Realization of a secure active and programmable network infrastructure
via mobile agent technology

Stamatis Karnouskos

Fraunhofer Institute FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

Received 28 January 2002; accepted 28 January 2002

Abstract

The deployment of sophisticated telecommunication services poses demanding design and implementation challenges to the underlying
infrastructure. The end-goal of more flexibility, fault tolerance, quality of services, intelligence, component-based service integration, service
personalization, programmability, openness and of course security in a heterogeneous infrastructure can be reasonably achieved via active
and programmable networks. In this paper, we first investigate an integrated architecture for active and programmable network infrastruc-
tures that is based on mobile agent technology. Subsequently we present a security architecture for our node and comment on its functionality
and technology choices made. At the end a dynamic VPN deployment with nomadic user support scenario is analyzed in order to argue about
the pros and cons offered by this approach. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Active networks; Security; Active code; Mobile agent technology; Nomadic user support

1. Introduction

The global telecommunication market in an open econ-
omy world requires rapid deployment of personalized inter-
operable services and has therefore several sophisticated
requirements from the underlying infrastructure. Computa-
tional Intelligence (CI) has the potential to overcome the
emerging challenges whose increasing complexity is at
least difficult to satisfy with the usage of conventional
computing technologies. The CI backbone constitute tech-
nologies such as neural networks, granular computing (also
termed as fuzzy set technology), evolutionary computing as
well as combinations between them, e.g. neurofuzzy comput-
ing. CI's applicability to active networks (AN) [17] as well as
agent-enabled AN infrastructures provide an interesting
framework where several problems such as difficult and
slow integration of new technologies, standards and services
that haunt current passive networks cease to exist.

Active and programmable networks [1] represent an
evolution of current dumb passive network carriers to a
more general programmable network model. They foster
the idea of moving service code, which traditionally was
placed outside the transport network, directly to network’s
nodes. Those nodes are now open and allow applications
(e.g. web proxies, firewalls, etc.) to configure them opti-

E-mail address: karnouskos @fokus.fhg.de (S. Karnouskos).

mally for their tasks, via open interfaces (programmable
networks). Furthermore, those nodes are able to accept
injected code that computes on data received by the node,
before they pass them to the next node (AN). Network-
aware software is expected to change the way we design
and deploy applications and services, as it will allow us to
test and adopt more sophisticated and intelligent approaches
coming mainly from the CI domain. The challenge such an
infrastructure poses is to find the right balance among mobi-
lity, flexibility, performance, robustness, usabilility and last
but not least safety and security.

Software agent technology is a rapidly multi-developing
area of research since the early 90s. An agent is a software
component that acts alone or in communities, on behalf of
an entity and is delegated to perform tasks based on its
internal goals. There are several types of agents [5] but
for the AN case, we are especially interested in mobility
and partially in intelligence. Mobile agent technology [2]
offers a new computing paradigm which shatters the notion
of client/server model and its limitations [3], in which a
program in the form of a software agent (intelligent or
dumb) is capable of migrating autonomously.

2. Combining active networks and agent technology

There are two approaches via which we can realize active
networking, namely the in-band (also known as the capsule

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1466 S. Karnouskos / Computer Communications 25 (2002) 1465-1476

Fig. 1. The agent-based AN node.

approach [4]) in which the active code is integrated into
every packet of data sent to the AN node, and the out-
band in which the active code is injected in the AN node
in a different session from the actual data packets that it
affects. The agent approach which is discussed in this
paper falls within out-band programming category.

As active code (AC) we consider the code that executes
within the execution environment of the active node. This
code can be stateless, statefull, stationary, or mobile. An
intelligent piece of code that moves around as AC can be
considered as the most advanced form of AC. All other
forms derive from this one by combining some but not all
characteristics mentioned within the intelligent and mobile
agent research domain. It is important to clarify that an
agent can be an AC or not. Agents can slip easily in the
role of AC, but also serve as middleware technology. Agents
can be used in two ways in ANs (i) as Active Code Carriers
(ACC) and (ii) as AC. From hereafter, we consider the AC
as an intelligent mobile agent that traverses the network. We
will refer to it as AC or agent but for this paper, both
references are synonyms.

2.1. The agent-based AN node architecture

The active node architecture with the agent execution
environment is depicted in Fig. 1. An active node (router,
switch, etc.) can be realized via the composition of three
different layers representing hardware and software parts,
i.e. the static part, the programmable part and the active part.

Static part. This is the hardware that is delivered by the
manufacturer. It contains the optimized components and
algorithms implemented in their hardware form for perfor-
mance reasons. Software approaches in this level will only
slow node’s function down, e.g. the forwarding function.

Programmable part. This part integrates the manufac-
turer proprietary interfaces of the fixed part and exports an
open standardized interface. The APIs are standardized by
the IEEE P1520 project [11]. At this level, the node can be
programmed but only via a parameter specific approach.
The programming can be done, e.g. via an RPC method
and it has the advantage that the node always falls into
deterministic states. This open interface represents the
abstraction of the hardware available resources, ranging
from computational resources (CPU, memory, etc.) to
packet forwarding resources (bandwidth, buffer, etc.). The
NodeOS provides the basic functionality from which the
EEs built the abstractions presented to the active applica-
tions. The architecture of the NodeOS and its functionality
is outlined in detail by the AN Node OS Working Group [6].
Let us mention that the NodeOS could also be a distributed
processing environment (DPE) that makes the necessary
abstractions.

Active part. The full ability of programming the node is
unfolded here as this part hosts several execution environ-
ments that allow via code injection and execution sophisti-
cated programmability of the node. Applications that need
task specific manipulation of node’s states, can implement,
in the form of AC, the specific algorithms they need from
the scratch, or by combining the services that are available
in the node in a Lego-like way. The executed AC, uses also
the interfaces that are provided by the programmable part
(generic interfaces) in order to access functionality imple-
mented in the hardware part. As also noted [7], the function-
ality of the AN node is divided among the node operating
system (NodeOS [6]), the Execution Environments and the
active applications. The architecture allows multiple EEs of
various providers to co-exist and be present on a single
active node. Each EE (e.g. ANTS [8], ALIEN [9], Agent

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



S. Karnouskos / Computer Communications 25 (2002) 1465-1476 1467

EE) exports a programming interface or virtual machine that
can be programmed or controlled by third party code. One
of the EEs is the mobile agent EE where agents execute
when they visit the node. The applications are able to access
all the services offered by the EEs. Usually an application is
bounded to one EE but we can foresee applications that will
take advantage of the various characteristics of more than
one EEs and possibly combine their services.

