
Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000

Agent-populated Active Networks
Stamatis Karnouskos

German National Research Center for Information Technology,
Research Institute for Open Communication Systems (GMD-FOKUS)

Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany.
karnouskos@fokus.gmd.de

Abstract Active networking aims at transforming
passive data carriers to active, dynamically configurable
machines that no only pass data to each other but also
perform computation on those data. In such a framework
mobile agents can help either as carriers of the active code to
be installed on active nodes or even as actors by managing the
node autonomously. This paper explores the applicability of
the agent technology in the active network (AN) domain. We
present an architecture of an active node with embedded
agent technology. Then we set the requirements for an AN
language and finally we try to discover the benefits that this
approach offers. At the end we give a scenario that illustrates
a practical working notion of such an architecture.

Keywords Active Networks, Mobile Agents, Security,
denial of service, AN requirements and benefits.

1. Introduction

The basic idea of AN [7] is the movement of service
code which traditionally has been placed outside the
transport network, directly to the network's nodes.
Intermediate nodes should be able to compute on data they
receive based on their state and goals as well as on the
external application's need. All these should be done in a
highly dynamic manner so that service introduction and
performance are optimized. Opening up the network nodes
and states may sound exciting but is not a trivial matter.
This paper concentrates on the discrete approach of active
networking where service deployment is performed
separately from service processing. In this context we
propose the application of agent technology in ANs.

Software agents [11] are a rapidly multi-directional
developing area of research since the early 90s. Yet
research community has not been able to find a clear
answer to the most popular question "What exactly is an
agent?" and the debate still goes on. A general answer
could be: Agents are software components that act alone or
in communities on behalf of an entity and are delegated to
perform tasks under some constraints or action plans.
Mobile Agents (MAs) shatter the notion of client/server

model and eliminate its limitations. They provide robust
networks as the hold time for connections is reduced only to
the time required to move an agent, the agent carries
credentials and therefore the connection is not tied to
constant user authentication, load balancing can be
achieved as there is no request flow across the connection
in order to "guide" the agent and respond to results,
furthermore there are already standardization efforts
defining interoperable interaction between agent systems
[1]. Further standardization efforts and guidelines that
boost the usage of agent technology exist also in
organizations such as the Object Management Group [2]
and the Foundation for Intelligent Physical Agents [3].
Agents are computer and transport independent (they
depend only on the execution environment) and therefore
promote interoperability among systems and software.

2. Agent-powered Active Node

In Figure 1 the active node architecture is pictured. The
node architecture constitutes of :

A programmable router. The router is accessed via an
API for dynamic programming of it resources. The open
node interface represents the abstraction of the router
resources ranging from computational resources (CPU,
memory etc) to packet forwarding resources (bandwidth,
buffer, etc).

The NodeOS. This is the operating system running on
each node (router) in an active network. The NodeOS
provides the basic functionality from which the EEs built
the abstractions presented to the active applications. The
architecture of the NodeOS and its functionality is outlined
in detail by the AN Node OS Working Group [5].

Execution Environments which are on top of the
NodeOS, making use of its services. As noted [6] the
functionality of the active network node is divided among
the Node Operating System (Node OS), the Execution
Environments (EEs) and the active applications. The
architecture allows multiple EEs of various providers to co-

Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000
exist and be present on a single active node. Each EE (e.g.
ANTS, ALIEN, Agent EE) exports a programming
interface or virtual machine that can be programmed or
controlled by 3rd party code. The NodeOS manages the
resources of the node. One of the EEs is the Mobile Agent
EE where agents execute when they visit the node. This EE
is further analyzed in section 3.

Agents that reside in the Agent-specific EEs and via the
facilities offered to them program the node. These can be
either mobile agents (e.g. visiting agent) or even stationary
intelligent ones that reside permanently in the EE and offer
services e.g. tuning node's resources according to traffic,
apply custom security schemes etc

The applications are able to access all the services
offered by the EEs. Usually an application is bounded to
one EE but we can foresee application that will take
advantage of the various characteristics of EEs and possibly
combine their services.

