
Proceedings of the IWAN 2000 Conference

 1

Enable QoS for Distributed Object Applications by
ORB-based Active Networking

Thomas Becker, Hui Guo, Stamatis Karnouskos

German National Research Center for Information Technology

Research Institute for Open Communication Systems
GMD-FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

{becker, guo, karnouskos}@fokus.gmd.de

Abstract. Future requirements for supporting distributed object applications by
active networks are discussed. A middleware approach for active networking is
presented. A CORBA-based distributed processing environment (DPE) is de-
scribed as an interoperable service platform in an active network to enable end-
to-end QoS for distributed object communication. Three key platform services
are presented, including QoS binding, component management and resource
control. A binding framework is enhanced to achieve transparent QoS binding;
an active component management service is proposed as an out-band signaling
to install service objects; active node resources are adaptively managed to sup-
port generic reservation requirements. As a whole, the paper presents a distrib-
uted computing model for active networks so that active services can be dy-
namically deployed as downloadable objects to apply different QoS architec-
tures on demand. With this model, distributed object-oriented systems directly
benefit from active networking technology with respect to QoS need.

1 Introduction

Programmable Networks [6] promote open architectures and standard interfaces for
flexible service provision to enable novel service architectures by Internet Service
Vendors (ISV). Active Networks [18] allow dynamic customization and re-
configuration of a network by means of secure code injection in a network. As a re-
configuration example, service modules can be encapsulated in the form of code or a
composition of codes, and dynamically installed or updated. Therefore, it greatly
increases the flexibility of service deployment. Harmonization of the two approaches
within a distributed object framework therefore facilitates deployment of services,
either application-specific or generic, to better support distributed object applications
than today, in terms of, e.g. Quality of Service (QoS). The framework can be seen as
an interoperable (e.g. by IIOP) distributed platform for running active services. This
paper presents a technical approach to show how active networking can be used to

Proceedings of the IWAN 2000 Conference

 2

improve the execution of distributed applications, with the help of a middleware
bridge.

Providing end-to-end QoS for distributed object systems is the major focus of our
approach. In existing frameworks such as CORBA, providing QoS for the communi-
cation between distributed objects is challenging due to the difficulty of deploying a
generic QoS architecture [7], which might require an integration of appropriate archi-
tectures such as Integrated Service[15] and Differentiated Service [10] across the
network to obtain an end-to-end QoS guarantee. On the other hand, in many cases the
QoS requirements from application objects cannot be mapped or translated into net-
work QoS parameters as supported by different protocols, e.g. RSVP [16]. Thus QoS
solutions [1] in the middleware are normally relying on and closely coupled with par-
ticular network-layer QoS mechanisms. Related work includes Active Reservation
Protocol [3] which enables portable signaling software but is bound to Java and there-
fore limited by Java security and interoperability and Xbind [12], which uses CORBA
as the platform for programmable value-added services but is limited by existing ORB
implementation with regard to QoS support.

In the following the paper summarizes our design in the “Broadband Active Next
Generation” [4] project. We developed an active middleware framework that supports
end-to-end QoS for a wide range of distributed applications. It represents a distributed
computing model for active networks so that active services can be dynamically de-
ployed as downloadable objects to apply different QoS architectures on demand. The
framework mainly refers to an active distributed processing environment (DPE) that is
an execution environment (EE) based on an enhanced Object Request Broker (ORB).

In general, the role of a DPE is to ease the development of distributed applications.
An application object can access the interface of other objects without knowing the
location of those potentially remote objects. The DPE is used to gain access to inter-
faces, that is to set up a communication path between objects. The ODP Reference
Model [13] defines a generic model for distributed processing and standards as
CORBA [8] specify a concrete architecture supporting this. Since CORBA is limited
in the types of object communication it supports, the more open Jonathan architecture
developed during the ReTINA project [9][11] is used as a basis.