As shown in Fig. 1, one of the EEs is the agent execution
environment. This is the agency as described within the
MASIF [10] standard. The agent system consists of places.
A place is a context within an agent system in which an
agent is executed. This context can provide services/func-
tions such as access to local resources, etc. A place is asso-
ciated with a location which consists of a place name and the
address of the agent system within which the place resides.
Places can contain other places. All places follow the
parent-child paradigm of Unix processes in the way that
each child is assigned/makes use of its parent’s resources.
In addition, its policy is an extension/customization of its
parent’s policy.

The existence of different EEs for agents (which are the
places within the agent architecture) that have the same
owner/characteristics serves the need to avoid unwanted
interactions. Isolation done by places is similar to the sand-
box idea that exists in Java. Since in each place are gathered
agents with common characteristics (e.g. of the same
owner), the possibility of attacking each other is lower as
usual. Of course further security countermeasures [14] have
to be taken in order to provide a secure working system.

Cooperating agents reside in the agent-based EEs and via
the facilities offered to them program the node. These can be
either mobile agents (e.g. visiting agents) or even stationary
intelligent ones that reside permanently in the EE imple-
menting various services. The agent can either be generated
at a place locally (e.g. out of a pool of ready-programmed
objects) or it can just carry on with an execution it
suspended in another node.

3. Security support for active networks

Active networking supplies the users with the ability to
download and execute code within a node. In such an infra-
structure the security implications are far more complex
than in current static environments. In ANs the author of
the AC, the user who deploys it, the owner of the node
hardware, the owner of the execution platform (or even
the execution environment) can be different entities
governed by different security policies and possibly
competitive interests. There fore, in such a heterogeneous
environment security becomes an extremely sensitive issue.

3.1. Threat model of active networks and extended security
requirements

AC is transferred in some way to the node or is itself

mobile, e.g. in the form of a mobile agent. Therefore, the
attacks that AC and EE are susceptible to are more than
those in current passive networks. In general, we can have:

Misuse of execution environment by the AC.

Misuse of AC by other AC.

Misuse of AC by the execution environment.

Misuse of AC and/or execution environment by the
underlying network infrastructure.

Finally a combination of the earlier categories is possible.
This kind of attacks (the complex and collaborative ones),
are very difficult to detect not to mention prevent or effec-
tively tackle. Classical examples include the co-operation of
various hosts and ACs against another EE or AC.

The AN infrastructures come with a double status; that of
a legacy networks (e.g. data transportation) and that of a
highly programmable network model adjustable on the fly
to application’s specific requirements. Thus, the spectrum of
threats for such a new network model is extended. It
includes not only the threat models of the legacy node and
network systems, but also those of general purpose
computing engines (e.g. safeness). Privacy, confidentiality,
integrity, accountability, non-repudiation, availability,
authentication, authorization, and secure communication
are requirements inherited from the current passive
networks. However, new requirements come into the
scene some of which are:

trusted identification of active node neighbors
verification of the EE

secure node-targeted code distribution
policy based AC management

AC revocation

runtime access control of AC

safe code execution

prevention of unauthorized EE interactions
persistence of AC/services/state of the node.
secure auditing

predefined controlled node programmability

How our agent based approach can deal with the majority
of the earlier threats is explored in our previous work [12].
Here we will focus on an agent-based security architecture
that will allow us secure code (and service) deployment for
exploiting the advantages of the AN infrastructures.

3.2. An agen-based security architecture

Security cannot be an afterthought. It has to be integrated
with the node’s functions and not implemented at the end as
an extra, optional, explicitly called service. Approaches that
try to incorporate security after the design phase have been
proven to fail.

The agent system that represents the agent-based EE in
Fig. 1 consists of places. A place is the execution environ-
ment of the visiting agents. A policy scheme and a resource

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1468 S. Karnouskos / Computer Communications 25 (2002) 1465-1476

Fig. 2. The components of the security architecture.

access scheme are assigned to each place and the respective
policy and resource manager are given the general security
guidelines, which can never be bypassed. If an agent has
sufficient credentials, then it can fully interact with the
components, e.g. change the place’s policy, ask for more
resources, insert elements in the component database, etc.
Places beyond having unique IDs, also hold their own

Fig. 3. AC authentication and authorization process while trying to enter in
an execution environment.

public/private keys. An agent can ask to be signed in order
to have a proof that it passed via this place. An overview of
the components of the security architecture is presented in
Fig. 2 and their functionality will be analysed below.

3.2.1. Policy manager

The policy manager is responsible for managing the
policy schemes stored in the policy database. By separating
the policy DB from the enforcement engine, we insert dyna-
micity into the system. The security policy defines the
access each piece of code has to resources. Signed code
can run with different privileges based on the credentials
of the person or place who signed it. Therefore, the trade-
off between security and functionality can be tuned.

When an agent comes to an agency, he is subjected first to
the general agency’s policy, which is set by the user that
initiated the agency and is considered to be the super-user.
Subsequently, after passing successfully that first layer of
control, the agent actions are authorized based on the place’s
specific policy. It is clear that with this sequential check of
policies we avoid the problem of granting contradictory access
rights for the same action by different policies. The policy of
the ‘father’ place is always first checked and therefore it has
precedence over ‘child’s’ place policy. This hierarchical
policy evaluation decision makes it easy for an enterprise to
set-up an agency and then provide to the customer places,
which are managed by the customer, and do not violate the
general policy framework of the enterprise.

