
� � � � � � � � � � 	 �
 � � �
 � � ! � � " � � � # $ % & & &

1

Agent Based Secur ity for the Active Network
Infrastructure

Stamatis Karnouskos, Ingo Busse and Stefan Covaci

German National Research Center for Information Technology
Research Institute for Open Communication Systems (GMD-FOKUS)

Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
http://www.fokus.gmd.de/ima/

Abstract. Security in Active Networks is still in its infancy! This paper
presents a new Agent-Based Security architecture for the Active Network
Infrastructure (ABSANI). It is explained why agents in combination with Java
are considered the appropriate solution for security architecture and how this
can be applied in the Active Networks. An agent-based Active Node
architecture is introduced and ABSANI is placed within that approach.
Subsequently, all the basic components of the ABSANI are analyzed arguing
for the benefits they offer. Finally an application scenario of Place-oriented
Virtual Private Networks is demonstrated.

1 Introduction

This approach integrates multi-domain parallel evolving technologies (Agents,
Java, CORBA). We try to mix the benefits of Agent Technology and where needed of
CORBA in order to apply it successfully to the Active Networks domain. We present
shortly these areas, how each one can be used as a benefit to the other and where and
why our approach stands today in relation with the already ongoing research.

1.1 Active Network Technology

The last years a variety of approaches have been pursued in order to provide a
flexible programmable network infrastructure that could "change its behavior on drop
of a dime". Active Network (AN) technology aims to move dynamic computation
within the network and therefore making it more intelligent not just to its end-points
but also in the intermediate nodes. An Active Network is a group of network nodes
(switches, routers, -called Active Nodes hereafter-) that support the deployment and
execution of user applications (embedded in the user communications), without
interrupting the network operation. In this way, an Active Network is in the position
to offer dynamically customized/programmed network services (e.g. connection) to
the customers/users or even enables users to inject their own applications to support
their communication needs. Programmable networks open many new possibilities for

' () * + + , - . / 0) 1 2 3 + 4 5 6 7 8 9 : ; 8 < 9 = > 8 < ? @ > ; A = 8 B C > 8 D : ; : 8 : > 8 E F 9 = G : H : 9 I > ; A J K L M M M

2

innovative applications that are unimaginable with traditional data networks. This
dynamic network programmability can be conceived by two different approaches:

I . In-band programming of the network nodes (also widely known as the capsule
approach). The program is integrated into every packet of data sent to the network
(the program is injected on the same path as the data). When these capsules arrive at
the Active Node, the node evaluates the programs and adapts its functionality. The
programs within the capsules are typically very small due to the size limitation of the
packets and the transport overhead imposed by the capsule programs. Active Network
programmability based on capsules is therefore limited. That is definitely negative
especially in the context of connection-oriented communication environments where
active node re-configuration/programming (activated by the reconfiguration of
network connections) is needed much less frequently than the processing of packet
payload. It is not necessary and not very efficient to equip each data packet with a
computation capability as this adds too much overhead to the processing of packets.
Thus capsules have very low utilization in such context.

I I . Out-band programming of the network nodes. Here the programs are injected
into the node in a different session from the actual data packets that they affect. User
would send the program to the network node (switch/router) where it should be stored
and later when data arrives, it is executed processing that data. The data can have
some information (e.g. special tags) that would let the node decide how to handle it or
what program to execute. Within this approach which makes clear the separation of
data/communication packets nodes can be programmed via injection of new program
code into the active nodes, where injection can typically be done by specific packets
(e.g. mobile agents) that are evaluated at the network nodes. Our architecture supports
exactly this approach.

Finally in this category falls also the notion of remote manipulation (binding)
of the node’s resources through a set of well defined interfaces [1]. This is not
considered a pure AN approach as we have high-level configurability/remote
manipulation and not programmability of the node. The difference between remote
manipulation and active code injection is similar to the difference between a RPC-
based and a Mobile Agent (MA)-based software design paradigm, where MAs can
help to increase the flexibility and robustness. In addition, it allows for load balancing
of the active network services.