Another important role of the DPE is to manage resources in a distributed way so
that an end-to-end QoS can be achieved. This includes management of processing
resources as well as network resources both in end-systems and network nodes. In
traditional router architectures, network resources are managed in a best-effort and
rigid fashion. Programmable routers open the internal router details through object-
oriented interface, enabling delivery of novel services as software packages by third-
parties. These new services should be highly customizable. Network resources thus
need to be controlled in a fine grained manner and could be bound with a service
dynamically. A generic router resource interface [5] based on the programmable inter-
faces being proposed by IEEE P1520 [6] makes this possible by providing generic
abstractions and dynamic binding capability. On the other hand, in an active network
service modules share the resources in parallel in run-time, their access need to be
synchronized to prevent conflict. To optimally utilize the limited resources in a router,
more intelligent allocation of resources is preferred than fixed partition and reserva-

Proceedings of the IWAN 2000 Conference

 3

tion. This is particularly important for bandwidth, which nowadays becomes a com-
modity for auction.

The DPE also allows dynamic deployment of components which will be
downloaded to an active node and run on the node's DPE. Security has to be consid-
ered on what a downloaded component is allowed to do as well as what resources it
may consume. The dynamic deployment of components requires a special installation
service as part of a computing model for active networks [2].

These form the basis for higher level reservation services. Because of the dynamic
deployment those services are highly customizable by means of updating or exchang-
ing components. With the definition of interfaces between instances of a service on
different network nodes the service can provide a network wide resource control.
Policies are used to regulate resource usage: user identities, time slots, priorities, etc.
are used to gain efficient multiplexing of available physical resources.

The next sections describe these parts of the active DPE. The binding framework is
used to set up communication paths to remote objects, the resource control framework
is used to get a generic thus fine grained access to resources, the installation service
allows the dynamic deployment of components, and finally a distributed reservation
service is outlined to show how to take advantage of an active DPE to provide end-to-
end QoS for distributed object applications.

2 Binding Framework

Communication between objects supported by the framework is through bindings,
which are created by object adapters. In this framework, the notion of object adapter
is overloaded and extended to allow the explicit binding of objects: the explicit crea-
tion of a binding between different interfaces is realized by invoking an operation on
an object adapter. Object adapters are binding factories.

In contrast to the CORBA architecture which identifies an ORB core responsible
for the conveyance of operation requests and replies, the notion of object adapter in
this framework is extended to cover also communication aspects, which may thus vary
from object adapter to object adapter. In summary, an object adapter is not limited to
cover the server side as in the standard CORBA specification, but actually extends to
the client side. The notion of ORB core in CORBA can be recovered as a specific,
default object adapter that can be combined with other object adapters.

This flexibility allows to define a special binding factory which understands addi-
tional parameters like QoS requirements for the creation of a binding. This binding
can then provide an interface to application objects to allow dynamic changes of its
behavior as well as offering registration for notifications about status changes.

Proceedings of the IWAN 2000 Conference

 4

Q o S fro m
s e rv e r 's v ie w p o in t

Q o S fro m
c lie n t's v ie w p o in t

b in d in g
fa c to ry

Q o S o n c re a tio n

b in d in g

s e rv e rc l ie n t

Fig. 1. QoS involved in object binding.

The binding framework consists of a set of abstractions for the construction of arbi-
trary communication stacks and abstractions for the construction of protocol-
independent operational stubs. Communication abstractions comprise:
• Protocols: these are abstractions of protocol machines at a given site; they manage

the establishment and release of sessions.
• Sessions: these are logical communication channels that obey a particular commu-

nication protocol; sessions in different capsules exchange messages.
• Messages: these are abstractions of data exchanged between capsules.

Protocol-independent stubs described in the binding framework provide generic in-
terfaces for operational bindings. They can be specialized to derive more specific
forms of operational bindings. Stubs are at the interface between the untyped world of
protocols and the typed world of language bindings.

out stubbinding
factory

session x

session y

adaptor

proto x

proto x

wrapper

controller

local resource management

remote resource management

transport

client

Fig. 2. Architecture of a binding (client side).

The open architecture of the binding framework allows the easy insertion of com-
ponents into the communication stack (see Figure 2). For the support of QoS the bind-
ing factory pushes a wrapping session on top of the session stack. The wrapping ses-
sion interacts with the local and remote resource management. Additionally a special

Proceedings of the IWAN 2000 Conference

 5

controller is introduced with the purpose to control the behavior of the binding and
allow dynamic modifications of binding properties. This functionality can also be
provided to the application layer.

The interaction with the local resource management comprises contacting resource
managers for processing resources also known as schedulers, managers for memory,
and managers for local network interfaces. The interaction with remote resource man-
agement is achieved by negotiating QoS with intermediate network nodes and the
target end-systems of the binding. To achieve end-to-end QoS for an object binding
the binding has to interact with both local and remote resource management.

