
JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.3, NO.1, MARCH 2001

Trade-off or Invention: Experimental Integration of
Active Networking and Programmable Networks

Stamatis Karnouskos, Hui Guo, and Thomas Becker

Abstract: This paper discusses future requirements for enabling
rapid service deployment by active networks. To enable the in-
tegration of programmable networks and active networking an
object-oriented, distributed approach based on Object Request
Broker (ORB) technology is presented. A Distributed Processing
Environment (DPE) is described as an interoperable service plat-
form, for dynamic and secure service provisioning support. As a
platform service, a resource control framework adaptively man-
ages router resource allocation, provides virtual resource abstrac-
tion and dynamic partitioning, to achieve the goal of scalable and
secure active networking. As an example of active services, ad-
vanced reservation is developed and measured to evaluate the per-
formance of object-oriented implementation of network services
and the efficiency of underlying resource control paradigm.

I. INTRODUCTION

Programmable Networks promote open control architectures
and standard interfaces for flexible service provision to enable
novel service architectures by Internet Service Vendors (ISV)
[1]. Active Networks allow dynamic customization and re-
configuration of a network by means of secure code injection
in it [2]. Accordingly, service modules can be encapsulated
in the form of code or a composition of code fragments, and
dynamically installed or updated, thereby increasing the flexi-
bility of service deployment. In this paper, we experimented
with a possible harmonization of the two approaches within a
distributed object framework. Our objective was to use Active
Networks mechanisms for facilitating the dynamic deployment
of services, whereas using a programmable networks approach
allows the deployed services to control the behavior of the host-
ing network elements and consequently of the whole network.
The latter was achieved through the adoption of open interfaces
according to the IEEE P1520 reference model [3].

In the following we summarize our design originally carried
within the Broadband Active Network Generation (BANG) [4]
project. We developed an ORB-based Active Networking (Or-
bAN) solution for dynamic service provisioning. The result is an
active middleware framework for active networks so that active
services can be dynamically deployed as downloadable objects
to apply different QoS architectures on demand.

A DPE is the core of the middleware. Its key role is to man-
age and control resources in a secure and efficient way to support

The authors are with German National Research Center for Information

Technology Research Institute for Open Communication Systems GMD-
FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany, e-mail:
karnouskos@fokus.gmd.de, guo@fokus.gmd.de, and becker@fokus.gmd.de.

�

the execution of active services. This involves management of
processing resources as well as communication resources both
at the end-systems and network nodes. In traditional router ar-
chitectures, communication resources are subject to a best effort
service. Introducing programmability in legacy routers requires
that vendors open-up their resources in the form of open inter-
faces, enabling in this way third party software vendors to de-
liver new and novel services.

These new services should be highly customizable and capa-
ble of binding with and controlling network resources accord-
ing to the logic of the service. Such a generic router resource
interface has been proposed by IEEE P1520 [5], and makes this
possible by providing generic abstractions and dynamic binding
capability.

On the other hand, as services in an active network share the
resources with each other during run-time, their access needs
to be synchronized and policed in order to avoid conflicts and
to provide service isolation. To optimally utilize the node re-
sources, more intelligent allocation of resources is required than
fixed partitioning.

In the following, we describe the active node architecture and
then the binding and resource control frameworks with focus on
dynamic partitioning. Subsequently we present the dynamic de-
ployment of active code framework as well as the reservation in
advance. Finally, we measure and comment in order to provide
insight on the performance of ORB-based Active Networking.

II. ACTIVE NODE ARCHITECTURE

In our approach we address the trade-off between flexibility
and performance, which is currently one of the most important
problems the Active Network community is facing. It is ar-
gued that Active Network platforms generally sacrifice signifi-
cant performance to gain flexibility. Thus, our driving force was
to point out where it is worth trading-off performance for flex-
ibility in network management or even to find ways to achieve
flexibility without performance loss. Exploiting the achieved
network flexibility and dynamics, we try to solve existing prob-
lems that cannot be easily solved in the traditional networking
paradigm. Fig. 1 shows a view on the ORB-based node archi-
tecture and the mapping to the P1520 interface levels.

In the architecture we have the following three levels:

1. Fixed part (router hardware): This part contains static
and optimized forwarding components which cannot be
made programmable due to performance reasons. The
fixed part follows the current trends of forwarding tech-
nologies where switches and increasingly high perfor-

Fig. 1. Architecture of ORB-based Active Networking.

mance routers implement their forwarding functionality in
hardware and avoid adding software in the performance-
critical forwarding path. In this architecture, user packets
which make up for the majority of packets flowing through
an active router are processed and forwarded directly by
hardware in the fixed part.