3. Agent EE Architecture

The agent system (Figure 2) consists of places. A
place is a context within an agent system in which an agent

is executed. This context can provide services/functions
such as access to local resources etc . A place is associated
with a location which consists of a place name and the
address of the agent system within which the place resides.
Places can contain other places (nesting places). All places
follow the parent-child paradigm of Unix processes in the
way that each child is assigned/makes use of its parents
resources. Also its policy is an extension/customization of
its parent's policy etc. A Place can be used in different
ways. Places are:

Dynamically assigned to agents as they enter the node
based on some criteria e.g. all agents coming from a
specific user or location or agents belonging to a specific
policy scheme etc.

Statically assigned per entity (e.g. user, enterprise etc).
Here static resources are given to the Place (after agreement
with the node provider) and the local resource manager
manages them. In this way it is possible for an enterprise to
setup a network of places in various nodes, creating a
Place-Oriented Virtual Private Network [15]. This offers
several advantages e.g. secure communication between
company-trusted places etc.

A Policy manager and a resource manager are assigned
to each place and are given the general security guidelines,
which can never be bypassed. If an agent has sufficient
credentials then he can fully interact with the components
e.g. change the place's policy, ask for more resources, insert
elements into the component database etc.

The existence of different Execution Environments
(EEs) for agents (which are called Places within the Agent
architecture) that have the same owner/characteristics
serves the need to avoid unwanted interactions. Isolation
done by EEs is similar to the sandbox idea that exists in
Java. Since in each place agents with common
characteristics (e.g. of the same owner) are gathered the
possibility of attacking each other is lower as usual. Of
course advanced security facilities offered by the place can
be used to minimize these risks. Furthermore if one wants
he can use a place as a TestPlace and allow suspicious
agents to execute there, monitor the results and then
determine if he will allow them to execute in the real place.
Certainly if you see for instance that an agent changes
inappropriately the policy file of the TestPlace you forbid
execution to the desired place (which otherwise would be
catastrophic). Also agents are somehow isolated since each
one has its own classloader.

Places beyond having unique IDs, also hold their own
public/private keys. An agent can ask to be signed in order
to have a proof that it passed via this place. This also helps
with the so-called "multi-hop" security problem. If every
Place signs a specific part of the agent then we can trace
back partly or fully the route the agent followed. Based on
that info we can take further security decisions. Let us
mention that if there is one malicious host who tries to

Programmable Router

(Hardware Transmission Facilities)

Node OS

EE #1

e.g. ANTS

Application 1

Open Router Interface/API

Interface Interface Node
API

EE #2

e.g. ALIEN

Execution Environments

Application 2 Application 3

 EE #3

 Mobile Agents

Figure 1. Active Node Architecture

Place #n

Place1

Region

Agency1 Agency #n

Communication and Transport Channel

Non-agent based service Agent based service
User

Application
Agent

Place1.1

Place1.2

Place1.1.1

Place
Resources

Place1.1.2

Place1.3

Place
Resources

Place
Resources

Place
Resources

Place
Resources

Place

Place
Resources

Place

Place
Resources

Place

Place
Resources

Place

Place
Resources

Figure 2. Agent EE Architecure

Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000
break the chain of signatures (not sign the part of the agent
because he performed something maliciously and doesn’t
want to leave any traces) it will be detected by the next non-
malicious place.

4. The Language Choice

Selecting a language for ANs is not a trivial issue.
Tradeoffs between security and performance are critical
parameters in the choice of a language especially if this
language will be used by user-injected general purpose
code. If ANs were to operate in a completely trusted
environment then any modern programming rich in
features language would be appropriate. But here we have
to deal with a heterogeneous untrusted environment where
the author of the injected code, the user of the code, the
owner of the hardware, the owner of the execution platform
can be different entities governed by different security
policies and possibly competing interests.

AN's biggest problem is security. Thus all decisions in
designing/operating it should be with security in mind. So
we require a language that can have some special
characteristics such as :

• Strong typing. This means that a program cannot
arbitrarily access the host computer's memory. Memory
access is limited to specific controlled areas having
particular representations. Thus in such a language
common programming errors are avoided.

