
Proceedings of the IEEE COMPSAC 2001 Conference 1

Dealing with Denial-of-Service Attacks in
Agent-enabled Active and Programmable Infrastructures

Stamatis Karnouskos

German National Research Center for Information Technology
Research Institute for Open Communication Systems (GMD-FOKUS)

Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
 karnouskos@fokus.gmd.de

Abstract

Denial of Service (DoS) attacks is a well-known
problem with victims even among prestigious commercial
sites. Such attacks in traditional networking are difficult
to recognize and to handle. An active infrastructure that
can dynamically respond to event-triggered requests can
deal better with recognition and handling of DoS attacks.
We present here a DoS attack response system
architecture and we demonstrate via an application
scenario its dynamicity and flexibility in dealing with this
kind of attacks. The approach is based on agent-enabled
active programmable infrastructures and makes heavy
use of the mobile agent technology in order to
asynchronously respond to critical situations. Finally we
comment on the pros and cons of our approach and
discuss future directions that could be followed.

Keywords: Intrusion Detection Systems, Distributed
Denial of Service Attacks, Agent Technology, Active
Networks.

1. Introduction

Distributed Denial of Service (DDoS) attacks launched
against prestigious commercial sites such as Yahoo!,
Amazon, eBay Inc., Buy.com and others the last months,
have attracted a lot of publicity. The problem is known
and difficult a) to recognize early enough and b) to
handle.

Today’s Intrusion Detection Systems (IDS) are static
and in order to add new functionality or even reconfigure
them, we must take them offline and restart them. This is
an inflexible monolithic approach that can not deal with
the challenges set by current dynamic infrastructures. The
network must have the ability to dynamically change its
behavior based on the status of external events. If a DDoS
attack is initiated, for most commercial companies time of
reaction is critical as they loose thousands of dollars and
therefore the response time should be as low as possible.

In order to achieve that we need networks that can sense
the environment and react to its changes.

We believe that active networks constitute the right
step to this direction, as applications can foster task
specific network customization. That, in combination with
agent technology can lead to a better way of dealing with
DoS scenarios as we will demonstrate in this paper.

1.1. Denial of Service Attacks

Denial of service attacks (DoS) are attempts to
overwhelm a service with requests, resulting to rejection
of legitimate requests. If more than one computers are
used, then we have distributed denial of service attacks
which are more difficult to deal with and their effect is
magnified in comparison to simple DoS attacks. Several
highly sophisticated tools such as Smurf [1] and Trinoo
[2] but also modern ones like Tribe Flood Network (TFN)
[3] TFN2K [4] Stacheldraht [5] Mstream [6] and Shaft [7]
make such attacks easier than ever before.

As shown in Figure 1, behind the Client is the person
that orchestrates the whole attack. The Master is a
compromised host, which runs the software that controls
several Daemons. The Daemon is also a compromised

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Client

Client

Master

Master

Master

Daemon

Daemon

Daemon

Daemon

Daemon

Daemon

Legitimate
Host

Target Host

Malicious
Flows

The Host is under DDoS
attack. Legitimate requests

are denied!

Legitimate
Request

Figure 1. Distributed denial of service attack

Proceedings of the IEEE COMPSAC 2001 Conference 2

host, running the program that generates a stream of
packets (the malicious flow) towards the intended victim.
The attacker first initiates a scan phase in which a large
number of hosts is probed for known vulnerabilities. Once
these vulnerabilities are identified the host is
compromised and the malicious software is installed.
After this initial step the whole process is magnified since
compromised hosts are used for further scanning and
compromises. As this process is automated via the use of
scripts, several thousands of hosts can be compromised in
very little time i.e. an average time for the whole process
(scanning for vulnerabilities and installing the malicious
code) could be as little as 7 seconds per host.

1.2. Agent Technology

Agents [22] are software components that act alone or
in communities on behalf of an entity and are delegated to
perform tasks under some constrains or action plans. One
key characteristic of agents is mobility, which allows them
to transport themselves from node to node and continue
their execution. Mobile agent technology has established
itself as an improvement of today’s distributed systems
due to its benefits such as dynamic, on demand provision
and distribution of services, reduction of network traffic
and dependencies, fault tolerance etc. The number [12] of
mobile agent platforms coming from the commercial
sector, as well as the academia is increasing day by day.