2. Programmable part (abstract router plus resource
control framework): This part encompasses the specific
or proprietary interfaces of the fixed part and provides the
higher level with an open standardized interface. Exploit-
ing the features and high performance of the fixed part, the
programmable part typically implements network algo-
rithms to provide end-to-end services. In particular, in or-
der to provide a good perceived quality, multimedia appli-
cations typically require that certain end-to-end quality of
service (QoS) is guaranteed. The programmable part can
fulfil the requirements of quality of service by implement-
ing current network algorithms like RSVP/IntServ and/or
DiffServ with some necessary extensions to allow for the
programmable access of the high-level active part. These
networking algorithms are implemented as programmable
modules on top of the fixed part.

3. Active part (active services): This part offers a limited
execution environment for lightweight active components.
Lightweight active components contain either generic or
application-specific algorithms needed for value-added
IP and high-level services. Because these algorithms
are typically application-specific, they are not imple-
mented together with the generic network algorithms of
the programmable part to avoid unnecessary code bloat-
ing. Lightweight active codes use the module interfaces
of the programmable part to access the functionality im-
plemented in hardware of the fixed part. Lightweight ac-
tive code typically contains some function calls or sim-
ple scripts to the module interfaces of the programmable
part with specific parameters. In general, the active code
cannot be generic since it has to meet the specific require-
ments of the applications (e.g., application-specific drop
policy or queue management).

The DPE is built on top of a modular ORB framework [6]. It
is active in two ways:

1. it is running on active nodes supporting active services,
2. it provides transparent access to active services for appli-

cations by encapsulating the interaction with services in-
side the (client-server) bindings of application objects.

The modular ORB framework mainly consists of a binding
framework and a resource control framework where the former
is responsible for giving access to remote objects and the latter
to resources. The resource control framework was extended by
a resource manager for router resources, which offers interfaces
to active services. The active services can then make use of
resources in order to provide a higher level service (via P1520
U-interfaces) to value added services or directly to applications.

Active services are deployed to active nodes by the Active
Component Manager (ACM) who is acting as a bootstrap ser-
vice and manages the lifecycle of service components. The
resource allocation for service components is done through re-
source managers1. The deployment of components and the re-
source usage is guarded by policies. The access to the function-
ality of the generic router API is managed by a router resource
manager.

The three-level architecture we follow achieves the necessary
flexibility in active networking without losing the router’s per-
formance: user packets which make up for the majority of the
traffic flowing through an active router are processed and for-
warded directly by hardware in the fixed part. Control pack-
ets without application-specific requirements are serviced by
generic network mechanisms in the programmable part. Finally,
the active part allows users’ active code to be executed in lim-
ited execution environments in order to obtain high-level and
value-added services. This node architecture is very interest-
ing for vendors providing legacy switches or routers, since their
proprietary interfaces or even functionality can be wrapped by
a generic interface and therefore easily integrated into an active
network environment. Thus, via our approach we are calling not
for a revolution in networking technology but rather for gradual
evolutionary steps from traditional networks via programmable
ones and finally to active networks.

III. BINDING FRAMEWORK

Communication between objects supported by the framework
is through bindings, which are created by object adapters known
from the CORBA architecture [7]. In this framework, the notion
of object adapter is overloaded and extended to allow the explicit
binding of objects: the explicit creation of a binding between
different interfaces is realized by invoking an operation on an
object adapter. Object adapters are binding factories.

In contrast to the CORBA architecture which identifies an
ORB core responsible for the conveyance of operation requests
and replies, the notion of object adapter in this framework is
extended to cover also communication aspects, which may thus
vary from object adapter to object adapter. In summary, an ob-
ject adapter is not limited to cover the server side as in the stan-
dard CORBA specification, but actually is extended to the client
side. The notion of ORB core in CORBA can be recovered as a

�
Conceptually all kinds of resources (e.g., memory, CPU time, and router

resources) are managed by the resource control framework. The focus of the
implementation is on the router resource management.

Fig. 2. Architecture of a binding (client side).

specific, default object adapter that can be combined with other
object adapters.

This flexibility allows us to define a special binding factory
which understands additional parameters like QoS requirements
for the creation of a binding. This binding can then provide an
interface to application objects to allow dynamic changes of its
behavior as well as offering registration for notifications about
status changes.