1.2 Agent Technology

Software agents is a rapidly developing area of research. The research
community has still not found a clear answer to the most popular question "What is an
agent?" and the debate still goes on. A general answer could be: Agents are software
components that act alone or in communities on behalf of an entity and are delegated
to perform tasks under some constraints or action plans. However agents come in
myriad of different types depending on their nature and the environment.

N O P Q R R S T U V W P X Y Z R [\] ^ _ ` a b _ c ` d e _ c f g e b h d _ i j e _ k a b a _ a e _ l m ` d n a o a ` p e b h q r s t t t

3

Examples are: Collaborative agents, Autonomous/Proactive agents, Interface agents,
Mobile agents, Reactive agents, Hybrid agents, Intelligent/Smart agents,
Mental/Emotional agents etc.

The above categorization is not unique and depends on some of the attributes
agents show in greatest degree. Of course there can be mixed agents i.e. an Intelligent
Agent can also be Mobile. In our Active Network infrastructure a variety of agents
can be used. E.g.
• Intelligent agents that reside on the node and "intelligently" configure the node’s

resources for optimal performance.
• Mobile agents that can be "dumb" but execute trivial tasks in all nodes of the

Active Network Infrastructure
• Collaborative agents that work in teams and take care of the security within an

Active Network domain. E.g., automatic certified security updates on the AN
nodes, elimination of denial of service attempts by blocking the source of attack to
the nearest AN node etc.

Mobile agent systems provide the AN infrastructure with many advantages. MAs
shatter the notion of Client/Server model and eliminate its limitations. They provide
robust networks as the hold time for connections is reduced only to the time required
to move an agent, the agent carries credentials and therefore the connection is not tied
to constant user authentication, load balancing can be achieved as there is no request
flow across the connection in order to "guide" the agent and respond to results, there
even has been already standardization efforts defining interoperable interaction
between agent systems [2].

2 Motivation

Security in Active Networks is still in its infancy!Active node programming is
typically a security-critical activity. Of course in such a programmable network the
security implications are far more complex than in current environments. Although
there has been some research concerning the security of AN little or no effort has
been made to make a dynamic, extensible, configurable and interoperable. ANs
demand that this security architecture is as highly programmable and evolvable as
possible. Extensive and expensive authentication measures are necessary to protect
the active node resources from malicious intrusions. Such security measures can not
be applied on the basis of individual packets due to their time and space requirements.

Our solution is an Agent Based Security Architecture for Active Networks.
With this approach we don’ t seek a one-side technological approach to the AN
security problem but the integration of parallel evolving technologies. ABSANI aims
in integrating cutting-edge technologies in order to produce a high-security
architecture and deal with the advanced security threats that Active Network
technology introduces. There is no need in re-inventing the wheel in the security
approach we take. By building upon existing security schemes we make sure that our
architecture is open and interoperable.

We understand that these are parallel developing domains into which much
research effort has been invested the last years and which will keep on evolving fast.

u v w x y y z { | } ~ w � � � y �

4

By integrating state-of-the-art components we make sure that our architecture stays
up-to-date and advances/adapts to current needs as its components evolve. That not
only is in favor of its internal/external security but also of its lifetime. Within the
ABSANI architecture we try to encompass the flexibility and special characteristics of
agent technology.

Message

Agency Agency

Place

Services /
ResourcesServices /

ResourcesService /
Resource

- eavesdropping
- alternation
- record/replay

- resource abuse
- masquerade
- repudiation
- denial of service attack

complete control of
agency over
hosted agent

Class Server

Registry

- eavesdropping
- alternation
- masquerade

User

Fig. 1. Security Threats to Agent-Based Applications

We use the agent-based approach to program an Active Node. In such an
environment author of the MA code, the user, the owner of the hardware, the owner
of the execution platform can be different entities governed by different security
policies in a heterogeneous environment. As we also see in Fig.1 security in such an
environment is an extremely sensitive issue. The hosts have to be protected from
malicious agents and the agents themselves have to be protected from malicious hosts
or other malicious agents who could attack them. Moreover the communication road
between the AN nodes has to be protected with state of the art security techniques.
The Agent Community as well as the AN Community work on these topics. Our open
security architecture assures that future solutions in the agent security domain can be
applicable to our approach, therefore strengthening the Node’s protection system.

