
A SECURITY ARCHITECTURE FOR FUTURE ACTIVE IP
NETWORKS

A. Savanovic 1, S. Karnouskos 2, D. Gabrijelcic 1 and F. Mocilar 1

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

2 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany.

dusan@e5.ijs.si, karnouskos@fokus.fhg.de, arso@e5.ijs.si, franci@e5.ijs.si

Abstract -- Active networks allow user-controlled
network programmability. A security framework has to
assure that our infrastructure will behave as expected and
will efficiently deal with malicious attacks, unathorized
attempts to execute active code etc. We present here a
security architecture that is designed within the FAIN
project and aims at supporting multiple heterogeneous
execution environments. We argue for the pros and cons
as well as why we have selected the specific components
and also take a look at their interworking in order to
provide the security services to the execution
environments our active network node hosts.

Keywords: Active Networks, Security Architecture,

Active Packets, Security Management

1 INTRODUCTION
Basic AN principles have serious consequences for

the operation of an Active Network (AN). The possibility
of loading and executing active code in Active Network
Nodes (ANNs) imposes considerable threats to expected
operation of AN/ANN due to flaws in active code,
malicious attacks by unauthorized users, and conflicted
code execution. Thus, security in AN deals mainly with
protecting system (AN infrastructure) from malicious
(unauthorized) and erroneous use. The central objective of
FAIN [1] security architecture is to guarantee
robust/secure operation of AN infrastructure despite the
unintentional or intentional misbehaving of users, i.e. their
respective active code/active packets.

Fulfilling these objectives is fundamental for the
usability of ANs. Clearly, if it is trivial for any user to
intentionally degrade the performance of an AN or any
single ANN, or to bring down the AN/ANN, then ANs are
not really usable. Note the difference between degrading
performance of (disabling) an ANN and that of an AN. It is
possible that specific network service, i.e. the respective
active code, is consistent with local security policy of an
ANN; however, due to global, network wide behaviour of
the protocol, it can degrade the performance of (part of)
network or even completely disable it. Furthermore, if an

unintentional error in the design of a new network service,
its implementation (active code), or its configuration can
degrade performance of an AN/ANN or disable an
AN/ANN, then ANs are not really usable.

Finally, if a malicious or unintentional misbehaving
of any user can severely degrade or even disable the
network services perceived by other user(s) of an AN but
with no affect on the ANN/AN, then again, ANs are not
really usable. The threat model for active networks covers
three broad classes of security issues: protecting AN
infrastructure from users and active code, protecting users
and active code from other active code, and protecting
users and active code from AN infrastructure. However,
the scope of initial FAIN security architecture is limited
mainly to the first class, i.e. protecting AN infrastructure
from users and active code.

2 FAIN ACTIVE NODES
The FAIN Reference Architecture consists mainly of

AA, VE, EE and Node OS:
• Active Applications/Services (AA) are applications

executed in Active Nodes. An AA is often referred to
also as Active Code (AC).

• Execution Environments (EE) are environments
where application code is executed. A privileged EE
manages and controls the Active node and it provides
the environment where network policies are executed.
Multiple and different types of EE are envisaged in
FAIN. EEs are classified into Virtual Environments
(VEs), where services can be found and interact with
each other. VEs are interconnected to form a truly
virtual network.

• NodeOS is an operating system for active node and
includes facilities for setting up and management of
channels for inter–EE and AA-EE communications,
manages the router resources and provides APIs for
AA/EEs, isolates EEs from each other. Through its
extensions the NodeOS offers:

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 1

mailto:dusan@e5.ijs.si
mailto:karnouskos@fokus.fhg.de
mailto:arso@e5.ijs.si
mailto:franci@e5.ijs.si

Resource Control Facilities (RCF). Through
resource control resource partitioning is
provided. VEs are guaranteed that consumption
stays within the agreed contract during an
admission control phase static or dynamic.

♦

♦

♦

♦

Security Facilities. Main part about security is
authentication and authorisation of using the
resources and other objects of the node like
interfaces and directories. Based on the policy
profile of each VE security is enforced.

Application/Service code deployment
facilities. As flexibility is one of the
requirements for programmable networks partly
realised as service deployment either on the fly
or static, the NodeOS must support it.

Demultiplexing facilities. It filters, classify and
divert active packets. Flows of packets arrive at
the node and they should be delivered to the VE
and consequently to the service inside the VE
they are destined for.

VEVE

Extended Node OS

Programmable Router
(Hardware)

Open Router Interface/API

AN Node Facilities

Security MgntService
Provision

Resource Access Control

L

CCM

C
ontrol

U

V

Dmux

Privileged
VE

Transport

M
anagem

ent

Figure 1: FAIN Active Node Reference

Architecture
Figure 1 describes the main design features of the

FAIN nodes. In FAIN a number of node prototypes are
under development as follows:

• A high performance active node, with a target of
150 Mb/s

• A range of flexible and very functional active
nodes/servers, with the objective of supporting
multiple VEs and hosting heterogeneous Ees.