The binding framework consists of a set of abstractions for the
construction of arbitrary communication stacks and abstractions
for the construction of protocol-independent operational stubs.
Communication abstractions comprise:

� Protocols: these are abstractions of protocol machines at
a given site; they manage the establishment and release of
sessions.

� Sessions: these are logical communication channels that
obey a particular communication protocol; sessions in dif-
ferent capsules exchange messages.

� Messages: these are abstractions of data exchanged be-
tween capsules.

Protocol-independent stubs described in the binding frame-
work provide generic interfaces for operational bindings. They
can be specialized to derive more specific forms of operational
bindings. Stubs are at the interfaces between the untyped world
of protocols and the typed world of language bindings.

The open architecture of the binding framework allows the
easy insertion of components into the communication stack (see
Fig. 2). For the support of QoS the binding factory deploys a
special adaptor on top of the session stack. The adaptor interacts
with the local and remote resource management.

The interaction with the local resource management com-
prises contacting resource managers for processing resources
also known as schedulers, managers for memory, and managers
for local network interfaces. The interaction with remote re-
source management is achieved by negotiating QoS with inter-
mediate network nodes and the target end-systems of the bind-
ing. To achieve end-to-end QoS for an object binding, the bind-
ing has to interact with both local and remote resource manage-
ment.

IV. RESOURCE CONTROL FRAMEWORK

One of the most distinct advantages of active networks is the
dynamic service provisioning. More specifically, service code
can be dynamically downloaded, installed and instantiated. Ser-

vice instances are thus created and executed where and when
they are needed. Their lifecycle may vary, contrary to that
of today’s network services which is fixed. This requires that
the platform or the service environment that supports their ex-
ecution, reacts more proactively on their continuously chang-
ing need for resources. On the other hand, service instances
may impose different control architectures, e.g. heterogeneous
QoS paradigms, for the exploitation of the physical network re-
sources. A service platform for active networks should be able
to accommodate this heterogeneity in such a way that the ser-
vice environments are kept isolated and secure from each other
while the performance compromises are minimal.

During the BANG project, a flexible service platform (i.e., the
DPE) for active IP networks was developed by enhancing the
modular ORB. To fulfill these critical requirements, a router re-
source manager (RRM) was implemented as part of the resource
control framework in order to provide:

� on time, efficient and safe resource allocation for active
services, and

� isolated execution of active services.

On time allocation helps to build a platform, which can adap-
tively meet services’ needs. It refers to the capability of fast
reaction on the changes of the active services’ resource needs,
or the current network load. This can be achieved either by
pipelining the allocation operations, or proactively detecting the
changes and adapting the allocation autonomously without the
intervention of services.

Safety of allocation means non-violation of the Service Level
Agreement (SLA), which specifies the parameters regulating an
allocation. Basically a resource management paradigm should
deny the allocation requests from unauthorized services, and
guarantee that a service will get the amount of resources on time
as specified in the SLA. A SLA is normally negotiated between
a service provider/customer and a network provider and defines
the amount and the type of resources his/her services will need
on a physical network.

Efficient allocation is extremely important in order to deliver
a scalable service platform and to maximize the usage of limited
network capacity. Mainly active network providers are the ac-
tors who benefit from this capability. Pure SLA-based allocation
paradigm is naturally rigid, and loses the multiplexing benefit.
In order to achieve high efficiency, a dynamic bandwidth alloca-
tion paradigm is needed, which was one of the major points of
focus within the BANG project.

Isolation of execution (sandboxing idea) provides a basis to
protect active services from each other. The security manager-
based approach is restrictive by mandating that a service en-
vironment is needed for each service instance, which implies
overhead. In addition, it only supports Boolean restriction, i.e.,
Yes/No for controlling resource access. We need a more flexi-
ble scheme allowing a finer granular access control with a set of
quantitative measures.

RRM contains the following key modules: Policy Controller,
Flow Manager, Partition Manager, and Admin Manager.

The Policy Controller maintains the policies used for control-
ling the resource access and partitioning of network resources.
The Flow Manager provides virtual resource abstractions for

Fig. 3. Policy example.

Fig. 4. Dynamic resource partitioning.

active services and makes admission control to enforce safety.
The Partition Manager implements a dynamic partitioning al-
gorithm to adaptively adjust the policies and enforce them on
runtime. The Admin Manager serves as a portal for network
administrators to monitor and tune the router resource manager
parameters. A core scheduling module called scheduler syn-
chronizes their execution and arranges interaction to guarantee
the integrity of the router resource manager in the whole OrbAN
system.

