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Abstract—Employees are increasingly using electric vehicles
(EVs) as their choice of company car. This means modern
companies are becoming owners of EV fleets that need to charge
on company premises. Without an effective charging strategy the
cost of running an EV charging infrastructure for a large fleet
of company EVs quickly becomes prohibitive. For this purpose,
we investigate three different charging strategies: (i) a “naive”
baseline strategy, (ii) intelligent charging (using an optimal
schedule) and (iii) multi-location intelligent charging (i.e. allowing
charging at home). Experimental results from simulations show
how the selection of a charging strategy affects the number of
adequately charged EVs as well as infrastructure utilization.
Multi-location intelligent charging is the most effective strategy.

I. INTRODUCTION

The increasing electrification of company car fleets can have
a significant business impact due to infrastructure investments
in company premises, energy costs and effects on sustainability
Key Performance Indicators (KPIs). The majority of compa-
nies are not prepared for large-scale EV fleet management [1]
nor the complex ways it intertwines with their operations and
impacts their business. The question is especially pertinent
for stakeholders such as the EV drivers, the EV owner (in this
case the company), the EV fleet manager and the company
sustainability officer. Companies with large EV company-car
fleets expect to reap the benefits from an effective management
of EVs. This can be realized by managing their charging
in an intelligent manner and by developing new business
areas. These areas go significantly beyond straightforward
applications of intelligent charging and involve the complete
life cycle of EVs. Additionally, it affects components of the
infrastructure such as EV charging points, energy storage
assets or alternative energy resources (solar panels, wind
turbines, combined heat and power).

Overall, the topic of company-owned EV fleets can be
perceived as a complex system in the area of technology,
business and economics [2]. Its constraints and capabilities set
the context within which business decisions need to be taken.
This work focuses on company-owned EV fleets and aims to
provide insights into how surrounding issues can be addressed.
Companies may capitalize on the opportunities it offers while
also shedding light on the challenges that are posed. As such,
the aim is to approach mainly two research questions: (i) What
is the impact of intelligent charging vs. uncoordinated charging
for the company? (ii) When does it make sense to consider
alternatives such as charging at home? These questions are

addressed experimentally by simulating and analyzing three
charging strategies defined in section II. Empirical results of
the simulations are followed by a discussion providing insights
into how this approach can benefit the company and affected
stakeholders.

II. MOTIVATION AND SCENARIOS

A. Business Motivation

The proportion of EVs in company fleets is driven by
different factors including political measures, climate change
efforts and a sustainability Zeitgeist. In addition to external
motivators, the company of the future has a vested interest in
expanding its EV fleet in order to capitalize on new business
opportunities. For instance, EV fleets can be considered as
a battery swarm [3] and consequently may be utilized in
demand-side management scenarios [2]. This way, existing
company costs may be reduced by methods such as storing
excess energy. Alternatively, new revenue streams may be
generated by participating in energy markets as a commercial
prosumer [4]. Many fleet-related company costs stem from the
installation and maintenance of the EV charging infrastructure
and from the electricity for charging the EVs.

In this context, an intelligent charging strategy is one
that actively assigns EVs to charging stations and takes into
account the state of charge (SoC) of each car at arrival as
well as the infrastructure. Such strategies can play a crucial
role especially when combined with demand response (DR)
and company EV fleets [5].

In intelligent charging, cost minimization [6] and peak
shaving [7] are two common goals. Overall, economically
relevant scenarios with existing company-owned EV fleets are
less commonly addressed. However, evolving infrastructure
and EV capabilities are expected to play an increasingly
essential role [3].

B. EV Fleet Charging Strategies

We present three charging strategies a company might use
to deal with its EV fleet.

1) Strategy 1 – Baseline: The simplest strategy that a
company can follow in order to adapt to increasingly large
numbers of EVs in its fleet is to proceed with minimal
infrastructure investments and process changes within fleet
management. An initial investment in charging infrastructure
aims to accommodate the existing EV fleet and provides a



limited number of charging spots and a minimal grid connec-
tion. This static sizing of infrastructure is not supplemented
by intelligent charging. In other words, charging processes are
not actively managed. Instead, EVs charge on a first-come-
first serve basis. Upon arrival on company premises, EVs find
a free charging spot, plug in and charge. A simple energy
load management system is used where charging processes
are refused when the overall load reaches infrastructure limits.
Charging processes continue irrespective of energy prices or
stakeholder flexibilities as long as they do not overload infras-
tructure capabilities. This approach is used as the baseline.