Notification of malicious agents (that have attacked other
hosts) can be distributed in the network (like CERN security
notifications). When our agency subscribes to a security
notification service and receives such info it adapts agency’s
general policy (that is always checked first) so that it will not
allow agents bearing those malicious characteristics to
migrate to any of the hosted places, e.g. it will not allow
migration of agents signed by a user considered as mali-
cious. One can also simply forbid agents from a specific
user/domain for personal reasons, e.g. because they
consume too many resources, or belong to a competitor
company, etc. This is a kind of local black list that in co-
operation with the local certificate revocation list provides a
higher level of flexibility and customization of the system.

Any attempts to describe the security policy in terms of
each individual principal’s authority to access each indivi-
dual object is not scalable and often not fully understandable
by those instituting the policy. Thus, it has been proposed to
group principals and objects into sets with common attri-
butes, where the attributes are used in making security
decisions rather than the individual identities. So we have
role-based policy, group policy, clearance labels, domains,
etc. Furthermore, by grouping policies we allow for faster
execution times while trying to enforce the policy. In our
approach all security checks are identity-based (as shown in
Fig. 3) in order for an agent to enter a place. After an agent
successfully enters a place future security checks become
role-based. Thus, we do not have each time to verify agent’s

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



S. Karnouskos / Computer Communications 25 (2002) 1465-1476 1469

credentials. We check only to see in which place the agent
resides and what is the appropriate policy for that place.
This approach is followed in the effort to speed up security
checks and improve architecture’s performance.

3.2.2. Credential manager

Credentials are used to (i) verify that the component was
created/distributed by the claiming principals, (ii) verify
that the component has not been altered after it has been
signed, (iii) fulfill partially the non-repudiation need so that
the originator of that code cannot deny it.

Credentials are stored in the credential database. All
actions concerning the credentials (including management
of the credential database) are handled by the Credential
Manager (CM). The CM checks the validity of the certificates,
updates them, maintains the local revocation list, etc. The
local revocation list acts as a second black list only that this
time the user can locally invalidate the agent’s certificates and
therefore force the system to treat the agent as an anonymous
one or reject it. While the first list forbids migration to the
agency (via SSL authentication) here we have only sand-
boxing of the agent (treated as possibly malicious).

X509 Certificates can be used as credentials in a hetero-
geneous environment with a key used as the primary iden-
tification of a principal. It is assumed that users and hosts
have certificates. EEs can also (optionally) have certificates
in order to fulfill sign requests. As the nested-place approach
we take is based on service-oriented logic in which the EE n
can belong to a different provider than the sub-place n + x,
we can ask from the nth place to sign a part of an agent. If
that place does not have a certificate, it can use (if permitted
by policy) the certificate of place n — 1 or if that place also
does not have a certificate then that of n — 2, etc. Finally, if
the host does not have a certificate or somewhere between
the policy of place k (with 1 < k < n) forbids the use of a
certificate from parent places then the action fails.

The usage of certificates assumes the existence of a
Public Key Infrastructure (PKI) with certification authori-
ties (CA), which issue certificates that bind two principals in
a speaks-for relationship. When checking the validity of
certificates the CM looks up first his local database and
his local revocation list. If the local lookup action returns
with an error then via the usage of a protocol, e.g. the online
certificate status protocol (OCSP [18]) its validity is
checked in cooperation with a CA server.

3.2.3. Component manager

The component manager mainly manages all requests
concerning components preinstalled by the administrator
as well as user-installed components in the component data-
base. The component manager allows first the administrator
to install code and selectively via policy make it available to
the users. This code can be signed so that other third parties
can verify the originator of the code and decide whether to
use it or not. This helps partially with the ‘malicious host’
problem, as now by verifying the credentials of the AC one

can decide if he trusts the code and at which level. Of
course, again here the verification process simply points
out that the code is the original one and has not been modi-
fied but that does not give any guarantees that the platform
will execute it correctly. Furthermore, the agents are able to
verify a host before they migrate to it. Therefore, if every
host n can verify host n + 1 then we can be relatively sure
that our agent moves in a selected path of trusted hosts. If
the host is not trusted then the agent may decide not to
migrate and execute there. Of course, the agent can select
where to execute but it does not have any guarantees after it
arrives to that host, as its execution is controlled by that
host’s EE. User agents that are given permission can put
their own code to the component database and make it
available to third party agents permanently or for a limited
time. This increases the flexibility as well as the security and
performance of the platform. The flexibility and good
performance are due to each user having its own implemen-
tations of custom code on the node, and thus his agents can
be more lightweight and less complex. Security is also
enhanced as the administrator will provide all new encryp-
tion/compression/etc. algorithm implementations with code
he has tested and trusts. As a result, agents do not bring
every time their own code, which in turn makes it less
risky for the platform to be faced with unintentional side
effects (e.g. buffer overflow). Not to mention that the admin-
istrator’s implementations will be always updated and
possibly platform specific optimized, providing therefore
better overall performance to the system. This supports
also the component-based service composition. The compo-
nent database can be considered a general database of AC,
protocols, encryption algorithms, etc. It can also be used for
caching agent’s code but its functionality is far more
extended than simple caching.

Component database is of great significance to this
approach as it ensures the up to date status of various
components and in parallel minimizes security risks for
agents and for the platform. Security is by its nature over-
head in the communication and execution in order to protect
the system. We accept that. Yet, there are novel general
ways/techniques to minimize this overhead (under certain
conditions) and fortify the security on the node. In the
future, more specialized techniques that take optimal advan-
tage of the underlying network resources could be used if
this approach is to leave the research domain and enter the
commercial one.

3.2.4. Resource manager

A resource manager is available in order to handle the
resources assigned to the agency or place. We assume that
resources are assigned from the administrator (that is the
person that creates the place and this can be the agency
administrator or one of the previous n — 1 place adminis-
trators who created the nested place n) to a place n and are
managed by the owner of the newly created place. The
resources and their management (static or dynamic) are

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1470 S. Karnouskos / Computer Communications 25 (2002) 1465-1476

transparent to place users and to nested places that place n
might contain. The place resource manager can handle the
resources that are dedicated to a specific place.