Physical router resources are partitioned into a set of virtual
resources, e.g., a network interface card consists of 8 virtual out-
put queues. These virtual resources are of different type, e.g., a
virtual queue can be called GoldCLS Queue, which means it
provides a gold controlled load service for flows. A resource
policy is thus defined for each type of virtual resource to reg-
ulate how much of this physical resource is mapped to it. For
instance a GoldCLS Queue can be mapped to a physical queue
on a 100 Mbps Ethernet card No. 5 with priority 8 and capac-
ity 80 Mbps. An active service instance has access to a single
or multiple type/instances of virtual resources; a service policy
is defined for each of them. The policy specifies “which ac-
tive service instance is allowed to access how much of which
type/instance of the virtual resource.” Therefore it defines the
resource limit that an active service instance can have exclusive
access on. The Flow Manager uses this value to make admission
control to ensure safety and minimal interference. These poli-
cies are maintained in Policy Controller and can be updated by
a network administrator at any time. It is his/her task to ensure
these policies are consistent. Through resource virtualization
and policing, the goals of secured allocation can be achieved.
Some examples of the policies are depicted in Fig. 3.

The Partition Manager aims at providing a more efficient al-
location by intelligently estimating the current resource utiliza-
tion ratio and future resource needs of all running active service
instances as depicted in Fig. 4.

An Active Service Instance (ASI) represents a network ser-

Fig. 5. Dynamic quota adjustment.

vice for a particular service provider. Different ASIs might have
different policies for provision, though possibly with same code.
Multiple ASIs run in parallel and access router via the flow man-
ager of a RRM. Each ASI is allocated with a quota as its resource
limit is defined in a service policy, i.e., it can only manipulate
(re-allocate, merge, release, etc.) this resource for its users. The
Partition Manager dynamically examines the traffic load and
the usage of the quota, and runs an intelligent algorithm to de-
termine the new quotas. By assigning new quotas, those ASIs
that have very high resource utilization will get more resource
quota to accommodate more requests from their users; others
with very low resource utilization will have less resource quota.
So this is a pre-emptive model which means “busy/starving ASIs
get more quota while free/stuffed ASIs get less.” This model
is similar to that whereby high-priority thread pre-empts low-
priority thread, but it is not restricted by pre-defined priorities
[8].

For this purpose, a Flow Manager provides a meter interface
for estimating current resource usage of each ASI; while an ASI
might provide a call back meter interface for estimating future
resource need. The algorithm for calculating new quotas is de-
picted in Fig. 5.

In short, the utilization ratio of each active service instance is
checked against two thresholds called Top Watermark and Bot-
tom Watermark. If it is smaller than Bottom Watermark, current
quota will be decreased by a certain basic unit. This is called
Quota Releasing. The quotas released in this way forms a quota
pool representing free resources. If the utilization value is larger
than Top Watermark, current quota is increased by a certain ba-
sic unit if the quota pool is not empty. This is called Quota
Allocation. By more adaptively changing the resource limit ac-
cording to the need of each ASI, the ASI is able to accommodate
more user requests and achieve higher utilization.

V. DYNAMIC ACTIVE CODE DEPLOYMENT

The opportunity offered by active networks to dynamically
install components for execution in network nodes offers a high
degree of flexibility and several other advantages to network
management. On the other hand, such an action exposes a seri-
ous security issue: malicious or bad designed components could
damage or cause malfunctions to the active nodes. In order
to tackle these drawbacks, our design is based on the follow-
ing rationale: a) Active components are installed via a policy-

Fig. 6. Active component management service architecture.

controlled way from internal or external repositories, b) policies
are defined for the resource usage and allowed behavior of a
component and the overall system, and c) the security manager
is consulted for all security critical activities.

Active Component (AC) is a service component that executes
within an Execution Environment (EE) in an active node. An
Active Component can maintain its state from node to node tran-
sition, or be stateless (no state is maintained). It could be itself
mobile (e.g., an intelligent mobile agent) or could be transferred
to the active node by other third entities. The Active Component
Manager (ACM) allows AN entities (e.g., users, administrators,
etc.) to install AC on the node and make use of it or possibly
make it available to other third party entities via a policy con-
trolled way.

In the ACM architecture depicted in Fig. 6, we can identify
the following major components:

Active Component Manager: This is the front-end of the ar-
chitecture. All requests are issued to, scheduled and executed
or denied by this component. Other system and service com-
ponents stored in ACM’s DB are loaded and instantiated by the
ACM.