3 The Active Network Architecture

User’s AN or Legacy
Router

Legacy Router

Legacy Router

Agent AN add-on

Legacy Router

Agent AN add-on

Legacy Router Agent AN add-on

Legacy Router

AN Node #2

AN Node #1

AN Node #3

Fig. 2. Active Network Infrastructure

� � � � ¡ ¢ £ ¤ ¥ � ¦ § ¨ © ª « ¬ ­ ® ¯ ° ­ ± ® ² ³ ­ ± ´ µ ³ ° ¶ ² ­ · ¸ ³ ­ ¹ ¯ ° ¯ ­ ¯ ³ ­ º » ® ² ¼ ¯ ½ ¯ ® ¾ ³ ° ¶ ¿ À Á Â Â Â

5

The Active Network Infrastructure is seen as a network of co-existing AN nodes
and legacy nodes. User initiates agents that traverse the network and configure the
Active Nodes. In Fig.2 the user has initiated an Agent to change the behavior of AN
Node #2 and AN Node #3. The agent visits the target node and executes. Then,
having fulfilled its tasks, moves to the next AN Node via the Legacy Router. There he
executes again. Our notion of an Active Node architecture is with embedded the agent
technology (illustrated in Fig.3). As we can see agents can empower current Routers
and transform them to Active Nodes. The resources of the node can be
accesses/controlled by visiting agents and according to the node’s policy schemes.

4 The Secur ity Architecture

Security can’ t be an afterthought! It has to be integrated with the node's core
function and not implemented at the end as an extra, optional or explicitly called
service. The new security architecture for AN proposed hereafter is based on mobile
agent technology. Wherever we detect significant benefits we make use (Fig.4) of the
Common Object Request Broker (CORBA) [3] which is today an established standard
that enhances the original RPC based architectures by allowing relatively free and
transparent distribution of service functionality. Currently no standard that handles the
interoperability between different agent platforms and the usability of CORBA
services by agent based components exists. By further developing this architecture we
hope to provide feedback to future standardization efforts.

Agent AN
add-on

Legacy
Router Routing Hardware

Abstraction Layer of Router Resources

SNMP Interface

CORBA

1st Execution
Environement

nth Execution
Environement

Agent Platform

Fig. 3. Active Node Architecture

Agent System
CORBA

Node Resources

Active Node Security Services

Fig. 4. Technology view of ABSANI

Ã Ä Å Æ Ç Ç È É Ê Ë Ì Å Í Î Ï Ç Ð Ñ Ò Ó Ô Õ Ö × Ô Ø Õ Ù Ú Ô Ø Û Ü Ú × Ý Ù Ô Þ ß Ú Ô à Ö × Ö Ô Ö Ú Ô á â Õ Ù ã Ö ä Ö Õ å Ú × Ý æ ç è é é é

6

The architecture consists of Places that interact with the core of the
architecture (Fig.5). The communication is done mainly between the enforcement
engines and Resource Managers. Analytically the components that this architecture
consists of are:

4.1 Place

A Place is a context within an agent system1 in which an agent is executed.
This context can provide services/functions such as access to local resources. A place
is associated with a location which consists of a place name and the address of the
agent system within which the place resides.

A Place can be used in different ways. Places are:
• Dynamically assigned to agents as they enter the node. The criteria can vary e.g.

all agents coming from a specific user or agents belonging to a specific policy
scheme etc. A policy manager and a resource manager are assigned to the Place
and are given the general security guidelines, which can never be bypassed. If an
agent has sufficient credentials then he can fully interact with the components

1 An agent system is a platform that can create, interpret, execute, transfer, and terminate agents. An agent

system is identified by its name and address uniquely. One or more Places reside within an Agent
System.

...

Node-Enforcement Engine

Node Credential DB

Node Policy DB

Node Component DB

Node - Resource Manager

Audit

Place #1 Place #n Management Place

Cache

Enforcement Engine

Credential DB

Policy DB

Component DB

Resource Manager

Audit

Cache

Enforcement Engine

Credential DB

Policy DB

Component DB

Resource Manager

Audit

Cache

Enforcement Engine

Credential DB

Policy DB

Component DB

Resource Manager

Audit

Cache

Fig. 5. Overall Architecture view

ê ë ì í î î ï ð ñ ò ó ì ô õ ö î ÷ ø ù ú û ü ý þ û ÿ ü � � û ÿ � � � þ � � û � � � û � ý þ ý û ý � û � 	 ü �
 ý � ý ü � � þ �
 � � � � �

7

e.g. change the Place’s policy, ask for more resources, insert elements into the
component database etc.