Note that the resources available to a certain place are
transparent to its users. That means that local resources
could be extended via CORBA in order to access
resources in other nodes. With this idea in mind, one
could consider network-wide working space and resource
consumption (e.g. distributed disk space). This helps also
with the Place Oriented Virtual Private Network (PO-
VPN) [15]. In a PO-VPN scenario an enterprise can
setup places spawned in a network infrastructure and
therefore create a VPN of places where its agents can
execute according to custom security policies and
services. The transparency of resources across multiple
agencies which host places that belong to a VPN or a
third party entity, and the applicability of the MarketNet
[14] idea in order to provide a dynamic resource-driven
security scheme, offers new hardly scratched ground for
further interesting research.

3.2.5. Cache manager

The cache is another essential part of the architecture and
its usage is mainly focusing on improvement of the overall
performance. Security checks are time and computing
consuming processes. In our effort, not to duplicate all the
time the necessary security checks, we have a cache.
Security checks that have been done via the enforcement
engine are stored with a time limit in the cache. If the time
limit expires then the security checks are performed again,
otherwise they are considered still valid and used by the
system. Although this approach may speed-up authorization
decisions, it leaves a controllable window of error since the
authentication status of the AC may have changed.

In that case, the cache contains outdated information. We
solve this problem by deleting (this is repeated each time the
policy for an entity changes) the cached security checks that
are associated with this key/person partially or completely.
Therefore, the next time that a security check is requested, it
will not exist in cache and it will be performed from the
beginning. This is a novel method to speed-up the perfor-
mance of our system.

3.2.6. Audit manager

Audit manager handles all audit events. Experience has
shown that 100% security is at least difficult to realize (if not
impossible) due to the multiple factors that interfere.
Collecting data generated by network activity provides a
useful tool in analyzing the existent security and trace
back (if possible) the originators of a security breakout.
Having a detailed audit can lead to reconstruction of a
sequence of events and better understanding of past security
failures. Audit data include any attempt to achieve different
security level or change entries in the system’s databases,
etc. Intrusion attempts can also be detected via audit, e.g.
when we see repetitive failures in an attempt to use a

component/service we can adapt our policy so that we
prevent any possible intrusions. The more detailed the
audit process is the better can various activities be debugged
and protected from repeated errors or false configurations.
Unfortunately, not all activities can be monitored. Further-
more, these logs are usually plain text files, which intro-
duces further security risks (acquirement of private info,
alteration, etc). Thus, the log files should be protected
with a computationally cheap method [13], which will
make impossible for the attacker to read and in parallel
impossible to undetectably modify or destroy. Survivability
of audit info is often neglected but is a must for secure
network infrastructures.

3.2.7. Enforcement engine

The Enforcement Engine enforces the policy on the
agency in general and on the places. It is the front-end
environment, via which users interact with the architecture.
An Enforcement Engine must satisfy three important rules.
It must be (i) always invoked, (ii) tamperproof (iii) verifi-
able. We try to fulfill the earlier requirements by implicitly
checking access rights to all systems resources, signing the
components and loading the basic parts of the architecture
securely. The host/agency/place administrator can either
edit the policy and credential data prior to system run or
interfere dynamically during system runtime via agent inter-
face. The enforcement engine we have heavily depends on
Java’s security architecture.

3.3. The language choice

Selecting a language for ANs is not a trivial issue.
Tradeoffs between security and performance are critical
parameters in the choice of a language especially if this
language is to handle user-injected general-purpose code.
If ANs were to operate in a completely trusted environment
then any modern rich in features programming language
would be appropriate, but this is not the case as we deal
with a heterogeneous untrusted environment. The biggest
problem in AN is security. Thus, all decisions in design-
ing/operating it should be made with security in mind.
Therefore, we require a language that can have some special
characteristics such as:

Strong typing. This means that a program cannot arbitra-
rily access the host computer’s memory. Memory access is
limited to specific controlled areas having particular repre-
sentations. Thus in such a language common programming
errors are avoided.

Garbage collection. Of course each user/agent can
manage the memory (allocate/de-allocate) he is assigned.
Lets suppose that he frees some memory blocks (memory
looses its type) and that these blocks are reallocated to
another agent. Then this agent is able to read the data on
that memory blocks and acquaint info (possibly security
critical) about the operations of the previous user of that
memory space. With automated garbage collection, we

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



S. Karnouskos / Computer Communications 25 (2002) 1465-1476 1471

make sure to avoid such problems associated with dangling
pointers.

Access controllable module view. It allows us to view a
module via multiple interfaces. That gives us the ability to
deploy a rich feature module that provides different capabil-
ities to different users. In this way we are able to modify
flexibly who can see/do what and how.

Dynamic loading. It is desirable, as we want to make
modifications and load new functions/capabilities while
our system is up and running. It is out of question to shut-
down an AN router every time we want to update a software
component or provide a new capability. Furthermore, by
dynamic linking it is easier to keep our system up-to-date
since the latest version of code and libraries is always used.

Communication support. The language should have its
own optimized libraries for basic communication between
the applications and of course network support. Object
communication, programming with sockets, establishment
of URL connections, etc. are mandatory in a networking
environment.

Widely used and evolvable. These are non-technical char-
acteristics of the language we need. This is not for commer-
cial/political reasons but for practical ones. A language used
by a small group of people might be task-specific but it
would be difficult to advance and keep up to date as bugs,
errors and misbehavior would be seldom if at all reported.
Thus, we need a language that is widely used so that it
evolves fast and day-by-day new features are added depend-
ing on the needs that pop up.

Platform independence. It is not mandatory but would be
of great help since our efforts could be ported/deployed
easily to a heterogeneous environment such as that of AN.

Having in mind all the above one could design a new
language tailored to the needs of active networking and
our system. A small sample of difficulties he/she would
face is:

e designing from the scratch a new language with a bunch
of desired features as mentioned earlier (e.g. safety,
performance),

e if we do not manage to address all required features
needed by the user it would be impossible for user to
implement the he wants,

e it would require a huge amount of work to keep the
language up-to-date with increasing demands,

e it would be used by a limited number of people (AN
people only) and therefore bugs, errors, etc. would be
seldom if at all reported.