Security Manager: This component is responsible for all se-
curity relevant activities. It takes security decisions and grants
or denies the issued requests. Checks are made to ensure that i)
only authorized users install and interact with node’s services
and ii) the policy of resource usage by the installed compo-
nents is enforced. The policies for component/service access
are maintained also by this component. Via its interface, autho-
rized entities can dynamically modify the policies in the EEs or
those in the node.

Audit Manager: All events are audited by this component for
further exploitation.

Resource Manager: This module controls the allocation and
access of the local node resources (computing resources and net-
work resources). The access to resources is controlled in coop-
eration with the Security Manager.

ACM Repository: It is the repository that AC is stored. This is
local to every node and also provides interfaces so that it can in-
teract with other ACM code repositories in other nodes. If code
is not local in the node, it is fetched via the usage of well-known
protocols such as https, ftps, ldaps etc. The ACM repository

may also contain references to the components it has although
they are not present at the local DB at the moment.

A possible scenario that shows the interaction between the
various ACM parts is as follows:

1. Request: A request is made to the ACM to install a com-
ponent/service. The request might be issued explicitly by
a user (the user is generally any authority—the difference
is depicted via the policy scheme with the use of access
rights) or implicitly as a side-effect of the setup of an ob-
ject binding requiring a certain service on the active node.

2. Security check: The ACM consults the Security Manager
(SM) whether the specified action is allowed or not. The
SM verifies the credentials of the authority that issued the
request and then checks the current policy. The Resource
Manager (RM) is also consulted whether the action com-
plies with the resource limits. Finally the SM returns an
accept or deny result for the specified action.

3. Process of Request: The ACM executes or denies the
user request. E.g., installation, deinstallation, instantia-
tion, destruction, service start, service stop, AC retrieval,
service/code search, etc.

The actions following the last step vary as they depend on the
nature of the request issued. We can have:

� Download: if the request is valid and the components are
not cached locally, the service contacts another repository
(e.g., via https, ldaps, etc.) to download the requested
component.

� Resource allocation: after the component is downloaded
the appropriate resources are allocated (i.e., a new job is
created to run the tasks of the component).

� Instantiation: the component instantiates and executes in
a policy-controlled environment.

� Runtime checks: all interactions of the installed compo-
nent with the resource management are checked with the
policy management, this ensures that the component does
not exceed its predefined amount of resource usage, nor it
violates the given access rights.

VI. RESERVATION-IN-ADVANCE ACTIVE SERVICE

This section aims to describe a scenario which demonstrates
the advantages of the active DPE. For this purpose a generic
resource reservation service is sketched as one active service
that can be customized for different styles, e.g., reservation-in-
advance [9] or immediate reservation (RSVP).

Fig. 7 shows a distributed reservation service. This service
consists of components sitting on top of the resource manage-
ment on each active node. With the help of chaining components
on several nodes a network-wide service can be offered to appli-
cations. In the end-systems the service interfaces are accessed
out of the binding framework. A special proxy object (denoted
Q in the figure) handles the QoS needs of the application objects
and interacts with the local resource management as well as with
the distributed reservation service.

The components forming the reservation service are stored in
a trusted repository managed by a network operator. In the de-
ployment stage those components are downloaded and installed

Fig. 7. Distributed reservation service for object communication.

on the active node by the installation service. The run-time
instance of a reservation service component has its limited re-
source space, allocated by the installation service and controlled
by resource managers.

To provide a network-wide interface the service instances on
different nodes have to interact. For this, an instance has to
be able to obtain the interface references of other instances in
neighboring active node. This can be achieved by a centralized
CORBA naming service [10], or a propagation protocol among
active nodes that makes the references aware to adjacent nodes.
The way the chain of service components is build is specific to
the implementation of the service and not part of the framework.

The QoS expected for the communication between objects
can be specified when the binding is created. Server objects may
export their interfaces to the binding specifying the QoS they ex-
pect at their interfaces, client objects may import the interfaces
also specifying the QoS they expect for the communication. In
any case the QoS has to be established along the communication
path between client and server. This can happen when a client
imports an interface, i.e., connects to the binding, or on the first
call on an imported interface.

The request for establishing a QoS has to be propagated along
the communication path and each node has to decide whether
the request can be fulfilled. Following the admit/reserve pat-
tern described in a previous chapter it can be avoided to reserve
resources without knowing if the reservation is admittable on
all intermediate network nodes. Of course one has to take care
about network nodes along the communication path that don’t
support the distributed reservation service. This problem can be
solved by over-provisioning or by adapting to available reserva-
tion techniques.