1.3. Active Networks

Active Networks (AN) [11] consist an evolution of
current dumb passive network carriers, where the level of
abstraction is the protocol, to a more general
programmable network model where the level of

abstraction is raised to application programming
interfaces (APIs) for programming the new network
resources. The idea is to move service code, which
traditionally was placed outside the transport network,
directly to network’s nodes. Those nodes allow
applications to configure them optimally for their tasks via
open interfaces (programmable networks). Furthermore,
those nodes will be able to compute on data they receive
before they pass them to the next node (active networks).
Network-aware software is expected to change the way we
design and deploy applications and services. While
network programmability and the capabilities it offers is
attracting and with increasing interest within the research
community, its state of development is still at its infancy.

2. The Agent-enabled Active Node

The active node architecture with the agent execution
environment (EE) is depicted in Figure 2. An active node
(router, switch, etc) can be realized via the composition of
three different layers representing hardware and software
parts i.e. the static part, the programmable part and the
active part.

Static part: This is the hardware that is delivered by
the manufacturer. It contains the optimized components
and algorithms implemented in their hardware form for
performance reasons. Software approaches in this level
will only slow node’s function down e.g. the forwarding
function.

Programmable part: This part integrates the
manufacturer proprietary interfaces of the fixed part and
exports an open standardized interface. The APIs are
standardized by the IEEE P1520 project [14]. At this level
the node can be programmed but only via a parameter
specific approach. The programming can be done e.g. via
an RPC method and it has the advantage that the node

Place 1

Agency

Place 1.1

P lace1.2

P lace1.1.
1

Place
Resources

P lace1.1.2

P lace1.3

Place
Resources

Place
Resources

Place
Resources

P lace 2

Place
Resources

P lace n

Place
Resources

P lace 3

Place
Resources

Hardw are
(proprietary interaces)

Program mable Node
(Abstact router / NodeOS)

Execution Environm ents

The Active Node

EE #n
M obile
Agent

Platform

EE #2
ALIEN

EE #1
ANTS

Collaborative Intelligent
M obile Agents

Application

ApplicationApplication

Application

Figure 2. The Agent-based active network node
architecture

Proceedings of the IEEE COMPSAC 2001 Conference 3

always falls into deterministic states. This open interface
represents the abstraction of the hardware available
resources, ranging from computational resources (CPU,
memory etc) to packet forwarding resources (bandwidth,
buffer, etc). The Node Operating System (NodeOS)
provides the basic functionality from which the execution
environments (EEs) built the abstractions presented to the
active applications. The architecture of the NodeOS and
its functionality is outlined in detail by the AN Node OS
Working Group [15]. Let us mention that the NodeOS
could also be a distributed processing environment (DPE)
that makes the necessary abstractions.

Active part: The full ability of programming the node
is unfolded here as this part hosts several execution
environments that allow, via code injection and execution,
sophisticated programmability of the node. Applications
that need task specific control of node’s states, can
implement in the form of active code the specific
algorithms they need from the scratch, or by combining
the services that are available in the node in a Lego-like
way. The executed active code, uses also the interfaces
that are provided by the programmable part (generic
interfaces) in order to access functionality implemented in
the hardware part. As also noted [16] the functionality of
the active network node is divided among the NodeOS,
the Execution Environments and the active applications.
The architecture allows multiple EEs of various providers
to co-exist and be present on a single active node. Each
EE (e.g. ANTS [17], ALIEN [18], Agent EE) exports a
programming interface or virtual machine that can be
programmed or controlled by third party code. The mobile
agent EE is where agents execute when they visit the
node. The applications are able to access all the services
offered by the EEs. Usually an application is bounded to
one EE but we can foresee applications that will take
advantage of the various characteristics of more than one
EEs and possibly combine their services.

As shown in Figure 2, one of the EEs is the agent
execution environment. This is the agency as described
within the MASIF [19] standard. The agent system
consists of Places. A Place is a context within an agent
system in which an agent is executed. This context can
provide services/functions such as access to local
resources etc. A Place is associated with a location which
consists of a Place name and the address of the agent
system within which the Place resides. Places can contain
other Places. All Places follow the parent-child paradigm
of Unix processes in the way that each child is
assigned/makes use of its parent’s resources. Also its
policy is an extension/customization of its parent's policy.

The existence of different EEs and sub-EEs for agents
(which are the Places within the agent architecture) that

have the same owner/characteristics serves the need to
avoid unwanted interactions. Isolation done by Places is
similar to the sandbox idea that exists in Java. Since in
each Place agents with common characteristics (e.g. of the
same owner) are gathered the possibility of attacking each
other is lower as usual. Of course further security
countermeasures [20] have to be taken in order to provide
a secure working system.

