrity and verification and last but not least audit. 
We have analysed the main design decisions that we have 
taken and the reasons why we decided to follow them. 
Subsequently we have presented the components of a 

security architecture that will be used by multiple 
heterogeneous execution environments within the same 
active node. We also provide a look in the interworkings of 
the architecture and its decision-making logic. A prototype 
implementation of the presented active network security 
architecture is currently under development, which will be 
used for exploring the advantages and drawbacks of our 
approach. 
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