The purpose of the distributed reservation service is to pro-
vide resource reservation for the communication between a mul-
titude of distributed objects. The main objective is to share the
available resources between requesting applications as effec-
tively as possible. For this additional information like priority
policies or timetables could be useful. The dynamic deploy-
ment of the service components allows a flexible response to the
needs of applications.

VII. IMPLEMENTATION

A major goal of the presented architecture is to support dif-
ferent router hardware—especially legacy systems—and allow

a variety of active services to be deployed to an active node.
This is achieved by implementing a generic router API which
is wrapping the specific command interface of a router and pro-
vides a common way for accessing the router’s resources.

To obtain a high flexibility and portability the generic router
API, as well as active services using this API, are implemented
in JAVA. However, the fast forwarding of standard IP packets is
retained since the forwarding path of the router is in general not
intercepted but controlled.

The main difficulty with several active services running in the
same JAVA virtual machine, is the true isolation between them
with regard of memory and processing resources. This could
be achieved by using the JAVA profiling interface [11] or a spe-
cially tailored JAVA virtual machine [12].

Access to resources is controlled by resource managers where
policies are used to define the allowed resource usage for partic-
ular identities. The policies are implemented by JAVA objects
stored in a database, offering an interface to administrators to
set, get, and modify them. The objects implementing active ser-
vices are also stored in a database along with some information
about the version and current status. This allows an administra-
tor to manage the available services on a node.

A prototype of the active DPE is implemented in JAVA using
the modular and extensible Jonathan ORB [6] as the basis for
the binding and resource control frameworks. The active DPE is
deployed in a testbed consisting of three Hitachi GigabitRouter
2000 [13] and three controlling PCs running on Linux. The ac-
tive DPE is running in a JAVA virtual machine on the control-
ling PCs and accesses the router command interface via a Tel-
net connection. The router’s command interface if wrapped by
JAVA objects forming a generic router API. Currently the DPE
doesn’t support packet processing, it only features the manage-
ment of router resources. All interfaces of this implementation
are written in OMG’s Interface Description Language (IDL).

VIII. MEASUREMENTS

A. RRM Measurements

The measurements were based on a simple methodology.
Namely, checkpoints are placed in the RRM functions such as
dynamic partitioning module, flow management module, and
policy control module. They are triggered by a timing service,
and print out the core states of RRM with regard to the current
resource utilization ratio of each active service instance, and vir-
tual queue. As the measurement was integrated into the proto-
type, many factors affect the results and make it difficult to in-
terpret them. For instance, real-time thread scheduling in Java
virtual machine cannot be controlled, and garbage collection af-
fects the time consumed for processing reservation requests and
making allocations. Also, control of timing scale is limited by
Java and this has also an impact on the normal execution of ac-
tive service instances. In addition, simulation of the request ar-
rival model is hard to implement and replicate.

Therefore the measurement only provides a partial proof-of-
the-concept for our approach. The average resource utilization
and admission percentage are the major results measures to eval-
uate how RRM improves the resource usage by dynamic parti-
tioning.

In the following we present the measurements of the perfor-
mance benefits brought by dynamic partitioning, as compared to
static partitioning for management of router resources. We use
the advanced reservation service (ReA) [8] as one example of
active service, and run two ReA instances for different service
providers.

The parameters tuned during the measurement are:

� Time to measure: 10 minutes.
� Partition scheme:

— Top watermark: threshold for max. Resource uti-
lization ratio; set to 75%.

— Bottom watermark: threshold for min. resource uti-
lization ratio; set to 15%.

— Incremental unit: basic unit to increase/decrease the
quotas; set to 6%.

— Partition cycle: 6 seconds.
� Active service:

— Service pattern: the arrival model of the end-user
reservation requests, random distribution and gauss
distribution are used; duration of each reservation is
set to 2 minutes.

— Traffic model: the traffic characteristic of flows; set
to a Constant Bit Rate with 100 kbps per flow.

— Number of requests: random service pattern—for
ReA of Internet Service Provider 1 (ISP1), 300 re-
quests, for ReA of ISP2, 50 requests arriving at the
same time; gauss service pattern - for both ReAs,
300 requests arriving simultaneously.

� Policies:
— Service policy: for ReA of ISP1, quota = 20% of

GoldCLS Queue; for ReA of ISP2, quota = 80% of
GoldCLS Queue.