Cooperating agents reside in the agent-based EEs and
via the facilities offered to them program the node. These
can be either mobile agents (e.g. visiting agents) or even
stationary intelligent ones that reside permanently in the
EE implementing various services. The agent can either
be generated at a Place locally (e.g. out of a pool of ready-
programmed objects) or it can just carry on with an
execution it suspended in another node.

3. System Architecture

The architecture of our DoS (the same apply for DDoS
scenarios) response system is depicted below. It is
composed of the following parts:

Monitoring System (MS): This part is responsible for
analyzing and capturing all data that passes via the
network interface. The data that is captured/stored by the
monitoring system can be filtered prior to capturing based
on the filtering rules issued by the Attack Detection
System (ADS). The MS offers back to the ADS a
customized snapshot of the network traffic i.e. the raw
data that will need to be further examined by the ADS.

Attack
Detection
System

Monitoring
System

Attack
Response
System

Knowledge
Base

Monitoring/filtering

of Data on the network

Decision process
based on
rules/experience

Attack has been
recognized.

Send out the
SecurityGuards to the
neighboring nodes

LAN

Node
Services

Get Neighbor
Nodes

Data
sniffering

Figure 3. System architecture

Proceedings of the IEEE COMPSAC 2001 Conference 4

Attack Detection System (ADS): This component is
responsible for identifying the attack against the node. It
has its own decision process based on internal rules,
heuristics and expertise stored in its knowledge base. The
trigger event identifying a DoS attack could be dependent
on one single event e.g. over the normal presence of SYN
packets, oversized ICMP and UDP packets,
connectionless TCP /UDP packets, or a result of many
similar events indicating abnormal network activities e.g.
amount of bandwidth exceeds a maximum threshold that
is expected by normal traffic. Pattern recognition is the
most well known method primarily to recognize existing
DDoS tools and attempts (as any known DDoS attack is
based on the traditional client-server paradigm) to install
them into network nodes. One module of the ADS (e.g. an
agent) could implement this functionality. The ADS can
be seen as a cooperation of agents that reside within the
agent-based EE of the active node and cooperate in order
to recognize DoS attacks based on the filtered data that
they get from the MS. This is a component-based
approach, and each agent implements a specific algorithm
or method based on which an attack can be recognized.

In a distributed scenario the ADSs from all nodes can
co-operate and push/pull information from each other in
order to obtain a network wide view of the situation and
act accordingly.

Attack Response System (ARS): The ARS is an

event-triggered system. Once informed by the ADS about
the attack it organizes the countermeasures against the
attacker. It instantiates the agent Security Guards (SGs)

and dispatches them to the neighbor nodes with concrete
instructions about how to deal with the attack e.g. to block
traffic coming from a specific subnet and is directed to a
specific port.

Agents: These are the actual actors. The mission of the

SGs is to change (autonomously or in cooperation with
local residing agents) the node’s configuration so that the
malicious flow is blocked. Having done that and based on
the facilities offered in the remote node, the agent could
clone itself, and let the clones to transport themselves to
the neighboring machines. Please note that on each node
the agents are able to sense the environment e.g. on the fly
discover the neighboring nodes and act accordingly. Also
because we do not want to flood the network with SGs, we
can constrain them in the number of clones they can create
and the hops that they can live. Furthermore the agents
can periodically poll a central security guard and either
update their goals or just die if the DoS attack is over.

4. Application Scenario

The application scenario, with which we will
demonstrate our system, is depicted in Figure 4. The
network topology consists of various active nodes (e.g.
nodes A, B, C) and legacy nodes (e.g. node D). Each AN
node is a combination of a router and the controller PC
which runs the software part. In normal operation the
agents that implement our system reside within the
agencies and filter the flow that is directed to the node.
Some time later the attacker initiates the DDoS attack via

Router
 Controller PC

INTERNET

Place A1 Place A2
Agency A

Active Network Node A

Router
Controller PC

INTERNET

Place B1 Place B2
Agency B

VICTIM

MALICIOUS FLOW

INTERNET

Attacker Controlled
Computers

Router

INTERNET

Place C1 Place C2
Agency C

Active Network Node B

 Active Network Node CRouter D

Agents implementing the
Intrusion Detection and

Response System

Block
Malicious

Flow

Block
Malicious

Flow

SG Agent
Migration

SG Agent
Migration

Firewall
Reconfiguration

Malicious
Flow

Cooperating
Agents

Cooperating
Agents

Cooperating
Agents

Cooperating
Agents

Cooperating
Agents

Cooperating
Agents

Firewall

Figure 4. DDoS attack and response Scenario

Proceedings of the IEEE COMPSAC 2001 Conference 5

the compromised hosts against the AN node C. What
exactly happens is described below:
• One agent of the ADS in node C, that is a specialist in

a specific attack, detects the pattern of the attack and
signals the alarm. The ADS then contacts the ARS
and provides specific info for the attack that was
encountered e.g. subnet, tcp ports etc.