2) Strategy 2 – Intelligent Charging: To improve on the first
strategy, we propose a more sophisticated intelligent charging
strategy to optimize charging processes for each EV with one
or more objectives as goals. Objectives of interest include
energy cost, a fair share of state of charge (SoC) among EVs
and the utilization of available energy resources on premise. In
this work, the heuristic described in subsection III-C is used to
implement intelligent charging. Its goal is to optimize overall
objectives while avoiding violations of load constraints.

3) Strategy 3 – Multi-location Intelligent Charging: Ap-
proaches increasing the installed charging infrastructure on
company premises can only be applied to a certain extent
and are limited by the prohibitive costs and time frames
of improving the required infrastructure installations. This
includes the number of charging stations and the grid con-
nection. Hence for large-scale EV fleets, charging cannot be
performed on company premises exclusively due to power and
space limitations. Multi-location charging extends charging
options beyond company-owned charging stations and includes
additional locations such as the home or the public charging
infrastructure. Intelligent charging, in this case, needs to
take into account the total cost of charging the fleet. This
depends on, for example, variable electricity prices in each
charging location or potential service charges. For the sake
of simplicity, this work considers the employee’s home as an
alternative location. This is defined as a special case of multi-
location intelligent charging. Similar to strategy 2, the heuristic
described in subsection III-C is used for charging optimization
on company premises.

C. Stakeholders and Requirements

The three charging strategies described above indicate that
companies are flexible as to how EV fleets are charged.
Consequently, tool support is desirable for a comparative
assessment of each strategy. Several stakeholders are involved
with different needs and requirements.

• The driver of the EV needs to secure an adequate state of
charge to carry out the activities planned for the rest of
the day and until the EV recharges (on company premises
or at home).

• The facility manager supervises energy needs of the fleet
and needs to ensure that the installation and operation
of charging infrastructure including load management are
sufficient and utilized in a cost-effective way.

• The fleet manager controls the fleet size, its composition,
and costs to the company. This stakeholder needs to
ensure and guide the expansion of the fleet as well as
its characteristics.

• The energy manager estimates and procures the necessary
additional energy required by EVs from energy markets.

All of the above directly or indirectly affect corporate
strategies involving EV fleets and their characteristics. To
ease decision-making processes, suitable tools are required
to simulate charging behaviors under a given context. Such
tools support infrastructure planning, deciding company en-
ergy management strategies or creating EV fleet policies.
Stakeholders may define and simulate “what-if” scenarios,
observe results and fine-tune their decisions. Moreover, the
tools can be used for analyzing implications of the choice of
fleet strategy. This includes quantifying assumptions such as
trends in the fleet size, driver behavior and the energy market.

From a functional point of view, a tool should simulate
the EVs, their trips, the charging infrastructure and individual
charging processes. EVs vary in technical parameters such
as energy consumption and battery charging time. Drivers’
traffic and driving patterns additionally affect the energy
consumption of the EV. Lastly, the technical parameters of
the charging stations in the infrastructure can vary.

III. APPROACH

A. Data

To simulate the charging strategies discussed in subsec-
tion II-B data about drivers, EVs, electricity prices and the
charging infrastructure is needed as illustrated in Figure 1.
Some of this data is directly available from historical public
and corporate datasets while other aspects need to be collected
via methods such as realistic data generation.
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Figure 1. Simulation data

The state of charge (SoC) plays a central role in the EV
dataset and is reflected by three parameters: (i) current SoC,
reflecting the current battery charge (ii) min SoC, reflecting the
minimum SoC to be achieved before the EV departs in order
to safely reach the next charging point and (iii) max SoC, the
maximum wished SoC.