• Statically assigned per entity (e.g. user, enterprise etc). Again static resources are
given to the Place and the local Resource Manager manages them. With this way
it is possible for an Enterprise to setup a network of Places in various nodes,
creating a Place Oriented Virtual Private Network (PO-VPN). This offers several
advantages e.g. secure communication between company-trusted places etc.

4.2 Policy DB

The Policy Database is responsible for maintaining all policy schemes. By
separating the PolicyDB from the Enforcement Engine we insert a dynamic way of
policy modification within the node. We use an already existing language to define
the policies to be stored in the database.

The security policy defines the access each piece of code has to resources.
Signed code can run with different privileges based on the key that it used. Thus users
can tune their trade-off between security and functionality (of course within the
allowed limits).

We make use of the principal of least-privilege. This principal states that
only the minimally powerful authority should be used to authorize a request for
access. Thus any mistakes from “powered” users will lead to the least possible
damage. Following this thought a principal with the authority to do many different
things should be able to indicate which one of those authorities should be used in a
specific request. E.g. An administrator wants to backup the Node's databases. He
holds two keys the Supervisor_Key (allowed to do anything within the DB) and
Read_Key (allowed only to read the DB). He should use the second key to backup his
DB. Thus even if something goes wrong no modification/damage can occur at the
DB.

Any attempts to describe the security policy in terms of each individual
principal's authority to access each individual object is not scalable and not
understandable for those instituting the policy. Thus it has been proposed to group
principals and objects into sets with common attributes, where the attributes are used
in making security decisions rather than the individual identities. So we have Role-
based Policy, Group policy, clearance labels, domains etc

We are also experimenting with the KeyNote Trust Management System [4]
in order to realize flexible policies. In any case policy files are human-
readable/understandable.

4.3 Credential DB

Credentials of principals/code & components are stored in this database. A
principal is an entity that can make a request for access that is subject to
authorization. Security relies not only to the authentication of the entity but also to the
activities he wants to perform. The credentials combine a description of the identity of

� � � � � � � � � � � � � � � � � � ! " # $ % " & # ' (" &) * (% + ' " , - (" . $ % $ " $ (" / 0 # ' 1 $ 2 $ # 3 (% + 4 5 6 7 7 7

8

the principal and also attributes associated with the principal and the actions he wants
to perform to take the decision whether he is granted to do what he asks for or not.

Scenario: The principal may want to execute code that is not trusted (but the
principal is trusted). On hard node security level this should be denied. Therefore the
Enforcement Engine checks a) if the principal is trusted and allowed to perform the
desired action b) if the code he wants to execute is trusted.
X509v3 and SPKI Certificates [5] are used as credentials in a heterogeneous
environment with a key used as the primary identification of a principal. The
credentials include a hash of the content, list of signers and their signatures,
certificates, other info associated with the specific action or agent. Credentials can be
associated with various components such as agents, code, policies etc.

Credentials are used to:
• Verify that the component was created/distributed/authenticated by the claiming

principals.
• Verify that the component hasn’ t been altered after it has been signed.
• Fulfil partially the non-repudiation need so that the originator of that code can't

deny it.

4.4 Component DB

The Component Database can be considered a general Database of active
code, protocols, etc. It can also be used for caching agent's code but its use is far more
extended than simple caching. As we will demonstrate it is a non-removable part of
this architecture that strengthens the overall security. Security is by nature overhead in
the communication and execution in order to protect the system. We accept that. Yet
there are novel ways/techniques to minimize this overhead (under certain conditions)
and fortify the Security on the node.