3 Resource Control Framework

The resource control framework provides a set of abstractions needed by system de-
signers, service suppliers and application programmers to build applications requiring
and/or providing QoS properties. These abstractions address fields of concern that
must necessarily be considered when dealing with such QoS properties. Operating
systems or platforms do not need to implement such abstractions but they must pro-
pose to the programmers basic services on top of which such abstractions can be built.

The first goal of this resource control framework is to provide basic abstractions for
designing and engineering:
• resource multiplexing and scheduling mechanisms;
• QoS handling mechanisms.

The second goal of this framework is to provide guidelines for how to build
"smart" resources and multiplexers for applications dealing with QoS constraints. The
abstractions are therefore used to identify resource control design patterns.

In order to be effectively instantiated and to execute, objects must be mapped onto
hardware resources such as memory, network, external data storage, processors etc.
The mapping is done by resource managers. The role of a resource manager is to let a
resource, or a set of resources, be shared between objects. A manager will provide to
these objects an abstract view of the resources it manages, and control the way these
resources are used. Resource managers have to keep track of what resources have
been granted to which identities. This is important for logging and enables higher
services like accounting. It is also crucial for ensuring that components cannot exceed
predefined restrictions of resource usage.

The generic way of gaining access to resources is first to check the admittance to
resources and then reserve them. If resources are not needed any more they get unre-
served. The semantic of the admit/reserve pattern is that resources which have been
admitted to a particular object stay so only for a predefined period of time. If the re-
sources are not being reserved in this period the admittance will become invalid and
later reservations may fail. The admit/reserve pattern allows to check the availability
of a chain of resources before issuing the reservation. This is essentially important for
end-to-end QoS. Nevertheless concrete implementations of schedulers may - for the
sake of simplicity - choose to put the admit and reserve operations into one operation.

Proceedings of the IWAN 2000 Conference

 6

There are three major types of resource managers: schedulers manage the sharing
of processing time, memory managers manage the sharing of memory resources, and
node resource managers manage the sharing of local node resources. This paper fo-
cuses on node resource managers.

4 Node Resource Manager

A node resource manager (NRM) is seen as an active network facility to control the
resources in a programmable router, e.g. bandwidth, queue, buffer, etc. It is deployed
in each network node and responsible for managing the use of local node resources. It
is the kernel module in an active distributed processing environment to support net-
work-wide services with respect to resource access and usage.

generic router
resource interface

network resource manager

resource allocation

local resource map

programmable router

flow
control

queue
control

transmission
control

network resource
manager API

flow
based

ToS
based raw

Fig. 3. Architecture of the node resource manager.

Figure 3 depicts the role of a NRM in the context of an active DPE. A NRM de-
fines mechanisms that control the allocation of resources and synchronize the access.
It makes use of the generic interface specified in [5], and provides a generic resource
API to network-wide services, including high level reservation service.

In an active network, resource allocation represents one common request from net-
work service modules, e.g. an admission control function. It could be a request for a
minimum bandwidth for a flow, a class of service for packets, or a forwarding priority
for a flow with particular protocol identifier. It is the major function that a resource
manager should provide. To more flexibly support the resource needs from different
services, and to maximize the resource utilization, a NRM implements adaptive
allocation facility. The facility dynamically adjusts the allocated resources to
accommodate new resource requests.

The necessity of such a facility can be justified by a simple scenario - in an intranet
a flow from a director has higher priority than the flow from a normal employee in an
active network. Data flows are thus supposed to have different priorities for transmis-
sion. This requires a more flexible/dynamic configuration of the limited network re-

Proceedings of the IWAN 2000 Conference

 7

sources, to optimally fulfill different users’ resource requirements. That is, high prior-
ity flows should have precedence against lower priority flows when resources are
allocated. As the overall resources are limited, a NRM should be able to dynamically
re-allocate resources to accommodate new higher-priority flows, and become adap-
tive.

To allocate resources, a NRM maintains a view of the available node resources,
mainly the bandwidth, and the state of the queues that split the overall bandwidth. It
also maintains a view of the QoS-related parameters that a router is allowed to oper-
ate, e.g., discarding priority, queuing priority, and so on. These information together
form a local resource map, which may be associated with allocation requests currently
alive, to monitor the resource usage.