• The ARS dispatches a SG agent that changes the local
router table and from now on this router denies access
to all malicious traffic targeted to the specified
subnet.

• The ARS consults the local node services in order to
find out the neighboring nodes or the nodes that are
one hop away. This could be accomplished simply by
invoking the traceroute utility of Unix systems (to
find the next hop router for that subnet) or by looking
up the router tables.

• The ARS sends out the Security Guards (SGs) to the
neighboring nodes with specific goal to block the
malicious traffic.

• The SGs transport themselves to their destination AN
node B and in the execution environment provided
there (Place B2) they continue execution. Having
passed successfully the authentication and
authorization mechanisms of the visiting node they
can either change the node policy/configuration by
themselves if they have the right to do so, or
collaborate with the local agents providing feedback
on the attack and eventually blocking the malicious
traffic to AN node C. Here note that now the
malicious flow is blocked at AN node B and never
reaches the rest of the network.

• Subsequently the SGs clone themselves and
depending on their (or the platform’s) capabilities,
they keep on detecting the next hop AN node and
transporting themselves there.

Following recursively the steps above, the point where
the malicious flow is blocked, is every time getting closer
to the source of the problem, or at least pushed up to the
network domain boundaries.

5. Implementation

A first prototype of this approach was implemented
and demonstrated within the scope of BANG project [8].
Further discussions on the concepts of this approach and
enhancements in the implementation will be possibly done
within the FAIN project [23]. Our testbed is the same as
the one described with the Figure 4. The active nodes
consisted of Hitachi GR2000 gigabit routers [13] that
were managed via a Controller PC. The Grasshopper
agent system [9] was selected as the mobile agent
platform to be embedded in the control PC. Both ADS
and ARS modules where implemented as Java mobile

agents. Although ARS and ADS did not need to be
mobile, the motivation behind that was that in the future it
might be a good idea to allow the whole system to roam
the network and clone itself for survivability and load
balancing reasons. The MS module was consisted of a
modified version of the ethereal network protocol
analyzer [10] for real time capturing of the data in the
network interface. The SGs, which were also Java mobile
agents, were able to execute within the control PC and had
direct access via telnet protocol to the attached router and
its services (e.g. modifying routing/filtering tables etc). As
also described in the attack scenario in section 4, the SGs
dynamically reconfigured hop by hop the AN nodes in
order to block all malicious traffic directed to AN node C.
When they reached the source of the attack or the
boundaries of the network, they simply died. The
sniffering of the network as well as the analysis of data in
this scenario was done in real-time (any other option
would be inappropriate for any IDS system).

6. Evaluation and Conclusions

There are two ways of defending against the
DoS/DDoS attacks: a) proactive and b) reactive.

Proactive protection involves taking measures before
an attack has occurred. This includes securing the nodes
by patching possible security holes and being able to stop
any attempts (e.g. network scanning, daemon installation
etc) that may eventually lead in a DDoS attack.

Reactive protection involves taking measures to reduce
the effect of an attack after it has occurred. That includes
blocking even partially the attack at the most outer point
of the provider’s domain and as close as possible to the
originating hosts.

Of course the proactive protection is preferred,
however it is difficult to be realized. Modern IDSs are
moving somewhere between these two approaches. Early
IDSs used a monolithic architecture where data was
collected in each node and analyzed by a central node. Of
course the approach was obsolete as it failed to recognize
attacks that included multiple nodes. Network based IDSs
tackled this problem by monitoring the network behavior.
However even the most modern IDSs lack flexibility and
do not scale good enough if they spawn heterogeneous
infrastructures. Furthermore they have a limited response
capability and do not provide open interfaces neither can
exchange security info with third party IDS
implementations. The latest is an application area for
software agents where a lot can be achieved.

Agents have several characteristics that we require.
Beyond being designed with intelligence and mobility in
mind, they can also:
• spawn heterogeneous networks (the agents depend

only on the execution environment),

Proceedings of the IEEE COMPSAC 2001 Conference 6

• implement missing services on network nodes or even
be used as wrappers for the existing ones

• encapsulate protocols and exchange messages in a
standardized format [21].