2
Preprint version of doi:10.1109/INDIN.2018.8472104

http://dx.doi.org/10.1109/INDIN.2018.8472104


The current SoC at time of arrival and an EV’s min SoC
determines its charging needs and priority. In practice, due
to a lack of widely adopted vehicle interfaces [1] the current
SoC cannot be easily retrieved from the EV via the charging
station and therefore needs to be estimated. This estimation
can be realized, for example, via a simulation of EV routes
in realistic scenarios or by means of reverse engineering on
historical data.

The main data source used for the simulation in this work
is a historical dataset from a company-owned fleet of EVs
driven by employees. This dataset consists of approximately
500 EVs, 100 charging stations and 12000 charging processes.
Electricity prices are derived from historical values of the EEX
intraday energy market and are available per 15-min interval.

When applying data analysis techniques, data privacy needs
to be considered. For instance, driver data contains personal
information which is subject to data protection policies and
hence requires anonymization. This procedure has been ap-
plied in dealing with this work.

B. Methodology

To explore charging strategies for EV fleets, tangible impli-
cations need to be quantified. One method is to calculate Key
Performance indicators (KPIs). In a simulation of charging
processes KPIs of interest include: (i) aggregated SoC over all
EVs, reflecting the total charging performance and leading to
the number of adequately charged EVs (those charged to least
their min SoC), (ii) aggregated cost, the total charging cost
and (iii) grid connection utilization, reflecting how effectively
the grid connection is used. The simulation process visualized
in Figure 2 consists of a series of dataset preparation and
evaluation steps.
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Figure 2. Simulation workflow

The starting point of the dataset preparation is the available
historical data. This data represents charging activities of a
fixed fleet and fixed infrastructure installation during a fixed
time frame. While evaluating charging strategies the business
user specifies parameters such as the fleet size, the number
of charging points and fraction of fleet users charging on
company premises and assess their impact.

In this work, we evaluate the statistical distribution of the
historical data, extrapolate to the user-given parameter values
and thus generate a scaled dataset. Strategy 3 enhances the data
by using SUMO [8] and adds information such as the SoC of
each EV at time of arrival thus increasing data quality.

The enhanced dataset serves as input for the data evaluation
phase. Smart charging algorithms consider driver, EV and
infrastructure data along with energy prices and calculate
the optimal charging schedule. Based on a simulation of the
schedule, KPIs are calculated and presented to the business
user for inferring insights and follow-up actions.

C. Technology choices

The following technologies were chosen for data processing
and simulation.

1) SUMO for traffic simulation: Simulation of urban mo-
bility (SUMO) [8] is a well-known continuous road traffic
simulation designed to simulate large road networks. Each
vehicle in the simulation has its own route and is handled
individually. SUMO includes specific models for EVs thus
simulating the energy consumption for each vehicle. [9].

In this work, SUMO is used to approximate EV SoC
information. It uses cartographic data combined with business
data (such as location, arrival, and departure time statistics) to
simulate trips to and from company premises. The simulated
trips are applied to a battery model to compute how much
energy is discharged per route. The resulting SoC estimation
serves as an input to the smart charging algorithm.

2) Custom heuristic for smart charging: More formally,
smart charging refers to a planning mechanism where charg-
ing processes are scheduled to optimize a given objective.
Objectives include minimizing costs or maximizing the num-
ber of adequately charged EVs. Smart charging can be mod-
eled as a mixed integer programming (MIP) model [6] with
two types of decisions variables: the assignment of EVs to
charging stations and the charging schedule. The schedule is
expressed as a time series of charging currents per EV. Differ-
ent methods have been used to perform charging optimization
[6], [10], [11]. Pursuing an actual optimization approach with
a MIP model offers the advantage that the best solution is
guaranteed to be found as long as computation time is not
a limitation. However, due to the combinatorial complexity
of the charging optimization problem [6], this method scales
poorly with the number of EVs and cannot be applied for
real-time decision making.

Because of the general need for real-time planning [12] in
the scenarios we investigate a custom smart charging heuristic
is proposed. The custom heuristic for smart charging used in
this work is implemented in Java and consists of a prioritized
lookup scheme based on a day-ahead plan. That is, one
day in advance a dataset of predicted EVs and expected
charging infrastructure is created by a forecasting method and
an optimal charging plan is created for this dataset. During
real-time smart charging, the charging schedule for each EV
is determined by lookup in the day-ahead plan. In addition,
an algorithm is implemented to coordinate day-ahead with
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real-time planning. The reconciliation step is necessary to
accommodate for unexpected changes such as deviating EV
arrivals or charging infrastructure going out of service [11].