An allocation process generally consists of several basic steps: look-up, partition
and admission. A look-up operation checks the available resources from the local
resource map; a partition operation allocates required amount of resources; and the
admission operation notifies the service module about the success or failure. On suc-
cess, a soft-state is maintained for this allocation, and updated periodically so that an
allocation can be modified later and use of the allocated resources can be monitored.
Notably, the partition operation becomes more intelligent to realize adaptive alloca-
tion. In the following an example depicts the principle of a adaptive resource alloca-
tion and its result.

flows

ID src dest bandwidth priority

1 xxx xxx 2Mbps 0

2 xxx xxx 200Kbps 3

3 xxx xxx 50Kbps 3

4 xxx xxx 1.5Mbps 8

queues

ID bandwidth

1 1Mbps

2 2Mbps

3 2.5Mbps

Fig. 4. Mapping of flows to queues.

Figure 4 shows the mapping of flows to queues. A local resource map maintains a
table "queues" that tracks the state of all the queues, and a table "flows" to keep re-
cord of all the flows that request an amount of bandwidth. Each flow is associated
with a queue where it obtains requested bandwidth. The rationale for adaptive alloca-
tion is preemption of resource occupation by flow priority, analogous to preemption of
CPU time by thread priority. there are two key research issues to resolve in order to
have a fair and efficient solution:
• Selection of lower-priority flows: grabbing resources from low-priority flows and

allocating them to higher-priority requests also means violation of previous guaran-
tee promise. Such a violation should be within the tolerance as defined in a service
level agreement (SLA). Thus when selecting low-priority flows, a cross checking
between flows’ priority, their bandwidth and associated SLAs is required, and ap-
propriate algorithms should be defined to be fair to each flow and its user.

Proceedings of the IWAN 2000 Conference

 8

• Re-allocation of resource: the resources allocated to a single low-priority flow
might not be sufficient for a new flow with higher-priority, a merging of multiple
flows’ resources is preferable. In some other cases, resource partition is needed to
accommodate more than one high-priority flows. An efficient scheme is to be re-
searched to avoid waste of resources and operator-defined policy should be sup-
ported.
By this technology, we aim to realize the goal – efficient allocation and fair usage

of network resources in an active network. A NRM should provide a generic resource
manager API that a wide range of QoS services are able to use. Considering the major
QoS frameworks, Intserv and Diffserv, we define an API that supports both flow-
based and Type of Service (ToS)-based resource allocation.

Specifically, the flow-based API allows identification of flow, assignment of flow
priority, required QoS. In addition, QoS tolerance and necessary notifications are also
supported by the API. The ToS-based API allows identification packets with particu-
lar ToS value, mapping between ToS and QoS. In this API, a ToS value represents the
transmission priority of a packet and can be rewritten and remapped to output priority
by the NRM to achieve dynamic resource allocation.

5 Active Component Manager Service (ACMS)

The opportunity offered by active networks to dynamically install components for
execution in network nodes offers a high degree of flexibility and several other advan-
tages to network management. On the other hand, such an action exposes a serious
security issue: malicious or bad designed components could damage or cause malfunc-
tions to the active nodes. In order to tackle these drawbacks, our design is based on
the following rationale:
• Active components are installed via a policy-controlled way from internal or exter-

nal repositories
• Policies are defined for the resource usage and allowed behavior of a component

and the overall system. The security manager is consulted for all security critical
activities.
Active Component (AC) is a service component that executes within an Execution

Environment (EE) in an active node. An Active Component can maintain its state
from node to node transition, or be stateless (no state is maintained). It could be itself
mobile (e.g. an agent) or could be transferred to the active node by other third entities.
The ACMS allows AN entities (e.g. users, administrators etc) to install AC on the
node and make use of it or possibly make it available to other third party entities via a
policy controlled way.

5.1 Architecture

The architecture of the ACM is depicted in Figure 5. The main components are:

Proceedings of the IWAN 2000 Conference

 9

• Active Component Manager: This is the front-end of the architecture. All requests
are issued to, scheduled and executed or denied by this component. Other system
and service components stored in ACM’s DB are loaded and instantiated by the
ACM.