— Resource policy: for GoldCLS Queue, quota = 80%
of Link capacity.

— Link capacity: 100 Mbps for Ethernet.

The parameters to be measured and analyzed are:

� Utilization ratios: for ReA of ISP1, for ReA of ISP2, for
GoldCLS Queue.

� Quotas: for ReA of ISP1, and ReA of ISP2.
� Rejection percentage: percentage of reservation requests

rejected due to unavailability of resources, for ReA of
ISP1 and ReA of ISP2.

Figs. 8 and 9 depict the results. As these graphs show,
for gauss service pattern, the admission percentage increases
from about 45% (static partitioning) to 60% (dynamic partition-
ing). The average utilization of GoldCLS Queue increases from
about 30% to 60%.

B. ACM Measurements

ACM is responsible for installation/deinstallation and instan-
tiation/deinstantiation of active components among other things.
We wrote a test suite to measure the performance of ACM. All
tests took place in a PC with one Intel Pentium III 500 MHz pro-
cessor, 128 MB RAM running Debian Linux 2.4. The results are
depicted in Fig. 10.

Fig. 8. Reservation-in-advance service with static partitioning (Gauss
service pattern).

We have measured the time it takes to install and deinstall
a number of active components as well as the time to instan-
tiate and deinstantiate the active component. The instantiated
active component code represents a service running on the ac-
tive node. All measurements of ACM above represent succes-
sive operations on a total number of requests on the system. As
expected the initialization of the objects (installation and instan-
tiation phase) is more time consuming than their destruction.

Both diagrams above were expected to be linear or at least
linear-like. However the tests resulted to something else, includ-
ing some peaks that we cannot explain with certainty. These
are probably a side effect of the cooperating components and
the network status. During the installation phase, the compo-
nent has to be fetched and therefore the network utilization at
that time can have an effect on the measurement. Also during
instantiation, the new service that the component implements
has to register with the central naming service that relies on an-
other computer. For the deinstallation phase, we first search our
database for the specific component and when we find its posi-
tion we remove it. Therefore the size of the database and the
implementation of the search function can affect the time con-
sumed for this action. Also during deinstantiation phase the ser-
vice (that the component implements) has to be stopped (if ac-
tive) and deregistered from the central naming service (network
side-effects).

In addition to these, the Java garbage collector activities inter-

Fig. 9. Reservation-in-advance service with dynamic partitioning (Gauss
service pattern).

fere with the measurement process, since we create and release
several hundreds of Java objects in the test suite. All above ac-
tions are done also via a policy controlled way, therefore include
the time of reading the policies, of checking the vector of poli-
cies in order to apply the right ones, of checking the provided
credentials, etc. The algorithms used for the above functions
are not optimized and therefore we consider that these measure-
ments are very near to the level of the most time consuming ones
we can get. By implementing more intelligent algorithms and
optimizing the Java source code of the OrbAN implementation,
in our opinion the times will decrease drastically. However even
with this novel approach we have acceptable results regarding
the active code management. Even with the above mentioned
side-effects, the installation of the active code remains between
the 40 ms and 80 ms zone, and its deinstallation between 20 ms
and 45 ms zone. For active code instatiation the time is between
280 ms and 400 ms, and for deinstantiation between 90 ms and
180 ms. To our opinion these non optimized time measurements
are generally acceptable for a maximum of 1000 successive re-
quests (this is considered as a normal operation utilization) in
our active node.

IX. CONCLUSIONS AND FUTURE WORK

A framework for an active DPE was presented to facilitate
the integration of programmable networks, active networks, and
distributed object technology. The presented approach solves

Fig. 10. Performance of the active component manager.

the problem of performance vs. flexibility by offering a three
level architecture supporting high performance in the fixed part
and a high flexibility in the active part.

The framework supports the execution of network services
as downloadable active components. The task of these services
is to provide QoS to applications by flexibly programming net-
work resources through a dynamic and efficient resource man-
ager interface based on the P1520 L-interface [14].

Their parallel execution with respect to resource access and
usage is monitored and controlled in order to ensure safety. Ba-
sic measurements show the efficiency of resource management,
and the flexibility of customization via policies.