• Garbage collection. Of course each user/agent can
manage the memory (allocate/de-allocate) he is assigned.
Lets suppose that he frees some memory blocks (memory
looses his type) and that these blocks are reallocated to
another agent. Then this agent is able to read the data on
that memory blocks and acquaint info (possibly security
critical) about the operations of the previous user of that
memory space. With automated garbage collection we make
sure to avoid such problems associated with dangling
pointers.

• Access controllable module view allows us to view a
module via multiple interfaces. Thus we may have a reach
feature module that provides different capabilities to
different users. In this way we are able to modify flexibly
who can see/do what and how.

• Dynamic Loading is unquestionably a must! We want
to make modifications and load new functions/capabilities
while our system is up and running. It would be out of
question to shutdown an Active Network router every time
we want to update a software component or provide a new
capability. Furthermore by dynamic linking it is easier to
keep our system up-to-date since the latest version of code
and libraries will always be used.

• Communication support. The language should have its
own optimized libraries for basic communication between
the applications and of course network support. Object

communication, programming with sockets, establishment
of URL connections etc are mandatory in a networking
environment.

• Widely used / evolvable is a non-technical
characteristic of the language we need. This is not for
commercial/political reasons but for practical ones. A
language used by a small group of people might be task-
specific but it would be difficult to advance and keep up to
date. Also bugs, errors misbehavior would be seldom if at
all reported. Thus we need a language that is widely used so
that it evolves fast and day by day new features are added
constantly depending on the needs.

• Platform independence is not mandatory but would be
of great help since our efforts could be ported/deployed
easily to a heterogeneous environment such as that of AN.

Having in mind all the above one could design a new
language tailored to the needs of active networking and our
system. A small sample of difficulties he/she would face is

s designing from the scratch a new language with a
bunch of desired features as mentioned above (e.g.
safety, performance),

s if we don’t manage to address all required features
needed by the user it would be impossible for user to
implement the mobile code he wants,

s it would require a huge amount of work to keep the
language up-to-date with increasing demands,

s it would be used by a limited number of people (AN
people only) and therefore bugs, errors, etc would be
seldom if not at all reported.

The other approach is to use an existing language. Java
is not an AN language itself but covers reasonably our
requirements. Java is a very popular language designed
especially for mobile code and most important with security
in mind. It supports dynamic code loading, concurrency,
communication between networking applications (http,
sockets, RMI etc) and basic security services (presence of a
security manager). Java nowadays is used extensively not
only in research domain but also in industry. Therefore
bugs, errors are found and reported fast. As it is a
commercial product it advances and day by day new
features/libraries are added. Furthermore Java offers
platform independence which is an significant factor as it
assures portability within a heterogeneous environment
such as the AN environment. That in addition with the
support of object oriented concepts like polymorphism and
inheritance make the development of active components
easier, as these components are seen as an abstract object of
code to be transported and installed in an environment no
matter of the underlying architecture.

Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000
5. Expected Benefits

We think that AN community should adopt the agent
approach as it offers many solutions and enhancements in
key-feature areas that AN community looks for. Our
approach is agent oriented not just for the shake of
technology but because of the great benefits we can import
from the agents to the AN technology. Some of them are:

• Decentralization and Autonomy

Many tasks/applications require a continuously open
connection and a fixed network topology. Agents don’t
have that requirement and therefore ANs can benefit from
it. Agents are able of working autonomously and in a
decentralized manner. They exploit the locality and achieve
optimization in the usage of resources they are offered in
that location. Thus problems such as unpredicted network
latencies in critical real-time systems (e.g. robots in a
manufacturing process) can be avoided. Also by using
agents we don’t have to develop new transport mechanisms
for the deployment of active components to the nodes.

• Flexibility

Users are able to launch agents and customize services
easily. Most important the user doesn’t have to be online all
the time since he can send his agent and then disconnect
from the network. The agent carries certificates from the
originator and acts autonomously according to its internal
goals. Furthermore agents provide mechanisms for
monitoring, logging, updating etc which can ease tasks like
administration/management of an AN node.