4.4.1 The multiple re-visit by the same agent scenar io:
An agent performs multiple visits to the node. Each time we verify the agent's

credentials, put him within a specific policy framework, check it while it executes,
authorize every call it makes in other objects or resources it wants to use. It is obvious
that if this agent is a frequent visitor it is dull to re-apply the same actions again and
again. A caching scheme must be used. Now this caching can be done in different
levels. We can cache the agent's code, the agent's credentials, components that the
agent needs, monitor the agent's use of resources and associate with a specific agent
code etc. Then the next time the agent comes to the node we don’ t have to verify its
user nor its code. Also as it has executed before we know approximately what its
behavior and needs are. Furthermore we have in the Component DB stored its
verified, checked and authorized code. Thus we take from our Component DB the
code of the agent (which we trust) and only the data of the newly arrived agent. In
that way we avoid the repetition of authorizations which are time consuming. Of
course this is a policy matter and can be changed but the node should have the means
to provide this flexibility, and in order to do that we need the Component DB.

8 9 : ; < < = > ? @ A : B C D < E F G H I J K L I M J N O I M P Q O L R N I S T O I U K L K I K O I V W J N X K Y K J Z O L R [\] ^ ^ ^

9

4.4.2 The common component usage scenar io :
As before, we have agents that visit our node. In this case the distinguishing-

characteristic is not that the code of the agent comes is the same (as in 4.4.1), but that
they make use of similar components. E.g. the agents in order to execute an action
need some special protocol or some special cryptographic module etc. We (the Node
Manager or even the Place Manager) could provide such components in the
Component DB signed and tested in the specific environment. The agent then can
make a call to those components and perform its actions. As all components will be
signed the agent can decide whether it is safe to use those components or not.

Such a DB serves in multiple ways. The agent can be lighter as there is no need to
carry everything he needs, the node security is enforced as it executed components
that have been thoroughly tested by the Node Provider and all the actions are faster as
overhead due to security actions are minimized.

4.5 Resource Manager

A Resource Manager is available in order to handle the resources.
• Place Resource Manager. The Place resource Manager can handle the resources

that are dedicated to a specific place. It can be contacted also directly via the
agents that reside in the associated place also in the case that there is a need for
more resources.

• Node Resource Manager: Handles the LocalNode Resources. It is contacted via
the NodeSecurityManager or via the PlaceResourceManager (Fig.6). It is also the
gateway to the resources of another node or nodes. An interface is provided on
how this security Architecture interacts with the Resource Manager.

Note that the resources available to a certain Place are transparent to the Agent.
That means that local resources could be extended via CORBA in order to access
resources in other AN nodes. This helps with the Place Oriented Virtual Private
Network (PO-VPN) as we will explain later.

4.6 Cache

The Cache is another essential part of the architecture in order to improve
performance. Security checks are time-/computing- consuming processes. In our
effort not to duplicate all the time the security checks we have a cache. Caches exist
in all Places and are accessible via the Security Enforcer only. Security checks that
have been done via the Enforcement Engine are stored with a time limit in the cache.
If the time limit expires then the security checks are performed again, otherwise the
security check is considered valid and is used by the system.

_ ` a b c c d e f g h a i j k c l m n o p q r s p t q u v p t w x v s y u p z { v p | r s r p r v p } ~ q u � r � r q � v s y � � � � � �

10

The Policy DB can be dynamically updated via the Enforcement Engine any
time. Thus the problem is faced that the cache contains outdated information. We
solve this problem by deleting -each time the policy for an Entity changes- the cached
security checks that are associated with this key/person partially or completely. So
next time a security check is requested it will not exist in cache and it will be
performed from the beginning. This is a novel method to speed-up the performance of
our architecture.

4.7 The Node Management Place

A special dedicated Place, the Management Place is responsible for changing
the Node’s general behavior (Policy, DBs etc). Agents that execute in that
environment are "privileged" agents and are under highest security controls. They are
able to modify the node Databases and its security scheme, thus extra care has to be
taken. Generally this environment should be restricted only to Node Administrators.
Normal users can change the behavior of Places assigned to them but they are not able
to contact/execute within the isolated and highly protected Management Place.
Provisioning and Configuration is done only via the Management Place.