The common part of the prototypes (the FAIN
middleware) is the NodeOS with the relevant extensions.

3 GENERAL FAIN MODEL AND SECURITY
REQUIREMENTS
The fundamental property of FAIN AN is the

possibility to dynamically inject active code known as
active application (AA), that implements new
functionality, into the network. This code is executed or
interpreted by specific execution environment within
ANNs and this way it provides end-user applications with
application specific network services. Many different
active applications can coexist in an active network. We
assume that FAIN AN consists of unlimited number of
network nodes and some of them are active (ANN). Active
code is injected into the network via active packets, which
carry active code itself or its reference, which is used by
ANNs to install the code from code repository. Code can
be executed in the nodes within the packet path. Execution
provides new functionality in the network, which can be
temporary or permanent. It can also produce new packets.
Each execution uses some of the ANN and AN resources,
like CPU, storage and bandwidth, again temporarily or
permanently. Specific code in an ANN can be injected,
removed or replaced by explicit or implicit request.
Additionally, the following properties apply to generalized
AN model [2]:

• an AN is a distributed system
• an AN is a packet-switched network, as opposed

to circuit-switched
• not all nodes in an AN need to be active
• an AN explicitly provides for computation inside

the network, but
• the primary goal of active networks is

communication, not computation
• the contents of an active packet can legally

change inside ANNs1
• not all packets are active
• an AN consists of multiple domains, each

controlled by a different administration.

Active networking supplies the users with the ability
to install and execute program code within a network node.
That by its nature is a security critical activity. In such an
infrastructure the security implications are far more
complex than in current static environments. In AN the
author of the active code, the user who deploys it, the
owner of the node hardware, the owner of the execution
platform can all be different entities governed by different
security policies. In such a heterogeneous environment
security becomes an extremely sensitive issue. The
possibility of loading and executing active code in ANNs
imposes considerable threats to expected operation of
AN/ANN due to flaws in active code, malicious attacks by
unauthorized users, conflicted code execution etc. Thus,
security in AN deals mainly with protecting system (AN
infrastructure) from malicious (unauthorized) and
erroneous use. The central objective of FAIN security

1 In ANNs the payload (data part) can be changed also, not just

header fields.

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 2

architecture is to guarantee robust/secure operation of AN
infrastructure despite the unintentional or intentional
misbehaving of users, i.e. their respective active
code/active packets.

Active Code (AC) is transferred to the node or is
itself mobile e.g. in the form of a mobile agent. Therefore
the attacks that AC and also the EE are susceptible to are
more than those in current passive networks.

In general we can have:
• Misuse of an active network node by the active

code
• Misuse of active code by other active code.
• Misuse of active code by an active network node.
• Misuse of active code and/or execution

environment by the underlying network
infrastructure.

• Misuse of the Active Network as an entity.
Finally a combination of the above categories is

possible. These kinds of attacks (the complex and
collaborative ones) are very difficult to detect, let alone to
prevent or effectively tackle. Classical examples include
the co-operation of various hosts and ACs against another
EE or AC. Threats can also be analysed from the
perspective of a single ANN, and from the network-wide
perspective. Of course, threats to a single ANN apply also
to the whole AN (domain). However, network-wide threats
can be more subtle and harder to combat, since they are
based on the global, distributed nature of network
protocols, and thus, their respective active codes.

In the initial phase of the FAIN project, only high
priority security requirements have been addressed in
detail:

• authentication
• authorization
• policy enforcement
• active code/packet integrity
• code verification
• audit.
We have compiled this list in light of the main

objective of the FAIN security architecture, which is to
provide secure and robust operation of FAIN AN
infrastructure in spite of unintentional and malicious
misbehaving of AN users, i.e. their respective codes. From
this perspective, our criteria in assigning priorities can be
summarized as follows:

• How subtle is particular security requirement, i.e.
the respective threat “behind'' the requirement?

• More subtle yields lower priority.

3.1 AUTHENTICATION, AUTHORIZATION AND
POLICY ENFORCEMENT

FAIN ANN is essentially a multi-user computing
system. As in any such system, enforcement of access
control is a requirement of high significance within every
FAIN ANN. On the other hand, FAIN aims at developing a
flexible system. In order to achieve the desired level of
granularity we decompose access control in authentication,
authorization and policy enforcement. These three security

requirements have the highest-priority within FAIN
security architecture.