The other approach is to use an existing language. Java is
not an AN specific language itself but covers reasonably our
requirements. Java is a very popular language designed
especially for mobile code and most important with security
in mind. It supports dynamic code loading, concurrency,
communication between networking applications (http,
sockets, RMI, etc.) and security services. Java nowadays

is used extensively not only in research domain but also in
industry. Therefore bugs, errors are found and reported fast.
As it is a commercial product, it advances and day-by-day
new features/libraries are added. Furthermore, Java offers
platform independence which is a significant factor as it
assures portability within a heterogeneous environment
such as the AN infrastructure. That in addition with the
support of object oriented concepts like polymorphism
and inheritance make the development of active compo-
nents easier, as these components are seen as an abstract
object of code to be transported and installed in an environ-
ment no matter of the underlying architecture.

Of course Java is not panacea. It has several problems,
e.g. performance weaknesses, security holes due to false
implementations, etc. However, these weaknesses can be
addressed reasonably in the future, e.g. the performance
can be enhanced with just-in-time compilers and HotSpot
technology [16] coupled with ever-faster processors, and
therefore they should not be an obstacle to the deployment
of java-based approaches. Bottom line is that the Java
language is good enough for our needs and maybe will get
even better in the future.

4. Dynamic virtual private network deployment with
nomadic user support

A VPN is a communication environment in which access
is controlled to permit peer connections only within a
defined community of interest and is constructed through
some form of partitioning of a common underlying commu-
nications medium, where this underlying communications
medium provides services to the network on a non-exclusive
basis. Such kind of networks are deployed within a public
network and aim at providing a private working environ-
ment to its users while also taking advantage of the efficien-
cies of the underlying infrastructure. Current VPNs are
designed mostly with static users in mind and little has
been done to easy integrate mobile users or to provide
mobile user support after their deployment.

Nomadic users are wanderers, people on the move from
place to place. The goal is to make information services and
applications ubiquitous and flexibly available for such indi-
viduals as well as to small groups of them. The problem that
arises is that the need for—and the availability of—infor-
mation and communication services vary from place to
place and from time to time. Key requirements are the (a)
rapid service adaptation and customization and (b) security.
We are mostly interested in two categories of nomads:

An individual or a group of individuals moving together.
The aim here is to maintain the local context as the group as
a whole moves. Services provided to the group should be the
same even though the group or the individual (group with
one member) is away from the home environment. A
military squad in a battlefield falls within this category.
Here the connections between the group members may be

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1472 S. Karnouskos / Computer Communications 25 (2002) 1465-1476

intact and only the underlying infrastructure changes. Thus,
the services provided to the group have to adapt to environ-
mental changes and this should be done without any notice-
able changes to the upper levels.

A distributed context with autonomously moving
members. The aim here is to keep a virtual community
and its context intact by rapidly adapting to the new envir-
onmental parameters that are generated by the move of its
members. A multi-conference between mobile users falls
within this category. In this scenario the matters get more
complicated as two parameters change (i) the underlying
infrastructure (ii) the virtual connections among the
members of the group.

Later we will try to address the requirements that need to
be satisfied, and then we will demonstrate how agent-based
AN in combination with the security architecture we have
presented, offer an open evolutionary approach to the
support of secure nomad-aware VPNs.

4.1. Portability requirements

From the portability perspective we have user, home
environment and serving network requirements:

User requirements. The user wants to freely move in
heterogeneous environments and be able to customize the
services offered, to personalize the user interfaces based on
terminal’s capabilities, have ubiquitous access to all
services offered to him independent of his location, the
ability to modify his profile, activate and deactivate services
from any location, to be able to discover the additional
services in the new environment and have all of the above
in an optimized and cost-effective way.

Home environment requirements. The home environ-
ment wants to provide a high customization of its services
to the users it hosts. It wants also to provide an easy way
to make these services available even when the users
roam in third party networks. Access to the services
offered should be policy-based and fine-grained according
to different parameters (or a combination of them) e.g.
user’s credentials, current location, or even based on the
foreign network’s ID.

Serving network requirements. The serving network may
offer to its temporary visitors access to some of its capabil-
ities or merely provide a tunneled connection to the home
environment. The challenge here is to provide the visitor
with transparent access to the services he subscribed in his
home environment and additionally offer him new services
not available in the home location. Billing and management
of the visitor users is non-trivial issue especially when the
end-user services (or the generic components that they are
composed of) spawn different provider domains.

4.2. Operational context for nomadic users

The concept structure of the Agent DPE has to be applied
into the functional framework of the nomadicity. Each user
can be considered as acting within his own EE. This EE

(that is under the total control of the user) hosts one or
more intelligent cooperating agents that keep track of the
user’s needs and current status. Additionally these agents
are responsible for mediating and managing the services that
are offered by the underlying infrastructure to the user as an
individual or as member of a group. When the user moves
from one network point to another, the agents are responsi-
ble for providing optimal adaptation to the new environment
and reconnect/reconfigure the services that the user needs,
in order to provide the same (not only in look and feel but
also in functionality) working environment as before. The
whole process should be transparent as possible to the
end users.

A VPN with nomadic users constitutes a graph with chan-
ging nodes (due to mobility requirements). The challenge is
to re-assign the connections between the nodes of the graph
in order to provide the same services in a higher level
despite of the fact that the underlying infrastructure continu-
ously changes as the nomadic users move.

We believe that agent technology in combination with the
active/programmable networks is the right step to this direc-
tion. Agents can also be intelligent, which means that they
can adapt easier to non-deterministic environmental
changes, learn while they are active and act proactively in
order to satisfy their internal goals. In the following
scenario, we will firstly show how agents can be used to
deploy the initial VPN among the end users and subse-
quently we will consider two users as nomads and explore
the infrastructure adaptation while these users change
location and terminals.