Place-Enforcement Engine

Place-Credential DB

Place- Policy DB

Place- Component DB

Place - Resource Manager

Node-Enforcement Engine

Node Credential DB

Node Policy DB

Node Component DB

Node - Resource Manager

Place #x

Node Audit

Place- Audit

Place- Cache

Node Cache

Fig. 6. Figure 1 - Component Communication View

� � � ¡ ¢ � � £ � � � � � � � ¤ ¥ � � ¦ � § � � ¨ � � © ª « ¬ ¬ ¬

11

4.8 Auditing

Experience has shown that 100% security is difficult to realize - if not
impossible - due to the multiple factors that interfere. Collecting data generated by
network activity provide a useful tool in analyzing the existent security and also trace
back (if possible) the originators of a security breakout. Audit data include any
attempt to achieve different security level or change entries in the system’s databases
etc. Intrusion attempts can also be detected via audit e.g. when we see repetitive
failures in the attempt to use a component/service we can adapt our policy/behavior so
that we prevent any possible intrusions. The more detailed the audit process is the
better can various activities be debugged and protected from repeated errors or false
configurations.

4.9 Enforcement Engine

The Enforcement Engine is used to enforce the policy on the Node and on the
Places. An Enforcement Engine must satisfy three important rules.
• It is always invoked. The Enforcement Engine should not be called explicitly.

Each action should be evaluated and allowed only if it complies with the Policy.

• It is tamperproof. The information that the Enforcement Engine relies on
shouldn’ t be altered in any way by third unauthorized entities. This calls for
Signed objects that no-one can alter.

• It is verifiable. Enforcement Engine relies on trusted unchanged basic code in
order to boot-up. Then its abilities can be expanded.

The Node Administrator is able to use a GUI and edit the Node Policy &
Credential Database prior of system run. Place Administrators are able to alter their
Policy & Credential DBs via Agent Interface.

5 The Language Decision

One approach is to design a new language tailored to the needs of active networking
and our system. The difficulty would be i) designing from the scratch a new language
with a bunch of desired features (e.g. safety, performance), ii) if we don’ t manage to
address all required features needed by the user it would be impossible for user to
implement the mobile code he wants, iii) it would require a huge amount of work to
keep the language up-to-date with all needs, iv) it would be used by a limited number
of people (AN people only) and therefore bugs, errors, etc would be seldom if not at
all reported.

The other approach is to use an existing language. Java is a very popular
language designed especially for mobile code and with security in mind. Multiple
research (and not only) domains use this language. Therefore bugs, errors are found
and reported fast. The language is a commercial product and advances as day by day
new features/libraries are added. Also Java is a safe language. The basic security

­ ® ¯ ° ± ± ² ³ ´ µ ¶ ¯ · ¸ ¹ ± º » ¼ ½ ¾ ¿ À Á ¾ Â ¿ Ã Ä ¾ Â Å Æ Ä Á Ç Ã ¾ È É Ä ¾ Ê À Á À ¾ À Ä ¾ Ë Ì ¿ Ã Í À Î À ¿ Ï Ä Á Ç Ð Ñ Ò Ó Ó Ó

12

concepts in Java are based on the following components: language design, byte code
verifier, class loader, security manager.

In the following each part will presented and investigated on how to use the
concept to support a security model for the agent platform. First of all, Java is a safe
language. That means, there are several mechanism inherent to Java, providing
protection against incorrect programs, notably: strictly typed language, careful control
of casts, lack of pointer arithmetic,automatic memory management including garbage
collection to avoid memory leaks and dangling pointers, check of array references to
ensure that they are within the bounds of the array

Even though a compiler performs thorough type checking, there is still the
possibility of an attack via the use of a “hostile” compiler. Since the agency does not
load the source code of an agent but already compiled code in the form of class files
there is no way of determining whether the bytecodes were produced by a trustworthy
compiler or by an adversary attempting to exploit the agency. Therefore a class
verifier is called for.

The class verifier [6][7] of Java is used to check every class that is loaded into the
Java virtual machine over the network. Before any loaded code is executed, the class
is scanned and verified to ensure that it conforms to the specification of the Java
virtual machine. The class verifier operates in four passes.

The first pass checks that the class file is conformant to the class file format. The
second pass performs all verification that can be performed without looking at the
bytecode. This includes for example a check whether final classes or methods are
subclassed or overridden, respectively. The third pass is a data-flow analysis on each
method assuring that there will be no stack over- or underflow, registers always have
a value when being accessed, methods are called with appropriate arguments, types
are correctly used, and that the opcodes have appropriate typed arguments on the
stack and in the registers. This is also referred to as the bytecode verifier. The fourth
pass is done during run-time. It ensures for example that a method exists when being
called, i.e. it guarantees that the symbolic references are working.

