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Abstract. Future requirements for supporting distributed object applications by 
active networks are discussed. A middleware approach for active networking is 
presented. A CORBA-based distributed processing environment (DPE) is de-
scribed as an interoperable service platform in an active network to enable end-
to-end QoS for distributed object communication. Three key platform services 
are presented, including QoS binding, component management and resource 
control. A binding framework is enhanced to achieve transparent QoS binding; 
an active component management service is proposed as an out-band signaling 
to install service objects; active node resources are adaptively managed to sup-
port generic reservation requirements. As a whole, the paper presents a distrib-
uted computing model for active networks so that active services can be dy-
namically deployed as downloadable objects to apply different QoS architec-
tures on demand. With this model, distributed object-oriented systems directly 
benefit from active networking technology with respect to QoS need. 

1 Introduction 

Programmable Networks [6] promote open architectures and standard interfaces for 
flexible service provision to enable novel service architectures by Internet Service 
Vendors (ISV). Active Networks [18] allow dynamic customization and re-
configuration of a network by means of secure code injection in a network. As a re-
configuration example, service modules can be encapsulated in the form of code or a 
composition of codes, and dynamically installed or updated. Therefore, it greatly 
increases the flexibility of service deployment. Harmonization of the two approaches 
within a distributed object framework therefore facilitates deployment of services, 
either application-specific or generic, to better support distributed object applications 
than today, in terms of, e.g. Quality of Service (QoS). The framework can be seen as 
an interoperable (e.g. by IIOP) distributed platform for running active services. This 
paper presents a technical approach to show how active networking can be used to 
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improve the execution of distributed applications, with the help of a middleware 
bridge. 

Providing end-to-end QoS for distributed object systems is the major focus of our 
approach. In existing frameworks such as CORBA, providing QoS for the communi-
cation between distributed objects is challenging due to the difficulty of deploying a 
generic QoS architecture [7], which might require an integration of appropriate archi-
tectures such as Integrated Service[15] and Differentiated Service [10] across the 
network to obtain an end-to-end QoS guarantee. On the other hand, in many cases the 
QoS requirements from application objects cannot be mapped or translated into net-
work QoS parameters as supported by different protocols, e.g. RSVP [16]. Thus QoS 
solutions [1] in the middleware are normally relying on and closely coupled with par-
ticular network-layer QoS mechanisms. Related work includes Active Reservation 
Protocol [3] which enables portable signaling software but is bound to Java and there-
fore limited by Java security and interoperability and Xbind [12], which uses CORBA 
as the platform for programmable value-added services but is limited by existing ORB 
implementation with regard to QoS support. 

In the following the paper summarizes our design in the “Broadband Active Next 
Generation” [4] project. We developed an active middleware framework that supports 
end-to-end QoS for a wide range of distributed applications. It represents a distributed 
computing model for active networks so that active services can be dynamically de-
ployed as downloadable objects to apply different QoS architectures on demand. The 
framework mainly refers to an active distributed processing environment (DPE) that is 
an execution environment (EE) based on an enhanced Object Request Broker (ORB).  

In general, the role of a DPE is to ease the development of distributed applications. 
An application object can access the interface of other objects without knowing the 
location of those potentially remote objects. The DPE is used to gain access to inter-
faces, that is to set up a communication path between objects. The ODP Reference 
Model [13] defines a generic model for distributed processing and standards as 
CORBA [8] specify a concrete architecture supporting this. Since CORBA is limited 
in the types of object communication it supports, the more open Jonathan architecture 
developed during the ReTINA project [9][11] is used as a basis. 

Another important role of the DPE is to manage resources in a distributed way so 
that an end-to-end QoS can be achieved. This includes management of processing 
resources as well as network resources both in end-systems and network nodes. In 
traditional router architectures, network resources are managed in a best-effort and 
rigid fashion. Programmable routers open the internal router details through object-
oriented interface, enabling delivery of novel services as software packages by third-
parties. These new services should be highly customizable. Network resources thus 
need to be controlled in a fine grained manner and could be bound with a service 
dynamically. A generic router resource interface [5] based on the programmable inter-
faces being proposed by IEEE P1520 [6] makes this possible by providing generic 
abstractions and dynamic binding capability. On the other hand, in an active network 
service modules share the resources in parallel in run-time, their access need to be 
synchronized to prevent conflict. To optimally utilize the limited resources in a router, 
more intelligent allocation of resources is preferred than fixed partition and reserva-
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tion. This is particularly important for bandwidth, which nowadays becomes a com-
modity for auction. 