• Adaptivity

Changes in the environment in which an agent operates
trigger possible changes to agent's behavior. Agent senses
the environment, analyzes the new data and acts
accordingly. E.g. a group of agents monitors the consumed
resources in a network. These agents can exchange
information and travel in the network in order to get a
global view of the network's state. Depending on their goals
as well as their capabilities they can interfere and e.g.
change the routing tables of hosts in order to provide better
exploitation of the bandwidth. This adaptivity promotes the
optimal network service configuration and function.

• Interoperability

Network infrastructure is heterogeneous both in
hardware and in software matters. Agents are computer and
transport independent (depend only on the execution
environment) and therefore promote interoperability among
systems and software. It is possible with agents to
implement interactions with any legacy systems and
currently existing services and make it available to other
heterogeneous agents e.g. via MASIF interface. Although
the ground is pretty new, standardization efforts exist

within many organizations e.g. Object Management Group,
Foundation for Intelligent Physical Agents and will be
available in the near future.

• Security

ANs allow users to inject their code to the node. That is
a security critical activity. These issues have been addressed
and solution exist within the agent community. Agent
technology is capable of providing authentication,
authorization, integrity-check and privacy mechanisms to
AN managers so that they can have control over the
network and its resources. Security is generally provided by
exploiting application level services such as Public Key
Infrastructure [9] and solutions/tools available today for
applications. Agents act on behalf of a user/entity/enterprise
etc and carry some credentials (e.g. signed by the owner or
the originator etc) and based on these credentials and the
local policy a security manager [4] could deny or allow an
agent to access his system. Also as the research area of
security is agent systems is a hot domain, we expect in the
near future more and better security solutions. Those
solutions can be automatically applied in the ANs.

• Scalability

This AN-based architecture is a decentralized one and
can scale easily. AN nodes can host an agent system that
could be low or high populated by agents that act and
interact with each-other providing services and advanced
features [10].

• Safety

The usage of Java as an implementation language offers
some security and safeness level. Furthermore the idea of
Places acting as sandboxes avoids unwanted interactions
within an agent system.

• Performance

Our approach is based on Java. Java based systems for
the moment lack performance. We expect this to change in
the near future as efforts are being made in this direction.
Nevertheless performance can be achieved/enhanced with
other techniques such as component (agent code, protocol,
algorithm etc) caching etc. From AN point of view
intelligence is added at a network level offering the ability
for exciting network wide applications that can configure
each end every node for optimal application and overall
performance. It has been recognized that network
performance is not necessarily correlated with application
performance [8]. ANs may perform actions that on first
glance appear to degrade network performance (e.g. lower
packet throughput) but actually they bring improvement to
the application and to the network itself by reducing
demand of bandwidth at end-points, reducing network
congestion etc.

• Robustness & Fault Tolerance

Mobile agents are programmed with their internal goals
and logic. Taking also into account their ability to react to

Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000
the changing environment and unpredicted situations, it
makes easier to design and implement robust and fault
tolerant systems.

• Software Independence & Evolvement

Current distributed systems exchange data via a
standardized way (protocols). Each node owns the
hardware specific code that implements the protocol needed
to communicate with the outside world. However the
protocols and their supported features evolve and often we
face the problem of outdated protocol versions which are
inefficient and insecure. Agents on the other hand can help
effectively in this problem. They can move to remote hosts
and establish "channels" based on protocols that are task
specific and not even standardized. Furthermore they can
update node's components automatically, therefore keeping
our infrastructure always up-to-date since all network
components will be updated in parallel shortly after the
announcement of a component update by the manufacturer.

The agent based approach allows for a high level system
design including business aspects. The market is moving
towards a service orientation and agents can fit well as
service oriented software. Agents have a natural place in
the application model as a) wrappers of legacy systems or
as embedded smart systems, b) as powerful middleware that
glues together distributed components, c) as intelligent and
adaptable interfaces that support online/offline user
interaction. Active networks is a good area to apply the
agent technology as they will benefit on all the above
mentioned sections.