• reduce network load by processing the data locally on
the node and not transfer everything to a central
network point where the analysis is done

• execute autonomously and adapt to a changing
environment

• clone themselves for replacement or redundancy
• collaborate and share knowledge

Active networks provide the necessary
programmability required by the underlying nodes in
order to allow flexible network customization. Therefore a
combination of agent technology and active networks (as
the one presented in this paper) is promising. The generic
building blocks of the architecture in Figure 3 can be fully
implemented by agents. However we do not think it is
effective to make all of them mobile. A hybrid approach
in which the intelligent parts are static and the mobile
ones are small pieces of code that move around might
more appropriate and more realistic.

It is clear that mobile agent enabled active network
infrastructures do not directly improve any techniques for
detection of DDoS attacks. However they can reshape the
existing ones and add a modular more open approach to
the whole existing implementations therefore improving
efficiency, effectiveness and re-usage. Agents can also
wrap existing IDSs and enhance them with their
capabilities as discussed before. In the future we will try
to address further the IDSs requirements and experiment
with hybrid approaches where an ADS can subscribe to
network-wide security notifications (e.g CERT [24]) and
its database is pulled/pushed with real-time info from the
whole network. Furthermore the ARS needs to have better
control over the SGs once they have left the node.
Collaboration of all components in a heterogeneous
network is not expected to be a trivial task and needs to be
further investigated.

References

[1] Smurf DDoS tool, http://www.powertech.no/smurf/
[2] Trinoo DDoS tool,

http://staff.washington.edu/dittrich/misc/trinoo.analysis.txt
[3] Tribe Flood Network (TFN) DDoS tool,

http://staff.washington.edu/dittrich/misc/tfn.analysis
[4] Tribe Flood Network 2000 (TFN2K) DDoS tool,

http://packetstorm.securify.com/distributed/TFN2k_Analysi
s-1.3.txt

[5] Stacheldraht DDoS tool,
http://staff.washington.edu/dittrich/misc/stacheldraht.analys
is

[6] Mstream DDoS tool,
http://staff.washington.edu/dittrich/misc/mstream.analysis.t
xt

[7] Shaft DDoS tool,
http://netsec.gsfc.nasa.gov/~spock/shaft_analysis.txt

[8] The BANG project,
http://www.fokus.gmd.de/research/cc/glone/projects/bang/

[9] The Grasshopper Agent Platform,
http://www.grasshopper.de/

[10] The Ethereal Network Protocol Analyzer,
http://www.ethereal.com/

[11] Active Networks at DARPA,
http://www.darpa.mil/ito/research/anets/

[12] Mobile Agent Platforms http://www.informatik.uni-
stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html

[13] Hitachi GR2000 Gigabit Routers,
http://www.internetworking.hitachi.com/products/products
_GR.html

[14] IEEE P1520 Project , http://www.ieee-pin.org/
[15] Node OS Interface Specification. AN Node OS Working

Group, Larry Peterson, ed., January 24, 2000.
[16] Architectural Framework for Active Networks, Draft

version 1.0, K.L. Calvert, ed., July 27, 1999.
[17] D. J. Wetherall, J. Guttag and D. L. Tennenhouse, ANTS:

A Toolkit for Building and Dynamically Deploying
Network Protocols, IEEE OPENARCH'98, San Francisco
CA, Apr. 1998.

[18] D. Scott Alexander, ALIEN: A Generalized Computing
Model of Active Networks, Ph.D. Thesis, University of
Pennsylvania, December 1998.

[19] MASIF - Mobile Agent System Interoperability Facility,
http://www.omg.org/docs/orbos/98-03-09.pdf

[20] Stamatis Karnouskos, “Security Implications of
Implementing Active Network Infrastructures using Agent
Technology”, Special Issue on Active Networks and
Services, Computer Networks Journal, Volume 36, Issue 1,
pp 87-100, June 2001 (ISSN 1389-1286).

[21] FIPA Web Site: http://www.fipa.org/
[22] Mobile Agents Technology:

http://www.cetus-links.org/oo_mobile_agents.html
[23] FAIN Project, http://www.ist-fain.org
[24] CERT security advisories, http://www.cert.org/advisories/

	Dealing with Denial-of-Service Attacks in
	Agent-enabled Active and Programmable Infrastructures
	1. Introduction
	Denial of Service Attacks
	1.2. Agent Technology
	1.3. Active Networks

	2. The Agent-enabled Active Node
	3. System Architecture
	4. Application Scenario
	5. Implementation
	6. Evaluation and Conclusions
	References