3.2 ACTIVE CODE/PACKET INTEGRITY
Active code is executed within an ANN and performs

actions on behalf of a user. Therefore, active code is the
“carrier of activity” and as such, it is a powerful tool when
misused by malicious users, which can potentially tamper
with active code while it is in transit over the network. For
instance, the whole access control system could be
circumvented, if the original active code can be modified
or swapped with any other code. Similarly, there are ways
to obviate access control system by tampering with active
packets, such as cut and paste attacks and replay attacks.
This is why protecting integrity of active code and packets
deserves a high-priority.

3.3 CODE VERIFICATION
Protecting the active code integrity is a first step to

ensure non-modification of the transient code. However
this is considered pretty basic and we need to go beyond
that in order to achieve a high level of security. The active
code has to be somehow marked and tightly coupled with
one or more entities, based on which further security
decisions can be made. The code carries credentials from
these entities, which have to be verified in order to set the
security context within which this active code can execute.
As code verification is critical into taking further security
decisions, this is considered a high-priority requirement for
the FAIN security architecture.

3.4 AUDIT
The Audit Manager component is an integrated part

of the security architecture. Via this component
a) all events occurring from the usage of the security

subsystem are implicitly logged for further future
usage.

b) It also provides an interface to explicitly log any
other events coming from other parts of the FAIN
architecture in a clear and homogeneous way.

Modern computer systems do not emphasize enough
on the significance of the audit facilities. However audit
tools help in realizing possible security leaks (or even
preventing some) and make sure that mistakes are not
repeated. We feel that within the AN community special
care has to be taken with audit activities and therefore it is
also considered a high-priority security requirement.

4 TECHNICAL ASPECTS OF ACTIVE
NETWORK SECURITY

4.1 AUTHENTICATION
Authentication is a process of verifying an identity

claimed by or for a system entity. Symmetric or
asymmetric cryptography can be used for authentication.
Symmetric cryptography is suitable only for closed

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 3

systems due to its scalability problems. Thus, we use
asymmetric cryptography in FAIN. This requires every AN
user to have a public/private key pair and a valid public
key certificate. Nevertheless, common remote
authentication protocols employ a handshake, i.e. a two
way communication in order to perform authentication. In
active networks this would require an end-host to perform
an authenticating handshake protocol with every ANN en
route, which is clearly unacceptable. Thus, we propose the
use of “unidirectional” procedure, where authentication is
based on digital signatures and one-way communication
from end-host to an ANN. Overview of this authentication
scenario:

• User employs its private key to digitally sign the
static part of an active packet and adds a signature
to the packet it transmits

• ANN uses the public key certificate to verify the
validity of the user’s public key.

• If valid, ANN employs user’s public key to verify
the digital signature of the packet

A PKI infrastructure is needed to support authentication
based on digital signatures.

4.2 AUTHORIZATION
There will be several enforcement engines in FAIN

ANN, each of them residing in a different FAIN ANN
subsystem and responsible for mediating access to
functions and resources of the respective subsystem. On
the other hand, authorization component can be either
integrated with policy enforcement or separated from it. In
the former case, there would also have to be one
authorization engine per ANN subsystem. In the latter
case, only one, general-purpose authorization engine can
be implemented and used by all policy enforcement
engines.

We have adopted the latter approach for FAIN due to
the following reasons:

• no duplication of work; this is especially
important if we consider that design and
implementation of any security component is a
difficult and subtle task

• inherent flexibility as a consequence of separation
of authorization from enforcement

• possibility of reuse of existing tools.

4.3 POLICY ENFORCEMENT
In the initial phase our discussion is limited to

enforcement mechanisms up to and including FAIN Node
facilities level, i.e. we currently omit the discussion of
policy enforcement within EEs/VEs. Policy enforcement is
the active component of security architecture that enforces
authorization decisions and thus enforces the use of ANN
resources, which is consistent with local security policies.
We distinguish two types of resources, hardware and
functional resources. Hardware resources include basic
low-level ANN resources such as memory, storage
capacity, CPU cycles and link bandwidth. Functional
resources are high-level resources in the sense that they

consume some portion of hardware resources. However,
with functional resources it is not important how much
memory or storage space they consume but rather what
purpose they serve within an ANN, i.e. what function they
provide. Examples of functional resources include:

• special purpose files, such as configuration files,
• policy entries in the policy database,
• ANN state,
• ANN API functions themselves, etc.
We note that all resources in an ANN, hardware and

functional, are accessible at certain node interface. In order
to prevent unauthorized use of ANN resources, policy
enforcement has to be scattered across different ANN
subsystems that provide specific subsets of ANN API
functions. Thus, basic technical approach to policy
enforcement is to add an “adaptation'' software layer on top
of every subsystem API, which then mediates access to
node API functions. Whenever an ANN function is called
by an “external'' entity (such as VE, EE, active code), this
software layer:
• intercepts the request (call to node function) and

suspends it
• provides call parameters to authorization engine

effectively asking for authorization decision;
parameters include caller ID, called function name,
object(s) name, amount of requested hardware
resources, etc.