The DPE also allows dynamic deployment of components which will be 
downloaded to an active node and run on the node's DPE. Security has to be consid-
ered on what a downloaded component is allowed to do as well as what resources it 
may consume. The dynamic deployment of components requires a special installation 
service as part of a computing model for active networks [2].  

These form the basis for higher level reservation services. Because of the dynamic 
deployment those services are highly customizable by means of updating or exchang-
ing components. With the definition of interfaces between instances of a service on 
different network nodes the service can provide a network wide resource control. 
Policies are used to regulate resource usage: user identities, time slots, priorities, etc. 
are used to gain efficient multiplexing of available physical resources. 

The next sections describe these parts of the active DPE. The binding framework is 
used to set up communication paths to remote objects, the resource control framework 
is used to get a generic thus fine grained access to resources, the installation service 
allows the dynamic deployment of components, and finally a distributed reservation 
service is outlined to show how to take advantage of an active DPE to provide end-to-
end QoS for distributed object applications. 

2 Binding Framework 

Communication between objects supported by the framework is through bindings, 
which are created by object adapters. In this framework, the notion of object adapter 
is overloaded and extended to allow the explicit binding of objects: the explicit crea-
tion of a binding between different interfaces is realized by invoking an operation on 
an object adapter. Object adapters are binding factories. 

In contrast to the CORBA architecture which identifies an ORB core responsible 
for the conveyance of operation requests and replies, the notion of object adapter in 
this framework is extended to cover also communication aspects, which may thus vary 
from object adapter to object adapter. In summary, an object adapter is not limited to 
cover the server side as in the standard CORBA specification, but actually extends to 
the client side. The notion of ORB core in CORBA can be recovered as a specific, 
default object adapter that can be combined with other object adapters. 

This flexibility allows to define a special binding factory which understands addi-
tional parameters like QoS requirements for the creation of a binding. This binding 
can then provide an interface to application objects to allow dynamic changes of its 
behavior as well as offering registration for notifications about status changes. 



Proceedings of the IWAN 2000 Conference 

 4

Q o S  fro m
s e rv e r 's  v ie w p o in t

Q o S  fro m
c lie n t's  v ie w p o in t

b in d in g
fa c to ry

Q o S  o n  c re a tio n

b in d in g

s e rv e rc l ie n t

 
Fig. 1. QoS involved in object binding. 

The binding framework consists of a set of abstractions for the construction of arbi-
trary communication stacks and abstractions for the construction of protocol-
independent operational stubs. Communication abstractions comprise: 
• Protocols: these are abstractions of protocol machines at a given site; they manage 

the establishment and release of sessions. 
• Sessions: these are logical communication channels that obey a particular commu-

nication protocol; sessions in different capsules exchange messages. 
• Messages: these are abstractions of data exchanged between capsules. 

Protocol-independent stubs described in the binding framework provide generic in-
terfaces for operational bindings. They can be specialized to derive more specific 
forms of operational bindings. Stubs are at the interface between the untyped world of 
protocols and the typed world of language bindings. 
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Fig. 2. Architecture of a binding (client side). 

The open architecture of the binding framework allows the easy insertion of com-
ponents into the communication stack (see Figure 2). For the support of QoS the bind-
ing factory pushes a wrapping session on top of the session stack. The wrapping ses-
sion interacts with the local and remote resource management. Additionally a special 
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controller is introduced with the purpose to control the behavior of the binding and 
allow dynamic modifications of binding properties. This functionality can also be 
provided to the application layer. 

The interaction with the local resource management comprises contacting resource 
managers for processing resources also known as schedulers, managers for memory,  
and managers for local network interfaces. The interaction with remote resource man-
agement is achieved by negotiating QoS with intermediate network nodes and the 
target end-systems of the binding. To achieve end-to-end QoS for an object binding 
the binding has to interact with both local and remote resource management. 

3 Resource Control Framework 

The resource control framework provides a set of abstractions needed by system de-
signers, service suppliers and application programmers to build applications requiring 
and/or providing QoS properties. These abstractions address fields of concern that 
must necessarily be considered when dealing with such QoS properties. Operating 
systems or platforms do not need to implement such abstractions but they must pro-
pose to the programmers basic services on top of which such abstractions can be built. 

The first goal of this resource control framework is to provide basic abstractions for 
designing and engineering:  
• resource multiplexing and scheduling mechanisms; 
• QoS handling mechanisms. 