D. Experimental setup

This section describes how the simulations discussed in
section III are carried out and how results are interpreted.

Each charging strategy’s behavior can be observed by vary-
ing simulation parameters. For instance, the impact on KPIs
can be observed by varying a single parameter such as the
number of cars. The number of charging stations available in
the infrastructure is equal to the number of cars while the grid
connection is kept constant at 1MW. Based on the current
company fleet composition, the fleet is considered to consist
of 75% Battery Electric Vehicles (BEVs) and 25% Plug-in
hybrids (PHEVs) during simulations. The inclusion of PHEVs
has an impact on the overall charging as they typically possess
a smaller battery compared to BEVs and also plays a role in
prioritization within smart charging, as these vehicles are not
immobilized if the battery is drained. In order to make results
comparable across the three charging strategies, the starting
parameters for each EV are ensured to be the same by using
the same starting random seed. This means particularly the
starting SoC for each car is independent of the total number
of cars and the charging strategy being simulated.

As described in subsection III-B, a KPI relevant to stake-
holders is the number of adequately charged EVs which are
those that are charged to at least their minimum SoC. In the
first and second charging strategies, the minimum SoC is set to
a conservative estimate of 50% of the total EV battery capacity.
In practice, however, each EV requires an individual minimum
SoC that depends on how the EV is used until its next charge.
The third charging strategy refines the minimum SoC for each
EV by using SUMO [8]. In SUMO, the desired minimum
SoC is calculated by simulating trips over road networks to
company premises. Since the battery behavior in SUMO is
close to real-world behavior [13] this is considered an adequate
and realistic measure for this work.

An additional KPI is the grid connection utilization, which
indicates how effectively the power available to the charging
infrastructure is used. Consequently, it also acts as a mea-
sure of how effective an intelligent charging algorithm is at
redistributing charging processes. For example, if the grid
connection allows for a maximum of 1MW capacity and the
sum of charging processes at a given point in time is 0.75MW
then there is a 75% utilization of the grid connection. The
mean utilization is defined as the utilization across all timeslots
of 15 minutes.

IV. EMPIRICAL RESULTS

The simulations of the three charging strategies discussed
in section II are carried out under conditions discussed in
section III and subsection III-D. The raw results are shown
in Figure 3 and Figure 4.

Figure 3 shows how the number of adequately charged EVs
grows steadily but slower for strategy 1 compared to the other
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Figure 3. Simulation results showing the number of adequately charged EVs
over the total number of EVs, indicating the strategy charging effectiveness

two strategies. Strategy 1 reflects the status quo (first come,
first serve without optimization) and is used as the baseline for
the assessment of the other strategies as well as discussions in
this work. In this strategy, no charging processes are delayed.
This means if an EV cannot charge when it is first connected
to a charging point it will not be charged at all, for example
as a result of the grid capacity being reached.

By contrast, in strategy 2, EVs are prioritized by the heuris-
tic described in subsection III-C according to their current and
minimum SoC at time of arrival. Consequently, the number of
adequately charged EVs is always higher, indicating a more
effective charging strategy. This can be observed in Figure 3.
Additionally, for approx. 1.800 EVs, strategy 1 and strategy 2
do not differ much, indicating that the maximum number of
EVs that can be accommodated by the infrastructure may be
reached. Lastly, both strategies differ from strategy 3 in high
EV populations. This is due to the fact that charging is also
available somewhere else than company premise, allowing for
a higher number of EVs to be charged as they can continue
charging at home.
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Figure 4. Grid connection utilization subject to the number of EVs

Figure 4 depicts the mean grid connection utilization per
simulation. Strategies 2 and 3 lead to a saturation of the
grid capacity at around 50%. At the saturation level, a high
utilization indicates a higher number of adequately charged
EVs. This relationship can be observed by comparing Figure 3
and Figure 4. For example, in strategy 2 the saturation is
reached with 700 EVs, indicating a point at which both the
number of adequately charged EVs and the utilization slows.