• when authorization decision is returned
if request is authorized, enforcement layer
resumes the execution of the request

♦

♦ if request is not authorized, enforcement layer
discards the request and thus prevents
unauthorized actions from taking place

In addition to this “high-level'' operation, policy
enforcement also has to operate at low-level in order to
enforce proper usage of low-level hardware resources. At
the “lower level'' enforcement is embodied in a more
complex policing algorithm(s), which can control the
scheduler(s) for specific resource and thus impose limits
on resource usage by an entity.

4.4 ACTIVE PACKET/CODE INTEGRITY
In general, protecting integrity of active packet/code

while in transit over network involves cryptographic
operations. The most common approach is as follows:
• at the sending end---generate integrity protection

token (data):
• calculate a hash of the packet/code
• encrypt the hash to protect it from modifications
• send the encrypted hash together with the active

packet/code
• at the receiving end---verify the integrity of the

packet/code:
• decrypt the hash that accompanies the received

active packet/code
• calculate a hash of the active packet/code,

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 4

• compare the two hashes; if they differ active
packet/code has been modified and should not be
processed or allowed execution.

The hash value, which is carried along with active
packet/code and is used for integrity, can be protected
either by applying asymmetric encryption or symmetric
encryption.

If asymmetric encryption is used, integrity protection
is provided by digital signatures and there is no need for
ANNs to maintain a private/public key pair.2 ANNs only
need to be able to obtain the certificate chain, which
verifies the validity of the public key of the party signing
the active packet/code. Thus, the advantage of asymmetric
encryption is that it eases management of encryption and
decryption keys. However, the downside is that
asymmetric encryption is on the order of two magnitudes
slower than symmetric encryption.

In case symmetric encryption is used, the encrypted
hash is known as a MAC3 value. However, this requires
each ANN to maintain a non-compromised private/public
key pair and a public key certificate. ANN uses
asymmetric encryption to establish a shared secret key
with the sending end. Thus, asymmetric encryption in this
case is still used, but this time only to set-up a secret key
for symmetric encryption. Additional downside of
symmetric encryption is that integrity protection requires a
negotiation phase before active packet/code can be injected
into the AN.

In FAIN we have used a combination of asymmetric
and symmetric encryption for active packet/code integrity,
in order to leverage the advantages of both. The proposed
approach is as follows:
• each ANN has a public/private key pair and a public

key certificate
• each ANN maintains a shared secret key with every of

its direct neighbouring ANNs; neighbouring ANNs
employ asymmetric cryptography for establishing and
updating shared keys

• the sending end signs active packet/code (using
asymmetric encryption) and injects it into the AN

• the ingress ANN fetches the public key of the signer
and verifies it against its certificate

• the ingress ANN then uses this key to check integrity
of the received active code

• if active code is intact, ingress ANN calculates a MAC
value, using a secret key it shares with the next hop
ANN

• ingress ANN sends MAC value along with active
packet/code and its signature

• every subsequent ANN
� uses the secret key it shares with previous-

hop ANN and checks integrity
� calculates new MAC values using the secret

key it shares with the (physical) next hop
ANN

2 Note that other security requirements may/will impose this.
3 Message Authentication Code.

� sends the new MAC value along with the
active packet/code

This approach represents a trade-off between FAIN
goals of security and performance. On one hand, the
described approach is based on the assumption that trust
exists between ANNs, which obviously reduces the level
of security. However, this is a valid assumption at least in
a single domain, which is under the control of a single
authority. The trust within domain is applied by per-hop
symmetric encryption. On the other hand, this approach is
advantageous for ANN performance, since it leverages
high speed of symmetric encryption algorithms.
Furthermore, because (pre-established) per-hop shared
keys are used, it effectively eliminates the symmetric key
negotiation phase. Note that per ANN public/private keys
and per-hop cryptographic calculations are used. However,
since some parts of an active packet are dynamic, i.e. they
can change at every hop, they cannot be protected with
digital signatures and, thus, per hop integrity will have to
be used, anyway.

4.5 CODE VERIFICATION
Verification can enable us to trust to some extent that

the active code will behave safely and properly and that we
can have some guarantees on its resource usage on the
node and in the network. But we shall say in general that
verification provides only enhanced trust in proper and
safe code execution, which is usually not related to the
trust in the user on behalf of which the code is executing.
Code verification can help an ANN decide whether to run
the newly received code. If the code fails the verification
test, it is not trusted and it is dropped or alternatively it can
run in an EE with minimal facilities available. In the latter
case the EE is the same one that will be used to run
anonymous active code. Broadly, code verification
techniques can be classified into two groups:
1. Digitally signed code, so we trust the user,

organization or repository that has signed the code.
Digital signature can be checked at the NodeOS level,
immediately after it is available.