6. Denial of Service Example Scenario

A hot issue in the AN research is the security one. On
first thought, as AN open up the network, they seem to be
more vulnerable to security threats than traditional
networks. However the flexibility they add to the network
itself can be used to deal effectively with traditional
network attacks. We give here a scenario taken from the
security domain that demonstrates how the agent based AN
approach can lead us to a more secure network.

We will demonstrate how agent-based ANs can change

dynamically the security of a node and promote network
security (and not only on local nodes). Denial of service
attacks are very common in current networks and are very
difficult to be dealt with. The aim is to exhaust maliciously
all resources of a node and therefore denying services to
legitimate users. Such attacks can be initiated from a single
host or multiple ones that reside within the same corporate
network (a compromised trusted host) or are external .

Lets try to take one sort of denial of service attack and
try to see how agent-based ANs can deal with it. We
assume that node A (Attacker) is trying to attack node V
(Victim) by opening aggressively thousands of connections
to that node or by trying to flood all connections to that
node with messages. The V node detects (via its policy or
its intelligent stationary agent - lets call it Security Guard
(SG)) unusual high number of network utilization and
triggers immediately the attack-protection tactic.
Immediately the SG changes the local policy database and
further requests/flow from that node is denied
access/ignored. Subsequently it dispatches child-SGs
(agents with specific mission) which it multicasts to his
neighbors (the attacker may have -and in this paradigm
has- alternative routes to attack a node). Child-SGs have as
goal to inform SGs on neighbor nodes and block/filter all
traffic from A-node to V-node. Child-SGs are installed if
permitted (or pass the necessary info to those node's SG) to
those nodes and block again requests/flow coming from A-
node and directed to V-node. Normal nodes that are not
active just transfer the agents to the next node. Finally
agents via this multicast reach the nodes that are directly
connected with the A-node and block any further requests
of this node.

Now this A-node can be an external or an internal node
of a corporate network. Also maybe the node is a malicious
node (the node's manager is not trusted) or maybe an
element of the node is behaving maliciously or
malfunctioning. If the node is malicious then there is
nothing more that can be done. All requests/flow is filtered
and blocked in the nearby nodes, thus protecting the rest of
our network. If the node is not a malicious one but a
component misbehaves e.g. an agent is behaving
maliciously then it might be possible to install the blocking
agent on the A-node and provide info to the A-node SG.
Then the A-node SG (assumed not to be associated with the
attacker) might identify the entity responsible for the attack
(e.g. a malicious/malfunctioning agent) and take the
appropriate measures e.g. kill it. If a component is
behaving maliciously by error (e.g. a crash has corrupted
the disk space where the component is stored and therefore
the component itself), then that component could be
replaced with a new version by an agent and the node
would stop malfunctioning.

Action plans to be taken once the attack has been
identified is a matter of policy, intelligence and capability
of an agent. In any case the agent-based ANs have the

AN node Normal
node

AN node

Normal
node

Normal
node

AN node V-AN node

AN node

AN node

A-AN node

Figure 3. Denial of Service attack & blocking

Proceedings of the 2nd International Conference on Advanced Communication Technology - 2000
ability to change dynamically the policy on the active nodes
providing a more secure infrastructure and protecting not
only the local network but the whole intranet. We note that
normal nodes (such as that residing next to A-node in
Figure 3) can't be protected/notified for this kind of attacks
nor can they promote corporate network security as they act
only for their own good and don’t possess the means to
interact with the other nodes.

Lately highly sophisticated tools for distributed denial of
service attacks such as Stacheldraht [12], Tribe Flood
Network [13] and Trinoo [14] have appeared. With such
tools it is now relatively easy for a single person to perform
a distributed attack from thousands of compromised hosts.
We ought to say that fast and automated ways of identifying
and dynamically blocking such types of attacks is not just
desirable but a question of survivability for next generation
networks. Internet nowadays is defenseless and a secure
network that can quickly evolve its security provisions and
protocols to keep ahead (or at least deal in an effective and
quick way) of the attackers has to be the prime mission. We
believe that the combination of agent technology embedded
in active networks will be able to provide the flexibility and
the services needed for a security aware network.