• Security Manager: This component is responsible for all security relevant activi-
ties. It interacts with Policy and Credential Managers in order to take security deci-
sions and grant or deny the issued requests. Checks are made to ensure that i) only
authorized users install and interact with node’s services and ii) the policy of re-
source usage by the installed components is enforced.

• Policy Manager: The policies for component/service access are maintained by this
component. Via its interface authorized entities can dynamically modify the poli-
cies in the EEs or those of the node.

• Credential Manager: This component is responsible for managing the credentials
of users/AC e.g. Certificates, public/private keys etc.

active node DPE

Security
Manager

Active Component Manager (ACM)
Policy-controlled
request for:
installation
deinstallation
instatiation
destruction
service start
service stop
AC retrieval
AC search
etc

Pull / Push

External AC Repository
Http://, ldap://,ftp://, /net/an_code/, ACM etc.

ACM Repository

Policy
Manager

Resource
Manager

Audit
Manager

Credential
Manager

Policy-controlled
request for policy
change

Fig. 5. Active Component Management Service Architecture

• Audit Manager: All events are audited by this component for further exploitation.
• Resource Manager: This module controls the allocation and access of the local

node resources (computing resources and network resources). The access to re-
sources is controlled in cooperation with the Security Manager.

• ACM Repository: It is the repository that AC is stored. This could be an external
location accessed via known protocols such as http, ftp, ldap or even another ACM
repository in another active node. Of course the AC could also reside somewhere in
the local file system.

Proceedings of the IWAN 2000 Conference

 10

Figure 5. shows the procedure of installing an active component. A possible sce-
nario that shows the interaction between the components is as follows:
1. Request: A request is made to the ACM to install a component/service. The re-

quest might be issued explicitly by a user (the user is generally any authority – the
difference is depicted via the policy scheme with the use of access rights) or implic-
itly as a side-effect of the setup of an object binding requiring a certain service on
the active node.

2. Security check: The ACM consults the Security Manager (SM) whether the speci-
fied action is allowed or not. The SM verifies the credentials of the authority that
issued the request in co-operation with the Credential Manager (CM). Then it
checks with the Policy Manager (PM) what the current policy is. The Resource
Manager (RM) is consulted whether the action is allowed or not. Finally the SM re-
turns an accept or deny result for the specified action.

3. Process of Request: The ACM executes or denies the user request. E.g. installation,
deinstallation, instatiation, destruction, service start, service stop, AC retrieval, ser-
vice/code search etc

The actions following the last step vary as they depend on the nature of the request

issued. We can have:
• Download: if the request is valid and the components are not cached locally, the

service contacts another repository (e.g. via http, ldap, etc) to download the re-
quested component

• Resource allocation: after the component is downloaded the appropriate resources
are allocated (i.e. a new job is created to run the tasks of the component).

• Instantiation: the component instantiates and executes in a policy-controlled envi-
ronment

• Runtime checks: all interactions of the installed component with the resource man-
agement are checked with the policy management, this ensures that the component
does not exceed its predefined amount of resource usage, nor it violates the given
access rights.

5.2 Implications of ACMS

Such a service has several implications in an AN infrastructure. We will try to com-
ment here on the most obvious ones.

Security: The security of the AN is fortified as we can control via policy who in-

stalls what, where and for how long. Furthermore we can control who has permission
at runtime to execute which components and under what environmental conditions
(e.g. available memory). Also via the predefined node manipulation idea described
later we can actually have an active node which is under the complete control of the
node administrator and yet programmable by third parties.

Safety: The existence of the ACMS can guarantee a higher level of safety in the

node. Many security violations occur not only because malicious software misuses the

Proceedings of the IWAN 2000 Conference

 11

node, but also from trusted code that does not execute correctly. So we need a way to
be sure that the code that executes will not bring the node to an unstable state by mis-
take. To achieve this, one could use safe languages such as PLAN or Netscript, but
usually this brings performance penalty and limits the programming flexibility. In our
approach, run-time safety is also a task of the resource manager which monitors the
resource usage of each component, and prevents access conflicts. ACM’s role include
setting-up a sandbox for each service which has its limited resource space, therefore
providing a notion of safety at the instantiation stage. Furthermore the existence of
ACMS allows the node owner to install his own AC on the node and allow third par-
ties to call it and execute it. As he is the author of the code, he has already tested it
and knows that this code is safe to use (something that is not the general case for code
coming from third parties). Furthermore AN node programming is not considered a
trivial activity and many programmers make different tradeoffs between code func-
tionality and code testing. It is sure that the node owner will invest more effort in
testing and debugging AC that he installs in order to avoid future problems, than the
average user.