2. Various other mechanisms that can enhance the trust
in proper and safe execution. These mechanisms
mainly operate within EEs, and include techniques
like proof carrying code, JAVA bytecode verification,
and restricted languages.
If there is resource consumption estimate available,

simple resource check is also possible. Since the scope of
initial FAIN security architecture is limited to the NodeOS
level, we propose the use of first approach, which employs
digital signatures for code certification.

4.6 AUDIT
The information gathered by the audit manager are

stored into the audit database and via a policy controlled
way are available for further use. Decomposition of
auditing activity in this way allows the active node base
code to be simpler as it does not have to implement
complex handling of audit messages. Audit logs should be
securely stored not only locally on the node but also

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 5

in a distributed scheme as this offers better survivability to
attacks against the node. Apart from the node audit, the
active code may perform its own auditing and possibly
report it via an interface to the node’s audit facilities.

5 FAIN SECURITY ARCHITECTURE
Figure 2 depicts a FAIN active network node; all

shaded components are part of security architecture. As
depicted, FAIN security architecture roughly comprises
three parts: security subsystem, other ANN security
components, and external security support facilities. Note

that the scope of initial FAIN security architecture does not
include EE layer of FAIN ANN architecture.

5.1 SECURITY SUBSYSTEM
Most of security critical decisions are made by

security subsystem, which is one of several subsystems
within an ANN. The Security subsystem is also
responsible for management of security critical data, such
as encryption keys, credentials, and policies.

 Authorization
Authority

(AA)

Figure 2: FAIN Security Architecture

This subsystem is the core of FAIN security
architecture and includes the following components:
1. Crypto Engine: performs the actual cryptographic

operations, such as symmetric encryption/decryption,
asymmetric encryption/decryption, and hashing. It
implements various cryptographic algorithms, which
are used by other components in the security
subsystem.

2. Security Environment (SE): in a secure fashion
stores various encryption keys, which are required by
crypto engine. For example, SE stores ANN’s public

key pair (private and public key) and all secret keys
that an ANN shares with its neighbours (one per
neighbour).

3. SE Manager: is used for managing the keys in SE. SE
manager can provide facilities for manual
configuration of encryption keys and can also
automatically manage keys, e.g. by triggering a key
exchange protocol with neighbouring ANN.

4. Integrity Engine: checks the integrity of active
packets and active code. It depends on integrity
protection data contained within an active packet and
on crypto engine to do the necessary cryptographic

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 6

operations.
5. Verification Engine: performs code verification (at

NodeOS level), if any. It may depend on special data
contained within an active packet and on crypto
engine to do the necessary cryptographic operations.

6. Authentication Engine: verifies the authenticity of
active packets. It depends on authentication data
contained within an active packet and on crypto
engine to do the necessary cryptographic operations.

7. Authorization Engine: is responsible for making a
decision whether a given user request to execute
specific action or to access/manipulate particular
object within an ANN is authorized or not.
Authorization engine provides this “service” to all
policy enforcement engines in an ANN.

8. Policy database: stores security policies, which
govern who can do what in an ANN.

9. Policy Manager: when asked by the authorization
engine, searches policy DB and returns all security
policies, that are relevant for a particular request,
which is currently subject to authorization. It also
provides facilities for editing entries in policy DB,
either manually by an authorized user, or
automatically, i.e. download policies from a
centralized policy server.

10. Credential database: stores users’ credentials, such
as public key certificates and attribute certificates.

11. Credential Manager: when asked by authorization
engine, searches credential DB and returns all
credentials, that are relevant for a particular request,
which is currently subject to authorization. It also
provides facilities for editing credential database,
either manually by an authorized user, or
automatically, i.e. search and download credentials
from an external credential repository.

12. Audit database: stores an audit log of security critical
events.

13. Audit Manager: will be the place where all security
architecture’s components audit their function in order
to be used later in resolution of problems or even to
make decisions. E.g. an Intrusion Detection System
would use a view of the audit DB in order to recognize
attacks against the system. The audit could be also
distributed for survivability reasons.

5.2 OTHER ANN SECURITY COMPONENTS
The second part of security architecture includes

components that are part of ANN but are external to
security subsystem. This includes policy enforcement
engines and various components providing environment
variables, e.g. resource usage monitor. Various subsystems
within an ANN offer their services and objects for use by
users via their interfaces. Access to these objects and
services is governed by security policies. Thus,
enforcement of node security policies has to be performed
at the point where they can be violated, i.e. at interfaces.
At every ANN subsystem interface, a policy enforcement
engine acts as an adaptation layer, which is responsible for
mediating access to subsystem services and objects based

on the authorization decision. While authorization is only a
decision making, enforcement is an active process that
prevents access to services and objects by unauthorized
users. The Enforcement engine suspends the request at
interface, asks the authorization engine whether this
request is allowed and acts upon authorization decision,
i.e. either allows or denies execution of the request.