4.3. Initial VPN provisioning

Our objective is the dynamic and flexible provision of
legacy VPNs, allowing the deployment of a VPN a) in mini-
mal time and b) with minimal user interference. Therefore,
agents take the roles of the customer, the service provider
and the network provider. The agents are digitally signed by
their users, a proof that they are delegated to perform the
specific tasks. There are multiple network and service provi-
ders in the infrastructure on top of which we want to build
our VPN. We assume that the Group Agent (GA) interacts
with the VPN Service Provider Agent (SPA) and with the
Network Provider Agent (NPA). The SPA has to negotiate
with all User Agents (UAs) and NPAs. If a specific service
provided by a service provider, spawns multiple domains,
then the service provider makes the negotiations concerning
the service with those domains. The stages to follow are:

Common requirement definition stage. In this stage the
UAs negotiate and come up with a common set of require-
ments for the underlying infrastructure and desired services.
The UAs assign as responsible for the further negotiations a
GA and all sign the common set of requirements.

VPN Network negotiation stage. At this stage the GA
negotiates with NPAs the possible topology of the VPN
and the requirements in the networking infrastructure.

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



S. Karnouskos / Computer Communications 25 (2002) 1465-1476 1473

Fig. 4. Nomadic user support in an agent-based AN infrastructure.

This is done in order to accommodate user specific require-
ments concerning network infrastructure e.g. routing of flow
via distinct nodes.

VPN service negotiation stage. In this stage the GA has
multiple network topologies that fulfill group’s require-
ments. Subsequently the GA negotiates with SPAs in
order to see which of the possible topologies support the
desired services. The service provider, can also offer alter-
native solutions concerning the network topology, etc. At
the end of this stage the GA has some network topologies
that support the services he requires and a set of service
level agreements (SLAS).

VPN selection of the final network topology. The GA
either returns and reports the possible solutions to the
group of UAs or decides by itself for the best of the offered
solutions. The final decision is made based on various facts,
e.g. connectivity bandwidth, error statistics, reputation of
nodes contained in the topology, cost, security, etc. either
by a human or the GA itself assuming that he is intelligent
enough. Finally, a network topology is selected and the final
phase of agreement has to follow.

Deployment of the VPN and its services. The GA
requests that service and network providers set-up the
services and the network connections, respectively.
When everything is done, the GA informs the UAs
that the VPN is deployed and fully functional (all
services at group/individual level are instantiated). The
GA either terminates at this stage or can be used as a
central authority for future requests regarding the VPN’s
services, topology and status.

4.4. Dynamic virtual private network adaptation

After setting-up our VPN, group communication services
can be deployed. For example, such an infrastructure is
depicted in Fig. 4 where users on domains A, B, C and D
are connected with each other. VPN members may span
various network providers as some of them rely on the
home network but others are roaming in foreign networks.

We will now examine what happens when the members
are on the move. Lets suppose that a user that resides in
domain A moves to domain B and also changes his terminal
from a laptop (device with advanced capabilities) to a PDA
(a low capability device). The user had a teleconference in
his laptop, which he wants to continue with the least possi-
ble disturbance in his new location (domain B).

The user’s move typically in our infrastructure means that
he has to be registered within the new domain and be
provided at least with the same service quality as before
taking into account the equipment change. For that specific
user, domain A is the home network and domain B is the
serving network. The user movement implies that the agents
providing the user with all the services move from execution
place Al in node A to execution place B2 in node B and
resume their execution there after of course registering
with the local node and adapt to the new environment.
Although the steps are not strictly defined in such a scenario,
generally the following abstract actions take place:

e The user is ready to move. This can be an automatic event
(e.g. in a mobile device because the signal of the nearby

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1474 S. Karnouskos / Computer Communications 25 (2002) 1465-1476

communication tower is stronger) or a result of broken
communication (e.g. the connection was terminated
because of a communication hole or satellite technical
problem). In any case, the user’s agents receive an
‘operations stop’ signal from the system’s agents.

e After receiving this ‘operations stop’ signal, the agents
shutdown the services they provide to the user. They also
notify the GA (which acts as a central information regis-
try) that the current user will change his network position
and all communication is temporarily suspended.

e The new destination address of the user in domain B is
available to the local agents (still in domain server A).
This can be done in advance (if the user move is apriori
known) or is sent to the agents the moment the user tries
to log into the new visiting network B.

e Having obtained the new destination address, the agents
migrate to the appropriate active host in domain B where
they are subject to the authentication control of the
domain provider. Since each active node features a
security architecture as the one described in Fig. 2 the
actions that follow in order to allow the agents to authen-
ticate themselves and enter the EE of the foreign network
are similar to the ones described in Fig. 3.

e Having successfully authenticated themselves they
resume execution in the new node B in the visiting
network.

e The user profile is consulted (this can be carried by the
agents or even retrieved from the home network) in order
to see what are the services the user is subscribed to and
how they should be personalized.

e Subsequently user’s agents co-operate with the agents of
the local node in order to retrieve the services supported
by the node B for the visiting domain. The services that
are the same with the home network are configured with
the user’s preferences and are activated. For the services
that do not exist locally, the agents of node B are asked
to tunnel services from the home network. That assumes
agent-to-agent communication and cooperation between
the two domains A and B. If it is allowed by the policy
of node B, the agents can download the AC from a code
server in the home environment that implements the
missing services in domain B and install them on the
fly on the active node B. This is a very important step as
it truly demonstrates the power and dynamicity of the
VPN that is based on agent technology and active/
programmable nodes. The possibility of downloading
and installing code on the fly directly into the visiting
environment is possible via the active networking tech-
nology in a flexible and secure way. The code is stored
in the component manager (Fig. 2) and is instantiated.
Further authentication and authorization requests are
handled by the security architecture and the service
itself.

e After having set-up everything they announce the new
user place as the new part of the VPN network and inform
the GA. Subsequently the GA multicasts the new VPN

node to all affected UAs so that they reconfigure the local
services to comply with the new topology of the VPN.