The second goal of this framework is to provide guidelines for how to build 
"smart" resources and multiplexers for applications dealing with QoS constraints. The 
abstractions are therefore used to identify resource control design patterns. 

In order to be effectively instantiated and to execute, objects must be mapped onto 
hardware resources such as memory, network, external data storage, processors etc. 
The mapping is done by resource managers. The role of a resource manager is to let a 
resource, or a set of resources, be shared between objects. A manager will provide to 
these objects an abstract view of the resources it manages, and control the way these 
resources are used. Resource managers have to keep track of what resources have 
been granted to which identities. This is important for logging and enables higher 
services like accounting. It is also crucial for ensuring that components cannot exceed 
predefined restrictions of resource usage. 

The generic way of gaining access to resources is first to check the admittance to 
resources and then reserve them. If resources are not needed any more they get unre-
served. The semantic of the admit/reserve pattern is that resources which have been 
admitted to a particular object stay so only for a predefined period of time. If the re-
sources are not being reserved in this period the admittance will become invalid and 
later reservations may fail. The admit/reserve pattern allows to check the availability 
of a chain of resources before issuing the reservation. This is essentially important for 
end-to-end QoS. Nevertheless concrete implementations of schedulers may - for the 
sake of simplicity - choose to put the admit and reserve operations into one operation. 
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There are three major types of resource managers: schedulers manage the sharing 
of processing time, memory managers manage the sharing of memory resources, and 
node resource managers manage the sharing of local node resources. This paper fo-
cuses on node resource managers. 

4 Node Resource Manager 

A node resource manager (NRM) is seen as an active network facility to control the 
resources in a programmable router, e.g. bandwidth, queue, buffer, etc. It is deployed 
in each network node and responsible for managing the use of local node resources. It 
is the kernel module in an active distributed processing environment to support net-
work-wide services with respect to resource access and usage. 

generic router
resource interface

network resource manager

resource allocation

local resource map

programmable router

flow
control

queue
control

transmission
control

network resource
manager API

flow
based

ToS
based raw

 
Fig. 3. Architecture of the node resource manager. 

Figure 3 depicts the role of a NRM in the context of an active DPE. A NRM de-
fines mechanisms that control the allocation of resources and synchronize the access. 
It makes use of the generic interface specified in [5], and provides a generic resource 
API to network-wide services, including high level reservation service. 

In an active network, resource allocation represents one common request from net-
work service modules, e.g. an admission control function. It could be a request for a 
minimum bandwidth for a flow, a class of service for packets, or a forwarding priority 
for a flow with particular protocol identifier. It is the major function that a resource 
manager should provide. To more flexibly support the resource needs from different 
services, and to maximize the resource utilization, a NRM implements adaptive 
allocation facility. The facility dynamically adjusts the allocated resources to 
accommodate new resource requests.  

The necessity of such a facility can be justified by a simple scenario - in an intranet 
a flow from a director has higher priority than the flow from a normal employee in an 
active network. Data flows are thus supposed to have different priorities for transmis-
sion. This requires a more flexible/dynamic configuration of the limited network re-
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sources, to optimally fulfill different users’ resource requirements. That is, high prior-
ity flows should have precedence against lower priority flows when resources are 
allocated. As the overall resources are limited, a NRM should be able to dynamically 
re-allocate resources to accommodate new higher-priority flows, and become adap-
tive. 

To allocate resources, a NRM maintains a view of the available node resources, 
mainly the bandwidth, and the state of the queues that split the overall bandwidth. It 
also maintains a view of the QoS-related parameters that a router is allowed to oper-
ate, e.g., discarding priority, queuing priority, and so on. These information together 
form a local resource map, which may be associated with allocation requests currently 
alive, to monitor the resource usage. 

An allocation process generally consists of several basic steps: look-up, partition 
and admission. A look-up operation checks the available resources from the local 
resource map; a partition operation allocates required amount of resources; and the 
admission operation notifies the service module about the success or failure. On suc-
cess, a soft-state is maintained for this allocation, and updated periodically so that an 
allocation can be modified later and use of the allocated resources can be monitored. 
Notably, the partition operation becomes more intelligent to realize adaptive alloca-
tion. In the following an example depicts the principle of a adaptive resource alloca-
tion and its result. 