In addition to these “high-level” enforcement
engines, there are also “low-level” enforcement engines,
which are tightly coupled with specific hardware resources
available within an ANN and therefore they are considered
as part of Resource Control Framework (RCF). Finally,
there are some components in an ANN, which provide
authorization engine with necessary data to make
authorization decision. For example, resource usage
monitor provides data on current hardware resource
consumption by particular user, and a clock provides
current time and date.

5.3 EXTERNAL SECURITY SUPPORT FACILITIES
In the initial security architecture, we envisage these

security support facilities:
• Certification Authority (CA)
• Authorization Authority (AA)
• Credential repository
Authentication based on digital signatures requires a

user to have a public key pair and a valid public key
certificate. Public key certificate binds a public key and an
identity of its owner; these certificates are issued by a
trusted third party called Certification Authority (CA).
When a user enters an ANN, he must present his public
key certificate to authentication engine. Alternatively, he
can provide a pointer to his public key certificate in the
form of a reference to certificate repository.

In the initial phase of FAIN, a single CA is sufficient
for demonstration and testing purposes. This can be later
extended with more CAs forming a fully-fledged Public
Key Infrastructure (PKI).

Similarly, a scalable approach to authorization
requires a user to have one or more attribute certificates.
Attribute certificates bind public keys directly to
privileges, which can be exercised by the owner of the key.
Attribute Certificates are issued by a trusted party called
Authorization Authority, which may not necessarily be the
same as the Certification Authority. When a user enters an
ANN, he must present one or more attribute certificates
either directly or by reference to a repository. Later, when
a user tries to execute an action, attribute certificates are
used by the authorization engine to decide whether he has
the necessary privileges. The Credential repository can
store both, public key certificates and attribute certificates.
Repository can be implemented in many ways, such as a
directory service or a web repository.

6 OPERATION OF SECURITY
ARCHITECTURE
Basically, there are two checkpoints where security

functionality from figure 2 is employed to protect an ANN:

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 7

when a user enters an ANN and when a user tries to
execute some action within an ANN. The former is
represented by an arrival of an active packet in ANN and
we call it entry-level protection. The latter occurs when a
request for certain operation arrives at NodeOS interface
and we call it execution-level protection.

In addition to these two types of security protections,
one can distinguish two operations, which do not directly
provide any security protections. Rather, these two are a
sort of “backplane” operations, which support entry- and
execution-level security protections. These support
operations are: setup of a shared secret key between
neighbouring ANNs and obtaining the missing credentials
from a node external repository. A secret key, which is
shared by a pair of neighbour ANNs, is used for hop-by-
hop symmetric encryption of portions of active packet,
which is leveraged e.g. for integrity protection. To setup a
shared secret key between two ANNs, any key exchange
protocol can be used. Key exchange has to be performed
when a new ANN is added to/removed from the AN and
whenever the key lifetime expires.

On some occasions, a situation may arise, when the
credentials needed to make authorization decision are not
present in an ANN. In this case, the missing credentials
have to be searched for and obtained from somewhere in
the network, usually from a repository service.

Finally, there is an audit facility within FAIN ANN,
which is responsible for keeping a log of all security
critical events within an ANN. This information is required
for activities such as intrusion detection and analysis and
assessment of security breaches.

6.1 ENTRY-LEVEL SECURITY PROTECTIONS
Figure 3 depicts a sequence of security operations

that are performed for every packet that arrives at ANN.
These security checks are aimed at detecting anything
suspicious about this particular packet and, if so,
discarding it. A packet is only delivered to appropriate EE
if it passes all checks. Upon entering an ANN, an active
packet is first processed in order to extract information
needed for security checks. This information includes:

• Digital signatures, which are used for
authentication, integrity, and verification

• MAC values, which are used for integrity
protection

• Public key certificate(s), which are used for
checking digital signatures

• Attribute certificates, which are used for
authorization

After this information has been provided to security
subsystem, entry-level security checks are triggered. The
security subsystem verifies credentials, checks integrity of
active packet and active code, performs code verification
(if any), and performs authentication and returns the result
of these operations to the de-multiplexing subsystem. Only
if all these checks are successful, the packet is allowed to
“enter” an ANN, i.e. it is first processed at NodeOS level
(e.g. IP processing) and then forwarded to appropriate EE
for further processing. If any of security checks fails, this

is reported to de-multiplexing system, which discards the
packet.

 : Customer : Demux :
SecurityEngine

 : EE

Inject Packet

Parse Packet

security check

Extract Security Data

check packet integrity

check Code integrity

verify code

verify credentials

security chec k result

process packet

deliver packet for execution

authentication

Figure 3: Entry-level Security Checks

Active packet integrity

Integrity protection is based on cryptography. Every

packet carries along at least one special token, which is
used for integrity protection. This token is in the form of a
digital signature and/or a MAC (Message Authentication
Code). In FAIN bothe techniques are used for packet
integrity. This is due to the fact that digital signatures are
required for authentication, so it is sensible to leverage
digital signatures for integrity as well. However, this
applies only to static parts of an active packet, which do
not change en route and can be signed by the source of the
packet. For the dynamic parts of an active packet, which
can change within an ANN, per hop integrity protections
based on MAC must be used.