At the end, all this functionality is presented to the user
(via the form of the services and automatic configuration).
The effort is to have everything transparent and with mini-
mal human intervention. For the end-user in our scenario, it
means that he can continue his teleconference uninterrupted
as the agents on the back ground have taken care of this
environment change. Code injection to a foreign network is
not a trivial issue and is the driving force behind the AN
community. However, by mixing both the advantages the
agents provide (e.g. AC carriers, service implementers,
intelligent handling of non-deterministic events, etc.) with
those of AN (e.g. dynamic code injection, reconfiguration of
the routers via open interfaces, etc), we can have an open
and flexible approach to the problem of nomadic user
support in VPNs. The earlier scenario is abstract and
demonstrates only one of the many ways that the agent-
based AN infrastructures can be dynamic and proactive.
Finally, implementing the earlier functionality is not a
trivial issue, especially due to the fact that the standardiza-
tion activities have not advanced that much, in order to fully
support via standardized interfaces all the interactions
described earlier.

5. Evaluation

We have presented an approach that tries to integrate the
advantages of the agent technology and those of the AN.
This can offer numerous advantages to the telecom provi-
ders as explained below:

Rapid service deployment and customization. Current
network elements are closed to third party entities, therefore
introduction of new services is equipment dependent and is
additionally slowed down by the lengthy standardization
process. However, ANs feature open standardized interfaces
at various levels, which can be used to deploy market-driven
services. Furthermore, these services can be modified on
runtime. This on-the-fly modification of the service beha-
vior can be exploited in order to offer customizable services
to the end users.

Decentralization and autonomy. Many tasks/applications
require a continuously open connection and a fixed network
topology. Agents do not have that requirement and therefore
ANs can benefit from it. Agents are able of working auton-
omously and in a decentralized manner. They exploit the
locality and achieve optimization in the usage of resources
that are offered in that location. Thus, problems such as
unpredicted network latencies in critical real-time systems
(e.g. robots in a manufacturing process) can be avoided. In
addition, by using agents we don’t have to develop new
transport mechanisms for the deployment of active
components to the nodes.

Flexibility. Users are able to launch agents and customize

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



S. Karnouskos / Computer Communications 25 (2002) 1465-1476 1475

services easily. Most important, the user does not have to be
online all the time since he can send his agent and then
disconnect from the network. The agent carries certificates
from the originator, acts autonomously and tries to satisfy
the user request. The agent handles all interactions intelli-
gently. Furthermore, agents provide mechanisms for
monitoring, logging, updating, etc. which can ease tasks
like administration/management of an AN node.

Adaptivity. Changes in the environment in which an agent
operates trigger possible changes to agent’s behavior. An
agent is capable of sensing the environment, analyzing the
new data and acting accordingly. For instance, a group of
agents monitors the consumed resources in a network. These
agents can exchange information and traverse the network
in order to get a global view of the network’s state. Depend-
ing on their goals as well as their capabilities, they can
interfere and, e.g. change the routing tables of hosts in
order to provide better exploitation of the available band-
width. This adaptivity promotes the optimal network perfor-
mance and the handling of non-deterministic events.

Interoperability. Current network infrastructures are
heterogeneous both in hardware and in software matters.
Agents are computer and transport independent entities
(they depend only on the execution environment) and there-
fore promote interoperability among systems and software.
It is possible with agents to implement interactions with any
legacy systems and currently existing services, and make it
available to other heterogeneous agents or applications in a
standardized way. Standardization efforts in the agent
domain exist within the Object Management Group' and
the Foundation for Intelligent Physical Agents®.

Security. ANs allow users to inject their code to the node,
which is a security critical activity. At a certain level, these
issues have been addressed and solution exist within the
agent community. Agent technology is capable of providing
authentication, authorization, integrity-check and privacy
mechanisms to AN managers so that they can have control
over the network and its resources. Security is generally
provided by exploiting application level services. Agents
act on behalf of a user/entity/enterprise, etc. and carry
some credentials (e.g. signed by the owner or the originator,
etc.) and based on these credentials and the local policy a
security manager could have control on the agents them-
selves and their payload. In addition, as the research area
of security in agent systems is a hot research domain, we
expect in the near future more and better security solutions,
which we expect it will be easy to import in the security
architecture for ANs we have presented in this paper.

Scalability. This AN-based architecture is a decentralized
one and can scale easily. AN nodes can host an agent system
that could be low or high populated by agents that act and
interact with each-other providing services and advanced
features.

' OMG Web Site: http://www.omg.org/.
2 FIPA Web Site: http://www.fipa.org/.

Safety. The usage of Java as an implementation language
offers some security and safeness level. Furthermore, the
idea of places acting as sandboxes avoids unwanted inter-
actions within an agent system.

Performance. Our approach is based on Java. Java based
systems for the moment lack performance. We expect this to
change in the near future as efforts are being made in this
direction. Nevertheless performance can be achieved/
enhanced from our side, with other techniques such as
component (agent code, protocol, algorithm, etc.) caching,
etc. From AN point of view intelligence is added at a
network level offering the ability for exciting network
wide applications that can configure each end every node
for optimal application and overall performance. ANs may
perform actions that on first glance appear to degrade
network performance (e.g. lower packet throughput) but
actually, they bring improvement to the application and to
the network itself by reducing demand of bandwidth at end-
points, reducing network congestion, etc.

Robustness and fault tolerance. Mobile agents are
programmed with their internal goals and logic. Taking
also into account their ability to react to the changing envir-
onment and unpredicted situations, it makes easier to design
and implement robust and fault tolerant systems.

Software independence and evolvement. Current distributed
systems exchange data via a standardized way (protocols).
Each node owns the hardware specific code that implements
the protocol needed to communicate with the outside world.
However, the protocols and their supported features evolve
and often we face the problem of outdated protocol versions,
which are inefficient and insecure. Agents on the other hand
can help effectively with this problem. They can move to
remote hosts and establish ‘channels’ based on protocols
that are task specific and not even standardized. Furthermore,
they can update node’s components automatically, therefore
keeping our infrastructure always up-to-date since all network
components will be updated in parallel shortly after the
announcement of a component update by the manufacturer.
In addition to that, the AN concept has a fundamental differ-
ence with current telecommunication networks: in AN the
functionality to be implemented is prescribed via standardized
APIs but not the way this functionality is implemented. This
decouples the network platform provisioning from the
network software provisioning and therefore makes telecom
operators less dependant to a specific vendor; a fundamental
issue in a multi-vendor competitive environment where a soft-
ware vendor A develops innovative services for vendor’s B
network platform.