The class loader [8] first checks the local codebase of an agency. If a class is
available locally it is not loaded over the network but from the local codebase. This
prevents the system classes with access control checks from being replaced. In
addition the class loader sets the protection domain.

The security manager [9] is contacted whenever sensitive system resources, such
as the file system or the network for example, are accessed. A check method is called
in order to determine whether the calling entity has the required access permissions.
To distinguish between the access of foreign classes and the access of system classes
the call stack is analyzed. The class loader of each call on the stack is determined and
the permissions are the intersection of the permissions of each protection domain
which is contained in the class loader.

6 Design Goals Fulfilled

This Security Architecture has been designed with the following guidelines in mind:

Ô Õ Ö × Ø Ø Ù Ú Û Ü Ý Ö Þ ß à Ø á â ã ä å æ ç è å é æ ê ë å é ì í ë è î ê å ï ð ë å ñ ç è ç å ç ë å ò ó æ ê ô ç õ ç æ ö ë è î ÷ ø ù ú ú ú

13

• Simplicity.
The model is as simple as possible to understand and administer. The simpler the
whole thing is the better the Security Architecture functions and evolves.

• Scalability.
Our Security architecture can be applied from small and low agent/node populated
systems up to large intra- and inter-enterprise ones. To make that sure we: i) have a
flexible and advanced policy and access controls (role-based security etc), ii)
support of various domains that enforce different policies, iii) Manage distribution
of data and cryptographic keys e.g. across the network without human intervention.

• Flexibility
This is probably the most significant driving force in the design of this security
architecture. Flexibility is enhanced to the maximum for end-users and
administrators but not at the cost of safety/security. Choice of access control
Policy, choices of audit policy or security functionality profiles are some examples.

• Interoperability
The architecture uses CORBA for interoperability reasons. CORBA guarantees
consistent security schemes among heterogeneous systems where different ORBs
are deployed by various vendors. We raise this security to a higher level so that the
Agent world is able to use these advantages. Also we use the Grasshopper [10] a
MASIF [11] compliant Agent Platform.

• Performance
The trade-off between Performance and Security is always a controversial issue
within the research community. Security is by its nature overhead. Though
different users have different needs. We can’t simply provide a homogeneous
security facility. Security should be user or even task specific. The super-user who
enforces a specific security scheme (in a Place or a node) should also be able to
select/decide on the tradeoff between certain security and performance (of course
within some limits). For better performance we have included Caches within each
execution place as well as Component_DBs where code can reside. We hope that
in the future the performance of Java will be also improved.

• Object-Orientation
Interfaces are purely object oriented. We think that in this way system’s integrity is
promoted and complexity of security mechanisms is hidden under simple
interfaces. Those interfaces could be at any time changed/enhanced without an
impact on the way this architecture nor its users use them. This approach offers
also survivability as well as ability to advance and adapt to future needs.

• Access-Control
Access Control aims at preventing an agents from accessing unauthorized
resources. In our Security Architecture calls to resources are intercepted. Then the
Security Manager is called in order to decide whether this call complies with the
Policy. If so the action is allowed otherwise denied and an error code is returned.
Primarily the following goals must be satisfied : Safety - A Safe system limits the
possibility that an agent will write to another agent’ s namespace and therefore

û ü ý þ ÿ ÿ � � � � � ý � � � ÿ � 	
 � �
 � � � �
 �
 � � � � �
 � � � � � � ! ! !

14

bringing it into an unstable, false or unintended state. Privacy - Agents should not
be able to access the address space of another Agent and read it’s data.

• Safety
The use of a safe language such as Java provides some guarantees concerning the
Safety.

• Conditional-Access
Most traditional operating systems deny or allow access. Via our Security
architecture we are able to allow conditional resource access. E.g. one Agent can
request more memory in order to execute additional tasks. The
PlaceResourceManager contacts the NodeResourceManager and requests e.g. more
memory. The Enforcement Engine checks to see if this request complies with the
current policy and if so more memory is dynamically assigned to a Place for a
certain time.