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 8

Integrity engine checks integrity in three steps.
Firstly, it asks crypto engine, which performs all
cryptographic calculations, to decrypt the integrity token,
in this case a MAC value; crypto engine needs to get
appropriate decryption key from ANN’s security
environment. This decryption process returns a hash of the
packet as it was seen by its sender. Secondly, it asks crypto
engine to calculate hash of the packet. The last step is to
compare this hash against the decrypted token. If they are
equal, then integrity of the packet can be assumed. If these
two values differ, however, then integrity check has failed.

Active code integrity and code verification

Here we check the integrity of the newly received

active code. Note that integrity checks for active packet
and active code need to be separate because of the fact that
these protections are in most cases provided by different
encryption keys, i.e. different actors. The reason for this is
that active code can be tampered with even before it is
included in any active packet. Thus, digital signature
generated by packet source at packet creation does not
suffice for active code. Every active code is accompanied
by at least one special token, which is used for integrity
protection. This token has a form of a digital signature
and/or a MAC (Message Authentication Code). It is
envisaged that both approaches to integrity will be used in
FAIN. Digital signatures by code provider/manufacturer
can provide integrity protection until code is injected into
the active network. From there per-hop MAC protection
can be used, which is expected to yield performance gains.
Additionally, the advantage of per-hop MAC protection is
that it covers both packet and code at the same time. Note
that we omit the discussion of multi-domain issues in the
initial phase.

When active code integrity is provided with digital
signature generated by code provider, the integrity engine
must first process code provider’s public key certificate in
order to extract and validate providers public key. After
extracting a valid public key integrity engine checks
integrity in three steps, similar to active packets. First, it
asks crypto engine to decrypt the integrity token, in this
case a digital signature. This decryption process returns a
hash of the code as it was seen by the code provider.
Second, it asks crypto engine to calculate hash of the code.
The last step is to compare this hash against the decrypted
token. If they are equal, then integrity of the code can be
assumed. If these two values differ, however, then integrity
check has failed.

The majority of active code verification techniques
are specific to particular EE. Since we have limited our
current scope to NodeOS only, we do not address these
mechanisms. The only general verification mechanism,
which can be placed in the NodeOS is based on digital
signatures by trusted parties. For the initial FAIN security
architecture we use code providers as these trusted parties.
This effectively eliminates the need for distinct code
verification process within the NodeOS, since code
provider’s digital signature is checked as part of code
integrity check.

6.2 EXECUTION-LEVEL SECURITY
PROTECTIONS

Once an active packet has successfully passed entry-
level checks, active code(s) can execute and perform
operations within an ANN on behalf of some user.
Obviously, some users will have more privileges than
others, i.e. security policies define who can do what in an
ANN. In order to protect an ANN it is necessary to prevent
users from abusing their privileges and violating security
policies.

According to the previous paragraph, execution-level
protection includes two steps:

• Evaluating every execution request against node
security policies, which is performed by
authentication engine and

• Allowing or denying execution based on positive
or negative authorization decision, respectively;
policy enforcement engines are responsible for
this.

Policy enforcement

Crucial to policy enforcement is the subsystem

specific enforcement engine, which is implemented as an
adaptation layer mediating requests at subsystem interface.
Every request at subsystem interface is intercepted and
suspended by this adaptation layer. Before execution a
request has to be evaluated against local security policies.
Enforcement engine does not itself evaluate whether the
request is compliant with local security policies. Instead it
invokes the authorization procedure within the security
subsystem and feeds it with request information, such as:
requested action, name of target object and requesting
caller ID. Only after authorization returns, “request
authorized” does an enforcement engine allow execution
of the request by the underlying subsystem. Obviously, if
authorization returns a negative answer, i.e. “request not
authorized”, then enforcement engine simply discards the
suspended request. This way, it prevents execution of
unauthorized requests and essentially enforces users to
adhere to local security policies.

Authorization

Here we check everything that is required to

authorize the request, i.e. to decide whether to grant it or
not. In flexible access control systems, authorization is not
integrated with enforcement. Instead it is separated
logically and in implementation. In this way, a single
authorization engine can be used by multiple policy
enforcement engines.