Up to now, most research found in literature only provided
stand-alone solutions, i.e., an active network approach with code
distribution/loading in the core, or programmable networks sup-
porting open service implementation. For instance, ALIEN [15]
defines a layered architecture to provide fine-grained control of
code loading. It focuses on the core functions such as core
switchlet in an active node, instead of the underlying network
abstractions and it does provide a clear computing model as a
guideline for us regarding the core node functions. Elastic Net-
work Control [16] is more relevant to our approach. It enhances
traditional control/management architecture by virtual network-
ing and partitioning, and enables dynamic deployment of new
control paradigms. However it is based on ATM switches that
provide standard support for virtualized network abstractions,
e.g., VPI/VCI.

The challenge in IP networks is that no standard or product
exists that can deliver the level and granularity of resource ab-
stractions needed to program the network. Also a more effi-
cient usage of limited resources demands a flexible multiplexing
paradigm like dynamic partitioning. From the resource control
perspective, RCANE [17] developed QoS management using
active network systems, but focused on the control of comput-
ing resources such as CPU time memory, and network I/O in the
operating system. In addition to that we believe control of ac-
cess to the router resources is essential in order to support secure
and efficient execution of new active services. SANE [18] relies
upon the proprietary multiprocessor operating system Piglet in
order to offer a resource management interface, while our focus
is on the open API for network programming. In addition we
deploy operator-defined policies to control the access, which is
more capable to cover the various requirements, e.g., time scale,
than mere credentials.

Our approach tries to allow deployment of a variety of active
network services independent of the underlying router hardware
infrastructure. Via a generic router API and the wrapping of its
functions we aim also at integrating current legacy systems. In
the future we will further extent our interfaces to be fully com-
patible with the P1520 work and we will compare our system
with other ones in matters of performance and operation times.

REFERENCES
[1] A. Lazar, “Programming telecommunication networks,” IEEE Network,

Sept./Oct. p. 818, 1997.
[2] D. L. Tennenhouse et al., “A survey of active network research,” IEEE

Commun. Mag., pp. 80–86, Jan. 1997.
[3] J. Biswas et al., “The IEEE P1520 standards initiative for programmable

network interface,” IEEE Commun. Mag., Oct. 1998.
[4] Broadband Active Network Generation (BANG), a Hitachi and

GMD-FOKUS Co-operation Project. Available at http://www.fokus.
gmd.de/research/cc/glone/projects/bang/.

[5] IEEE P1520 Project. Available at http://www.ieee-pin.org/.
[6] B. Dumant et al., “Jonathan: An open distributed processing en-

vironment in Java,” Sept. 1998. Available at http://www.objectweb.
org/jonathan/current/Jonathan.html.

[7] “The common object request broker: Architecture and specification,”
revision2.4: Oct. 2000. Available at http://www.omg.org/technology/
documents/formal/corbaiiop.htm.

[8] T. Becker, H. Guo, and S. Karnouskos, “Enable QoS for distributed object
system with ORB-based active networking,” in Proc. 2nd International
Conf. Active Networks (IWAN’00), Tokyo, Japan, Oct. 2000.

[9] A. Schill, F. Breiter, and S. Kuhn, “Design and evaluation of an advance
reservation protocol on top of RSVP,” in Proc. IFIP 4th International Conf.
Broadband Communications, Stuttgart, Chapman & Hall, 1998, pp. 23–
40.

[10] “Interoperable naming service specification,” new ed., Nov. 2000. Avail-
able at ftp://ftp.omg.org/pub/docs/formal/00-11-01.pdf.

[11] The Java Virtual Machine Profiler Interface. Available at http://
java.sun.com/j2se/1.3/docs/guide/jvmpi/index.html.

[12] The Java-oriented Active Network Operating System (Janos). Available at
http://www.cs.utah.edu/flux/janos.

[13] “ Hitachi GR2000 Gigabit routers . ” Available at http : //www .
internetworking.hitachi.com/products/products GR.html.

[14] IEEE-P1520 L Interface Specification draft. Available at http: //www.
ieee-pin.org/doc/draft docs/IP/p1520tsip012-1.pdf.

[15] D. S. Alexander and J. M. Smith, “The architecture of ALIEN,” in Proc.
1st International Working Conf. Active Networks (IWAN’99), June/July
1999.

[16] Herbert Bos., “Open extensible network control,” J. Network and Systems
Management, vol. 8, no. 1, Mar. 2000.

[17] P. Menage, “RCANE: A resource controller framework for active net-
work services,” in Proc. 1st International Working Conf. Active Networks
(IWAN’99), June/July 1999.

[18] D. S. Alexander et al., “Secure quality of service handling,” IEEE Com-
mun. Mag., vol. 38, no. 4, pp. 106–112, Apr. 2000.