    

flows

ID src dest bandwidth priority

1 xxx xxx 2Mbps 0

2 xxx xxx 200Kbps 3

3 xxx xxx 50Kbps 3

4 xxx xxx 1.5Mbps 8

queues

ID bandwidth

1 1Mbps

2 2Mbps

3 2.5Mbps

 
Fig. 4. Mapping of flows to queues. 

Figure 4 shows the mapping of flows to queues. A local resource map maintains a 
table "queues" that tracks the state of all the queues, and a table "flows" to keep re-
cord of all the flows that request an amount of bandwidth. Each flow is associated 
with a queue where it obtains requested bandwidth. The rationale for adaptive alloca-
tion is preemption of resource occupation by flow priority, analogous to preemption of 
CPU time by thread priority. there are two key research issues to resolve in order to 
have a fair and efficient solution: 
• Selection of lower-priority flows: grabbing resources from low-priority flows and 

allocating them to higher-priority requests also means violation of previous guaran-
tee promise. Such a violation should be within the tolerance as defined in a service 
level agreement (SLA). Thus when selecting low-priority flows, a cross checking 
between flows’ priority, their bandwidth and associated SLAs is required, and ap-
propriate algorithms should be defined to be fair to each flow and its user. 
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• Re-allocation of resource: the resources allocated to a single low-priority flow 
might not be sufficient for a new flow with higher-priority, a merging of multiple 
flows’ resources is preferable. In some other cases, resource partition is needed to 
accommodate more than one high-priority flows. An efficient scheme is to be re-
searched to avoid waste of resources and operator-defined policy should be sup-
ported. 
By this technology, we aim to realize the goal – efficient allocation and fair usage 

of network resources in an active network. A NRM should provide a generic resource 
manager API that a wide range of QoS services are able to use. Considering the major 
QoS frameworks, Intserv and Diffserv, we define an API that supports both flow-
based and Type of Service (ToS)-based resource allocation.  

Specifically, the flow-based API allows identification of flow, assignment of flow 
priority, required QoS.  In addition, QoS tolerance and necessary notifications are also 
supported by the API. The ToS-based API allows identification packets with particu-
lar ToS value, mapping between ToS and QoS. In this API, a ToS value represents the 
transmission priority of a packet and can be rewritten and remapped to output priority 
by the NRM to achieve dynamic resource allocation. 

5 Active Component Manager Service (ACMS)  

The opportunity offered by active networks to dynamically install components for 
execution in network nodes offers a high degree of flexibility and several other advan-
tages to network management. On the other hand, such an action exposes a serious 
security issue: malicious or bad designed components could damage or cause malfunc-
tions to the active nodes. In order to tackle these drawbacks, our design is based on 
the following rationale: 
• Active components are installed via a policy-controlled way from internal or exter-

nal repositories 
• Policies are defined for the resource usage and allowed behavior of a component 

and the overall system. The security manager is consulted for all security critical 
activities. 
Active Component (AC) is a service component that executes within an Execution 

Environment (EE) in an active node. An Active Component can maintain its state 
from node to node transition, or be stateless (no state is maintained). It could be itself 
mobile (e.g. an agent) or could be transferred to the active node by other third entities. 
The ACMS allows AN entities (e.g. users, administrators etc) to install AC on the 
node and make use of it or possibly make it available to other third party entities via a 
policy controlled way. 

5.1 Architecture 

The architecture of the ACM is depicted in Figure 5. The main components are:  
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• Active Component Manager: This is the front-end of the architecture. All requests 
are issued to, scheduled and executed or denied by this component. Other system 
and service components stored in ACM’s DB are loaded and instantiated by the 
ACM. 

• Security Manager: This component is responsible for all security relevant activi-
ties. It interacts with Policy and Credential Managers in order to take security deci-
sions and grant or deny the issued requests. Checks are made to ensure that i) only 
authorized users install and interact with node’s services and ii) the policy of re-
source usage by the installed components is enforced. 

• Policy Manager: The policies for component/service access are maintained by this 
component. Via its interface authorized entities can dynamically modify the poli-
cies in the EEs or those of the node.  

• Credential Manager: This component is responsible for managing the credentials 
of users/AC e.g. Certificates, public/private keys etc.  

 

active node DPE

Security
Manager

Active Component  Manager (ACM)
Policy-controlled 
request for:
installation
deinstallation
instatiation
destruction
service start
service stop
AC retrieval
AC search
etc

Pull / Push

External AC Repository
Http://, ldap://,ftp://, /net/an_code/, ACM etc.