7. Summary and Conclusions

An agent-based active node architecture has been
presented. This approach uses agents with different features
e.g. mobile, stationary, intelligent, goal oriented etc to
empower the current passive routers and to transform them
to AN nodes. We have showed that Agent technology is a
promising candidate for the development of Active
Networks. It offers benefits to the users as well as the
developers of ANs including flexibility, adaptivity,
decentralization and autonomy, interoperability, scalability,
security etc.

The outlined scenario shows a small sample of what
kind of applications can benefit from the agent paradigm.
Alternative VPNs [15] can be also deployed with minimal
effort and low cost, suitable for small working groups that
can't afford a legacy VPN. Security notifications can be
delivered to nodes and update its databases and security
threats can be effectively blocked near the source,
protecting thus the rest of the network. In the future we
intent to validate the above concepts by building an AN
node with embedded agent technology [16]. By using an
legacy IP router and enhancing it with an agent add-on we
will demonstrate how it is possible to satisfy the ever
increasing demand for more sophisticated and highly
configurable/programmable services.

It is very likely that agent technology will play an
important role in the development and expansion of the
Active Networks. The basic characteristics of mobile agents
such as mobility and autonomy can push networks to
become more "open", active and more powerful. Agent
technology advances continuously. In any case agent
domain has made significant contributions in the area of
code mobility and security and it wouldn’t be wise
reinventing the wheel every time in every approach we
take. By integrating agents we make sure that in the future
we will have all the time the state-of-the-art agent
technology in our network and that simply means that our
infrastructure will keep on advancing as long as it is
connected with this parallel developing domain.

REFERENCES

[1] MASIF - Mobile Agent System Interoperability Facility,
URL : http://www.omg.org/docs/orbos/98-03-09.pdf

[2] OMG Web Site : http://www.omg.org/
[3] FIPA Web Site: http://www.fipa.org/
[4] S. Karnouskos, I. Busse, S. Covaci ," Agent Based Security for the

Active Network Infrastructure",
1st International Working Conference on Active Networks, Berlin,
Germany, June-July 1999.

[5] Node OS Interface Specification. AN Node OS Working Group, Larry
Peterson, ed., January 24, 2000.

[6] Architectural Framework for Active Networks, Draft version 1.0, K.L.
Calvert, ed., July 27, 1999.

[7] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. Vicente,
and D. Villela, "A Survey of Programmable Networks", ACM
SIGCOMM Computer Communications Review, Vol. 29, No 2, pg. 7-
23, April 1999.

[8] D. Wetherall, U. Legedza and J. Guttag. "Introducing new Internet
services : why and how", IEEE network magazine, July 1998.

[9] Simple Public Key Infrastructure. URL :
http://www.ietf.org/html.charters/spki-charter.html

[10] "Mobile Agents - Enabling Technology for Active Intelligent Network
Implementation", Markus Breugst and Thomas Magedanz. IKV++
GmbH, Technical University of Berlin. IEEE Network May/June
1998.

[11] Cetus Links on Mobile Agents : http://www.cetus-
links.org/oo_mobile_agents.html

[12] "The stacheldraht distributed denial of service attack tool", David
Dittrich, University of Washington, 31 Dec. 1999.
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

[13] "The Tribe Flood Network distributed denial of service attack tool",
David Dittrich, University of Washington, 21 Oct. 1999.
http://staff.washington.edu/dittrich/misc/tfn.analysis

[14] "The DoS Project's trinoo distributed denial of service attack tool",
David Dittrich, University of Washington, 21 Oct. 1999.
http://staff.washington.edu/dittrich/misc/trinoo.analysis

[15] S. Karnouskos, I. Busse, S. Covaci, "Place Oriented Virtual Private
Networks", in the Proceedings of the Thirty Third Hawaii International
Conference on System Science (HICSS-33), January 4-7 2000, on the
island of Maui, Hawaii, USA.

[16] BANG - The Broadband Active Network Generation project.
http://www.fokus.gmd.de/research/cc/glone/projects/bang/