Predefined Node Manipulation: A lot of network operators are very much con-

cerned with the idea of executing code within a node, mainly because of it obvious or
hidden drawbacks such an action carries. For this category the ACMS can be a useful
tool as it can provide specific interfaces to users to interact with the node. The net-
work operator installs itself the necessary code and services in the node and allows the
user to call this code with predefined and well tested parameters. Although again we
have code executing we can predict the result of this execution since the node’s status
will change to one of the predefined ones. This can be seen as a hybrid approach
since AC is executed (active network) but actually the node is manipulated via prede-
fined interfaces (programmable network). This is a very attractive approach for net-
work administrators that want to provide advanced functionality but are not willing to
allow execution of foreign code into their nodes.

6 Distributed Reservation Service

This section aims to describe a scenario which demonstrates the advantages of the
active DPE. For this purpose a generic resource reservation service is sketched as one
active service that can be customized for different styles, e.g. reservation-in-advance
[17] or immediate reservation (RSVP).

Proceedings of the IWAN 2000 Conference

 12

QoS

service component repository

d a t a p a t h

wrapperclient resource
management

RS RS wrapper

client server

server resource
management

node resource
management

node resource
management

ACMS QoSACMS

ACMS = Active Component Management Service RS = Reservation Service

end-system Bnode 2node 1end-system A

1 2 3

Fig. 6. Distributed reservation service for object communication.

Figure 6 shows a distributed reservation service. This service consists of compo-
nents sitting on top of the resource management on each active node. With the help of
intra-service interfaces (2) the several components can offer network-wide interfaces
to end-systems (1 and 3). In the end-systems these interfaces are accessed out of the
binding framework. A special wrapping session handles the QoS needs of the applica-
tion objects and interacts with the local resource management as well as with the dis-
tributed reservation service.

The components forming the reservation service are stored in a trusted repository
managed by a network operator. In the deployment stage those components are
downloaded and installed on the active node by the ACMS. The run-time instance of a
reservation service component has its limited resource space, allocated by the ACMS
and controlled by resource managers.

To provide a network-wide interface, the service instances on different nodes have
to interact. For this, an instance has to be able to obtain the interface references of
other instances in neighboring active node. This can be achieved by a centralized
naming service, or a propagation protocol among active nodes that makes the refer-
ences aware to adjacent nodes. The way the chain of service components is build is
specific to the implementation of the service and not part of the framework.

The QoS expected for the communication between objects can be specified when
the binding is created. Server objects may export their interfaces to the binding speci-
fying the QoS they expect at their interfaces, client objects may import the interfaces
also specifying the QoS they expect for the communication. In any case the QoS has
to be established along the communication path between client and server. This can
happen when a client imports an interface, i.e. connects to the binding, or on the first
call on an imported interface.

The request for establishing a QoS has to be propagated along the communication
path and each node has to decide whether or not the request can be fulfilled. Follow-
ing the admit/reserve pattern described in a previous chapter it can be avoided to re-
serve resources without knowing if the reservation is admittable on all intermediate
network nodes. Of course one has to take care about network nodes along the commu-
nication path that don't support the distributed reservation service. This problem can
be solved by over-provisioning or by adapting to available reservation techniques.

Proceedings of the IWAN 2000 Conference

 13

The purpose of the distributed reservation service is to provide resource reservation
for the communication between a multitude of distributed objects. The main objective
is to share the available resources between requesting applications as effectively as
possible. For this additional information like priority policies or timetables could be
useful. The dynamic deployment of the service components allows a flexible response
to the needs of applications.

7 Implementation

A prototype of the active DPE is implemented in JAVA using the modular and exten-
sible Jonathan ORB [14] as the basis for the binding and resource control frameworks.
The active DPE is deployed in a testbed consisting of three Hitachi Gigabit Routers
2000 and three controlling PCs running on Linux. The active DPE is running in a
JAVA virtual machine on the controlling PCs and accesses the router command inter-
face via a Telnet connection. The router’s command interface is wrapped by JAVA
objects forming a generic router API. Currently the DPE doesn’t support packet proc-
essing, it only features the management of router resources.

logical active node

GigabitRouter
2000

controlling PC

Telnet
connection

outgoing data

control information

incoming data

Fig. 7. Details of the logical active node.