7 Place-Or iented Vir tual Pr ivate Networks – An Application
Scenar io

An application scenario is introduced here in order to show the
flexibility/advantages ABSANI offers. We introduce the concept of Place-Oriented
Virtual Private Networks (PO-VPNs). VPNs offer to Enterprises the opportunity to
construct their own Network and administer it the way it eases their needs. The
ABSANI architecture has been designed with this goal also in mind: The offer of
Places which can be leased to 3rd party entities and managed by them. This of course
assumes partitioning or multiplexing of available resources.

An Enterprise can obtain for its needs a Place in strategically located Active
Nodes, thus constructing a PO-VPN. As it can manage all policies/resources on the
assigned Place, it has complete control (to the allowed limits set by the Node
Operator) over the PO-VPN. Actually this looks like a distributed Agency spread over
various nodes.

A possible scenario is that an Enterprise wants to create a PO-VPN. As various
providers would offer services in various prices it could be a benefit to chose among
the best offers not overall (as an offered packet) but partially (specific service
selection). What we mean exactly with that? Suppose that a provider offers high
speed processing power (fast CPUs) but limited storage capacity to the node. A
second one offers better price on huge amount of storage but low processing power.
The user should be able to combine both. E.g. execute the code in the fast node and
have results stored on the slow node with the extended storage.

That is of course difficult to realize/implement at the moment but we would like
to leave this possibility open as this could be a future evolutionary step. In any case
those kind of scenarios are supported by the Security Architecture we have presented
here.

" # $ % & & ' () * + $, - . & / 0 1 2 3 4 5 6 3 7 4 8 9 3 7 : ; 9 6 < 8 3 = > 9 3 ? 5 6 5 3 5 9 3 @ A 4 8 B 5 C 5 4 D 9 6 < E F G H H H

15

8 Summary and Conclusions

An agent-based Security architecture has been presented. ABSANI uses the
mobile agent technology and the benefits that derive from it in order to apply them in
the Active Network domain. It has been demonstrated with an agent-based active
node architecture how agents can empower the current passive routers and transform
them to Active Nodes. We have placed the security architecture within this AN nodes.
We have showed that benefits such as simplicity, scalability, flexibility,
interoperability, performance and safety have been addressed successfully. Agent
community has invested a lot of effort trying to make mobile code secure and flexible
and Active Networks’ objectives can be achieved via our approach. This approach
provides a dynamic, extensible, configurable, and interoperable way to secure Active
Networks. Also with the use of Java we can guarantee a high level of safeness.
Furthermore by combining approaches (in a Lego-like way) we enhance not only the
interoperability of our architecture but as well its lifetime. ABSANI offers a security
scheme dealing successfully with the current needs of secure active networking, and
will continue its fast evolvement as long as agent technology keeps on advancing.

References
1. C. M. Adam, J.-F. Huard, A. A. Lazar, K.-S. Lim, M. Nandikesan, E. Shim, “Proposal for

Standardization of ATM Binding Interface Base 2.1” , submitted to P1520, January 1999.
2. Mobile Agent System Interoperability Facility,

URL : http://www.fokus.gmd.de/research/cc/ima/masif/
3. OMG Web Site : http://www.omg.org/
4. The KeyNote Trust-Management System.

URL : http://www.cis.upenn.edu/~angelos/keynote.html
5. Simple Public Key Infrastructure.

URL : http://www.ietf.org/html.charters/spki-charter.html
6. F. Yellin, „Low Level Security in Java“ , 1997, deleted from www.javasoft.com.
7. B. Venners, „Security and the Class Verifier“ , JavaWorld, October 1997,

http://www.javaworld.com/javaworld/jw-10-1997/
8. B. Venners, „Security and the Class Loader Architecture“ , JavaWorld, Septermber 1997,

http://www.javaworld.com/javaworld/jw-09-1997/
9. B. Venners, „Java Security: How to Install the Security Manager and Customize your

Security Policy“ , JavaWorld, November 1997, http://www.javaworld.com“javaworld/jw-
11-1997/

10. IKV++ GmbH - Grasshopper URL : http://www.ikv.de/products/grasshopper