ACM Repository

Policy
Manager

Resource
Manager

Audit
Manager

Credential
Manager

Policy-controlled 
request for policy 
change

 
Fig. 5.  Active Component Management Service Architecture 

• Audit Manager: All events are audited by this component for further exploitation.  
• Resource Manager: This module controls the allocation and access of the local 

node resources (computing resources and network resources). The access to re-
sources is controlled in cooperation with the Security Manager. 

• ACM Repository:  It is the repository that AC is stored. This could be an external 
location accessed via known protocols such as http, ftp, ldap or even another ACM 
repository in another active node. Of course the AC could also reside somewhere in 
the local file system. 
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Figure 5. shows the procedure of installing an active component. A possible sce-
nario that shows the interaction between the components is as follows:  
1. Request: A request is made to the ACM  to install a component/service. The re-

quest might be issued explicitly by a user (the user is generally any authority – the 
difference is depicted via the policy scheme with the use of access rights) or implic-
itly as a side-effect of the setup of an object binding requiring a certain service on 
the active node. 

2. Security check: The ACM consults the Security Manager (SM) whether the speci-
fied action is allowed or not. The SM verifies the credentials of the authority that 
issued the request in co-operation with the Credential Manager (CM). Then it 
checks with the Policy Manager (PM) what the current policy is. The Resource 
Manager (RM) is consulted whether the action is allowed or not. Finally the SM re-
turns an accept or deny result for the specified action. 

3. Process of Request: The ACM executes or denies the user request. E.g. installation, 
deinstallation, instatiation, destruction, service start, service stop, AC retrieval, ser-
vice/code search etc 
 
The actions following the last step vary as they depend on the nature of the request 

issued. We can have: 
• Download: if the request is valid and the components are not cached locally, the 

service contacts another repository (e.g. via http, ldap, etc) to download the re-
quested component 

• Resource allocation: after the component is downloaded the appropriate resources 
are allocated (i.e. a new job is created to run the tasks of the component). 

• Instantiation: the component instantiates and executes in a policy-controlled envi-
ronment 

• Runtime checks: all interactions of the installed component with the resource man-
agement are checked with the policy management, this ensures that the component 
does not exceed its predefined amount of resource usage, nor it violates the given 
access rights. 

5.2 Implications of ACMS 

Such a service has several implications in an AN infrastructure. We will try to com-
ment here on the most obvious ones. 

 
Security: The security of the AN is fortified as we can control via policy who in-

stalls what, where and for how long. Furthermore we can control who has permission 
at runtime to execute which components and under what environmental conditions 
(e.g. available memory). Also via the predefined node manipulation idea described 
later we can actually have an active node which is under the complete control of the 
node administrator and yet programmable by third parties. 

 
Safety: The existence of the ACMS can guarantee a higher level of safety in the 

node. Many security violations occur not only because malicious software misuses the 
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node, but also from trusted code that does not execute correctly. So we need a way to 
be sure that the code that executes will not bring the node to an unstable state by mis-
take. To achieve this, one could use safe languages such as PLAN or Netscript, but 
usually this brings performance penalty and limits the programming flexibility. In our 
approach, run-time safety is also a task of the resource manager which monitors the 
resource usage of each component, and prevents access conflicts. ACM’s role include 
setting-up a sandbox for each service which has its limited resource space, therefore 
providing a notion of safety at the instantiation stage. Furthermore the existence of 
ACMS allows the node owner to install his own AC on the node and allow third par-
ties to call it and execute it. As he is the author of the code, he has already tested it 
and knows that this code is safe to use (something that is not the general case for code 
coming from third parties). Furthermore AN node programming is not considered a 
trivial activity and many programmers make different tradeoffs between code func-
tionality and code testing. It is sure that the node owner will invest more effort in 
testing and debugging AC that he installs in order to avoid future problems, than the 
average user. 

   
Predefined Node Manipulation: A lot of network operators are very much con-

cerned with the idea of executing code within a node, mainly because of it obvious or 
hidden drawbacks such an action carries. For this category the ACMS can be a useful 
tool as it can provide specific interfaces to users to interact with the node. The net-
work operator installs itself the necessary code and services in the node and allows the 
user to call this code with predefined and well tested parameters. Although again we 
have code executing we can predict the result of this execution since the node’s status 
will change to one of the predefined ones. This can be seen as a hybrid approach  
since AC is executed (active network) but actually the node is manipulated via prede-
fined interfaces (programmable network). This is a very attractive approach for net-
work administrators that want to provide advanced functionality but are not willing to 
allow execution of foreign code into their nodes. 