8 Conclusion

The paper describes an ORB-based Active Networking approach. A framework for an
active DPE is presented to integrate programmable networks, active networks, and
distributed object technology. The framework supports the execution of network ser-
vice as downloaded active components to provide QoS. These services flexibly pro-
gram network resources through more dynamic and efficient resource manager inter-
face. Their parallel execution is controlled, particular with respect to resource access
and usage, to ensure safety. Distributed object applications obtain their QoS expecta-
tion with support of a generic reservation service, which is de-coupled from the under-

Proceedings of the IWAN 2000 Conference

 14

lying protocol and can be dynamically customized. In this framework, QoS support is
transparently embedded in the communication stack as part of binding action.

Policy is generally considered important as a mean by network administrators to
control the active network. A dedicated policy-based management system interacts
with other major services such as resource control, installation, and reservation. A
policy defines identities so that decisions can be made whether a request should be
granted or denied. The role of policies is to associate identities with rules that deter-
mine the access and usage of resources.

As for any other framework the design of components is crucial. Plenty of care has
to be taken when specifying the components' interfaces: new services or applications
should be able to treat the offered components as building blocks and take advantage
by composing the provided functionality.

References

1. Aurrecoechea, C., Campbell, A.T. and L. Hauw, "A Survey of QoS Architectures",
ACM/Springer Verlag Multimedia Systems Journal , Special Issue on QoS Architecture,
Vol. 6 No. 3, pg. 138-151, May 1998

2. D. S. Alexander, "ALIEN: A generalized computing model of active networks", disserta-
tion in computer and information science, University of Pennsylvania, 1998

3. Ted Faber, Bob Braden, Bob Lindell, Jeff Kann, Graham Phillips, Alberto Cerpa, Active
Nets Workshop, April 1999.

4. Hitachi and GMD-FOKUS co-operation project.
URL: http://www.fokus.gmd.de/research/cc/glone/projects/bang/

5. Deliverable 7 as a technical report for Hitachi-FOKUS BANG project.
6. Jit Biswas, et al., “The IEEE P1520 Standards Initiative For Programmable Network

Interface”, IEEE Communications Magazine, Oct. 1998.
7. Campbell A.T., "QOS Architectures" ,(Eds.) M. Tatipamula and B. Khasnabish, Multime-

dia Communications Networks , Artech House Publishers, Chapter 3. pg. 103-128, ISBN
0-89006-936-0, June 1998.

8. Object Management Group, "The Common Object Request Broker: Architecture and
Specification", Minor revision 2.3.1, October 1999

9. Bruno Dumant, François Horn, Frédéric Dang Tran, Jean-Bernard Stefani, "Jonathan: an
Open Distributed Processing Environment in Java", March 17, 1998

10. IETF RFC 2475, "An Architecture for Differentiated Services", Dec. 1998.
11. Frédéric Dang Tran, Jean-Bernard Stefani, "Towards an extensible and modular ORB

framework", April 1997
12. Lazar, A.A., "Programming Telecommunication Networks", IEEE Network, Septem-

ber/October 1997, pp. 818.
13. ITU-T | ISO/IEC Recommendation X.901 | International Standard 10746-1, "ODP Refer-

ence Model: Overview", January 1995
14. Jonathan ORB URL: http://www.objectweb.org/jonathan/
15. IETF RFC 1633, “Integrated Services in the Internet Architecture: An Overview”, June,

1994. IETF Integrated Service Working Group.
16. IETF RFC 2205, “Resource Reservation Protocol (RSVP) – Version 1 Functional Specifi-

cation”, September, 1997.

Proceedings of the IWAN 2000 Conference

 15

17. A. Schill, F. Breiter, S. Kühn, "Design and Evaluation of an Advance Reservation Proto-
col on top of RSVP", IFIP 4th International Conference on Broadband Communications,
Stuttgart, 1998, Chapman & Hall, pp. 23-40

18. D. L. Tennenhouse, "A Survey of Active Network Research", IEEE Communications
Magazine, 35 (1), January 1997, pp. 80-86.