Deployment of both active and programmable network
models. The agent-based approach can be complementary
technology in the effort to integrate [19] active and
programmable networks. Furthermore, it allows a high-
level system design including business aspects. The market
is moving towards a service orientation and agents can fit
well as service-oriented software. Agents have a natural
place in the application model as (i) wrappers of legacy

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



1476 S. Karnouskos / Computer Communications 25 (2002) 1465—1476

systems or as embedded smart systems, (ii) as powerful
middleware that glues together distributed components,
(iii) as intelligent and adaptable interfaces that support
online/offline user interaction.

Active and programmable networking is a good area to
apply the agent technology as they will benefit on all the
earlier mentioned sections.

6. Conclusions

An agent-based active node architecture has been
presented. This approach uses agents with different features,
e.g. mobile, stationary, intelligent, goal oriented, etc. to
empower the current passive routers and to transform them
to AN nodes. We have showed that agent technology is a
promising candidate for the development of AN. It offers
benefits to the users as well as the developers of ANs including
flexibility, adaptivity, decentralization and autonomy, intero-
perability, scalability, security, etc. Furthermore, their double
status that of AC actors or of AC carriers can ease matters such
as service deployment, authentication and authorization
issues, network safeness, etc.

We have explored a scenario where VPNs can be flexibly
deployed via cooperating intelligent agents and in parallel
make use of the AN technology in order to become more
nomadic-user aware. Nomadic users are part of groups that
have requirements that change unpredictably by the time espe-
cially due to the fact that their users move constantly and spawn
heterogeneous infrastructures. This kind of groups are inter-
ested in flexible VPN’s that immediate react to environmental
changes. Such groups cannot use a static version of a VPN to
cover their requirements as they are not built with mobility in
mind and they are difficult and awkward in reconfiguration
requests. Furthermore, those groups’ lifetime is short and
usually determined by some other external events. Such groups
need to set-up and delete VPNs in minimal time. This flexibility
to create and teardown such a virtual environment can be
provided with the approach described in this paper.

Agents can be used to deploy new services and program
the nodes according to application’s needs. By updating the
underlying infrastructure’s components on demand and by
reusing in a Lego-like way the local services, agents are able
to provide more sophisticated personalized services.
Stationary agents that reside on the nodes not only offer
their services but also respond to the environment
changes—which may be unpredicted—by reconfiguring
or updating node’s components.

It is very likely that agent technology will play an impor-
tant role in the development and expansion of the AN. The
basic characteristics of mobile agents such as mobility and
autonomy can push networks to become more ‘open’, active
and more powerful. By integrating agents we also make sure
that in the future we will be able to import the state-of-the-
art agent technology in our network and that simply means
that our infrastructure will keep evolving as long as it is
connected with this parallel developing domain.

References

[1] Active Networks at DARPA, http://www.darpa.mil/ito/research/anets/.

[2] Mobile Agent Technology, http://www.cetus-links.org/oo_mobile_
agents.html.

[3] C.G. Harrison, D.M. Chess, A. Kershenbaum, Mobile agents: are they
a good idea? Technical report, IBM Research Division, T.J. Watson
Research Center, March 1995.

[4] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, G.J.
Minden, A survey of active network research, IEEE Communications
Magazine 35 (1) (1997) 80-86.

[5] H.S. Nwana, D.T. Ndumu, A brief introduction to software agent
technology, agent technology, in: N. Jennings, M. Wooldridge
(Eds.), Foundations, Applications and Markets, 1997.

[6] L. Peterson (Ed.), Node OS Interface Specification, AN Node OS
Working Group, January 24, 2000.

[7] K.L. Calvert (Ed.), Architectural Framework for Active Networks,
Draft version 1.0, July 27, 1999.

[8] D.J. Wetherall, J. Guttag, D.L. Tennenhouse, ANTS: a toolkit for
building and dynamically deploying network protocols, IEEE OPEN-
ARCH’98, San Francisco CA, April 1998.

[9] D. Scott Alexander, ALIEN: a generalized computing model of active
networks, PhD Thesis, University of Pennsylvania, December 1998.

[10] MASIF—Mobile Agent System Interoperability Facility, http:/
www.omg.org/docs/orbos/98-03-09.pdf.

[11] IEEE P1520 Project, http://www.ieee-pin.org/.

[12] S. Karnouskos, Security implications of implementing active network

infrastructures using agent technology, special issue on active

networks and services, Computer Networks Journal 36 (1) (2001)

87-100 ISSN 1389-1286.

B. Schneier, J. Kelsey, Cryptographic Support for Secure Logs on

Untrusted Machines, The Seventh USENIX Security Symposium

Proceedings, USENIX Press, 1998.

[14] Y. Yemini, A. Dailianas, D. Florissi, MarketNet: a market-based
architecture for survivable large-scale information systems, Proceed-
ings of Fourth ISSAT International Conference on Reliability and
Quality in Design, Seattle, WA, August 1998.

[15] S. Karnouskos, I. Busse, S. Covaci, Place-oriented virtual private
networks, in: Proceedings of the 23rd Hawaii International Confer-
ence on System Sciences IEEE HICSS-33, Island of Maui, Hawaii,
January 4—7 2000.

[16] Java HotSpot Technology, http://java.sun.com/docs/hotspot/Perfor-
manceFAQ.html.

[17] A.V. Vasilakos, K.G. Anagnostakis, W. Pedrycz, Application of
computational intelligence techniques in active networks, Soft
Computing Journal 5 (4) (2001) 264-271.

[18] X.509 Internet public key infrastructure online certificate status Proto-
col—OCSP, IETF RFC2560, http://www.ietf.org/rfc/rfc2560.txt.

[19] S. Karnouskos, H. Guo, T. Becker, Trade-off or invention: experi-
mental integration of active networking and programmable networks,
special issue on programmable switches and routers, IEEE Journal of
Communications and Networks 3 (1) (2001) 19-27 ISSN 1229-2370.

[13

=

Computer Communications Journal, Elsevier, Volume 25, Issue 16, pp. 1465-1476, October 2002