6 Distributed Reservation Service 

This section aims to describe a scenario which demonstrates the advantages of the 
active DPE. For this purpose a generic resource reservation service is sketched as one 
active service that can be customized for different styles, e.g. reservation-in-advance 
[17] or immediate reservation (RSVP). 
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Fig. 6. Distributed reservation service for object communication. 

Figure 6 shows a distributed reservation service. This service consists of compo-
nents sitting on top of the resource management on each active node. With the help of 
intra-service interfaces (2) the several components can offer network-wide interfaces 
to end-systems (1 and 3). In the end-systems these interfaces are accessed out of the 
binding framework. A special wrapping session handles the QoS needs of the applica-
tion objects and interacts with the local resource management as well as with the dis-
tributed reservation service. 

The components forming the reservation service are stored in a trusted repository 
managed by a network operator. In the deployment stage those components are 
downloaded and installed on the active node by the ACMS. The run-time instance of a 
reservation service component has its limited resource space, allocated by the ACMS 
and controlled by resource managers. 

To provide a network-wide interface, the service instances on different nodes have 
to interact. For this, an instance has to be able to obtain the interface references of 
other instances in neighboring active node. This can be achieved by a centralized 
naming service, or a propagation protocol among active nodes that makes the refer-
ences aware to adjacent nodes. The way the chain of service components is build is 
specific to the implementation of the service and not part of the framework. 

The QoS expected for the communication between objects can be specified when 
the binding is created. Server objects may export their interfaces to the binding speci-
fying the QoS they expect at their interfaces, client objects may import the interfaces 
also specifying the QoS they expect for the communication. In any case the QoS has 
to be established along the communication path between client and server. This can 
happen when a client imports an interface, i.e. connects to the binding, or on the first 
call on an imported interface.  

The request for establishing a QoS has to be propagated along the communication 
path and each node has to decide whether or not the request can be fulfilled. Follow-
ing the admit/reserve pattern described in a previous chapter it can be avoided to re-
serve resources without knowing if the reservation is admittable on all intermediate 
network nodes. Of course one has to take care about network nodes along the commu-
nication path that don't support the distributed reservation service. This problem can 
be solved by over-provisioning or by adapting to available reservation techniques. 
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The purpose of the distributed reservation service is to provide resource reservation 
for the communication between a multitude of distributed objects. The main objective 
is to share the available resources between requesting applications as effectively as 
possible. For this additional information like priority policies or timetables could be 
useful. The dynamic deployment of the service components allows a flexible response 
to the needs of applications. 

7 Implementation 

A prototype of the active DPE is implemented in JAVA using the modular and exten-
sible Jonathan ORB [14] as the basis for the binding and resource control frameworks. 
The active DPE is deployed in a testbed consisting of three Hitachi Gigabit Routers 
2000 and three controlling PCs running on Linux. The active DPE is running in a 
JAVA virtual machine on the controlling PCs and accesses the router command inter-
face via a Telnet connection. The router’s command interface is wrapped by JAVA 
objects forming a generic router API. Currently the DPE doesn’t support packet proc-
essing, it only features the management of router resources. 

logical active node

GigabitRouter
2000

controlling PC

Telnet
connection

outgoing data

control information

incoming data

 
Fig. 7. Details of the logical active node. 

8 Conclusion 

The paper describes an ORB-based Active Networking approach. A framework for an 
active DPE is presented to integrate programmable networks, active networks, and 
distributed object technology. The framework supports the execution of network ser-
vice as downloaded active components to provide QoS. These services flexibly pro-
gram network resources through more dynamic and efficient resource manager inter-
face. Their parallel execution is controlled, particular with respect to resource access 
and usage, to ensure safety. Distributed object applications obtain their QoS expecta-
tion with support of a generic reservation service, which is de-coupled from the under-
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lying protocol and can be dynamically customized. In this framework, QoS support is 
transparently embedded in the communication stack as part of binding action. 

Policy is generally considered important as a mean by network administrators to 
control the active network. A dedicated policy-based management system interacts 
with other major services such as resource control, installation, and reservation. A 
policy defines identities so that decisions can be made whether a request should be 
granted or denied. The role of policies is to associate identities with rules that deter-
mine the access and usage of resources.  

As for any other framework the design of components is crucial. Plenty of care has 
to be taken when specifying the components' interfaces: new services or applications 
should be able to treat the offered components as building blocks and take advantage 
by composing the provided functionality. 
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