Authorization decision is based on the following set
of data:

• request information (action, object name, caller
ID)

• local security policies, which govern the way in
which particular object can be used

• credentials associated with particular caller ID

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 9

• current values of environment variables, such as
time of day and amount of resources used by
subject

Enforcement engine provides the request information
when it asks for authorization decision. This information is
used as an “index” by policy and credential managers for
fetching appropriate policies and credentials, respectively.
Environment variables are provided to authorization
engine upon request by facilities, such as system clock and
resource monitoring module within Resource Control
Framework (RCF) subsystem. Finally, after gathering all
the required information, authorization engine processes
this data according to its internal rules, which return a
simple result, either saying, “request authorized” or “
request not authorized.” This is returned to the calling
policy enforcement engine, which then acts accordingly.

6.3 RELATED WORK
FAIN aims to develop a heterogeneous ANN,

allowing coexistence of various technologies that enable
installation and execution of active code within an ANN.
Consequently, FAIN security architecture is aimed at
providing a more general solution which provides
necessary protections for such an heterogeneous system.
This is reflected by the fact that security architecture we
have presented does not incorporate details of specific EEs
that exist in the FAIN ANN. Its goal is to be as EE
independent as possible and provide a common set of basic
security services required by all AN enabling technologies.
Some research projects on active networks have already
tried to tackle the issue of security [3][4][5][6]. Contrary to
FAIN, all these approaches are tied to specifics of
particular model of programmability. When designing a
more general AN security architecture, which is the case in
FAIN, these specifics can not be assumed. Java Security
Architecture [7] proved to be useful for AN security, but
again it is technology specific and it also has some
drawbacks [5]. There has also been some more general
work on AN security [8]. This work is still in the early
phase.

7 CONCLUSIONS
We have presented in this paper a security

architecture for future IP active networks as it is done in
the context of FAIN project. We try to tackle the high
priority security requirements such as authentication,
authorization, policy enforcement, active code and active
packet integrity and verification and last but not least audit.
We have analysed the main design decisions that we have
taken and the reasons why we decided to follow them.
Subsequently we have presented the components of a

security architecture that will be used by multiple
heterogeneous execution environments within the same
active node. We also provide a look in the interworkings of
the architecture and its decision-making logic. A prototype
implementation of the presented active network security
architecture is currently under development, which will be
used for exploring the advantages and drawbacks of our
approach.

8 ACKNOWLEDGEMENTS
This paper describes work undertaken and in

progress in the context of the FAIN – IST 10561, a 3 year
project during 2000-2002. The IST program is partially
funded by the Commission of the European Union. The
FAIN consortium consists of University College London-
UK, Jozef Stefan Institute- Slovenia, NTUA- Greece,
Universitat Politecnica de Catalunya- Spain, Deutsche
Telekom Berkom- Germany, France Telecom/CNET-
France, KPN- The Netherlands, Hitachi Europe Ltd.- UK,
Hitachi, Ltd.- Japan, Siemens AG - Germany, ETH-
Switzerland, Fraunhofer FOKUS - Germany, IKV++
GmbH- Germany, INTERGAsys – Spain, University of
Pennsylvania- USA.

9 REFERENCES
[1] Future Active IP Networks (FAIN) Project,

http://www.ist-fain.org/
[2] Active Networks Working Group, Architectural

Framework for Active Networks, May 2001,
http://www.darpa.mil/ito/research/anets/Arcdocs.html

[3] D. S. Alexander, W.A. Arbough, A. D. Keromytis,
and J. M. Smith. A secure active network
environment architecture: Realisation in SwitchWare.
IEEE Network, Special Issue: Active and
Programmable Networks:37-45, May/June 1998.

[4] B. Braden, B. Lindell, and S. Bernson. A Proposed
ABone Network Security Architecture. ABone draft,
Nov 1999, http://www.isi.edu/abone/techspecs.html

[5] Active Networks Working Group. SANTS Security
Overview, May 2000.

[6] S. Schwab, R. Yee, and R. Dandekar. AMP Security
Overview. Technical Report, NAI Labs, May 2000.

[7] Li Gong. Java Security Architecture (JDK1.2).
Technical Report, Sun Microsystems, Oct 1998.

[8] Active Networks Security Working Group. Security
Architecture for Active Nets, May 2001,
http://www.darpa.mil/ito/research/anets/Arcdocs.html

2nd European Conference on Universal Multiservice Networks – ECUMN 2002 10

http://www.ist-fain.org/
http://www.darpa.mil/ito/research/anets/Arcdocs.html

	A Security Architecture for Future Active IP Networks
	Introduction
	FAIN Active Nodes
	General fain model and security requirements
	Authentication, authorization and policy enforcement
	Active code/packet integrity
	Code verification
	Audit

	Technical aspects of active network security
	Authentication
	Authorization
	Policy enforcement
	Active packet/code integrity
	Code verification
	Audit

	Fain security architecture
	Security subsystem
	Other ann security components
	External security support facilities

	Operation of security architecture
	Entry-level security protections
	Execution-level security protections
	Related work

	Conclusions
	Acknowledgements
	References