A more detailed inspection of simulations with a single
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parameter setting enables stakeholders to observe charging
behavior throughout the day. This includes a time series view
of the grid connection utilization and the distribution of SoC.
For example, Figure 3 may raise the question as to why
strategies 1 and 2 appear to converge to each other.

Figure 5 shows the power consumption throughout the day
for each strategy in three separate simulations involving 2000
EVs. The area under the curve corresponds to the total amount
charged, which is almost twice as high for strategy 2 compared
to strategy 1. Consequently, the mean grid connection utiliza-
tion is higher for strategy 2.
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Strategies 2 and 3 maximize the number of EVs with an
adequate SoC. This is achieved by prioritizing EVs by the
difference between the current and minimum SoC. Assuming
a variable energy price, a secondary goal is to minimize
energy costs. In the simulation, some charging processes were
delayed resulting in a higher utilization and a small peak in
the afternoon. Overall, applying either strategy 2 or 3 allowed
more EVs to charge than strategy 1.
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Figure 6. Distribution of SoC in each strategy simulated with 2000 EVs

However, the significant benefits of strategy 2 seem to
contradict the observations in Figure 3, which depicts only a
marginal difference to strategy 1. One approach to analyzing
this discrepancy is to examine the distribution of the final SoC
as illustrated in Figure 6. Comparing the histograms for strate-
gies 1 and 2, the differences for extreme SoC values become
evident. In particular, SoCs below 0.3 are less common in
strategy 2 than in strategy 1. From this one can infer that
while strategy 2 produces EVs below the adequate SoC there
are fewer EVs close to the lower levels of EV battery capacity.

Overall we conclude that the intelligent charging approach
in strategy 2 leads to more EVs being adequately charged

compared to the strategy 1. Further improving on strategy 2,
strategy 3 offers a significantly more precise estimation of
the minimum SoC, leading to a more effective distribution of
available charging power to EVs. This, in turn, increases the
number of adequately charged EVs.

The limiting factor in all cases is the connection to the grid,
which is why the grid utilization is an important KPI.

V. DISCUSSION

Intelligent charging [1] is an essential area of research
especially in the context of company-owned EV fleets. Such
fleets have specific characteristics which need to be taken
into consideration. This includes a predictable presence of
EVs and the potential to calibrate its composition and usage
via company policies. This work shows an initial approach
focusing on the issues around charging via three sample
strategies. Insights were generated about an EV fleet and its
impact.

The results of the three strategies, discussed in section IV,
show that as hypothesized, the way cars are charged affects
the overall fleet SoC as well as the utilization of the grid
connection. This suggests there is a clear need for algorithms
that intelligently charge the company EV fleet and support
actions that benefit company business processes.

The simulation parameters we considered may be supple-
mented by additional parameters to more accurately predict
the EV battery utilization between charging sessions. Alter-
natively, charging processes of the EV can be adjusted to be
compliant with other company goals such as CO2 reduction,
asset retention or participation in demand response via energy
marketplaces. Additional parameters include data from the em-
ployee’s schedule, the average distance traveled per weekday,
reaction to price signals or energy storage strategies. In the
simulation itself, the limiting factor of the grid connection may
be addressed by promising areas of research such as Vehicle-
to-grid (V2G) charging in conjunction with photovoltaic or
other energy resources [3], [14]

Strategies 2 and 3 improve the utilization of the grid con-
nection. When planning the charging infrastructure, the grid
connection is often a costly component and one of the limiting
factors [15] of charging an EV fleet. In these strategies, a
smaller grid connection that is more effectively utilized can
save costs. Finding a suitable size is of high interest to
businesses, something that can be partially supported via the
simulations presented in this work. In addition, the company
can achieve improved EV user satisfaction [16] by offering its
employees a higher probability of receiving an adequate state
of charge.

Existing tools such as SUMO were used. In SUMO, each
vehicle is modeled explicitly, has its own route and is simu-
lated traveling through the real-world road network. This has
enabled us to obtain a more accurate SoC for EVs that is
close to real-world usage [13]. Outcomes of simulations in
SUMO depend on input such as the road network, EV starting
locations, driver behavior models and traffic situations.
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Equally significant experiences were acquired about the
tools used to prepare, assess and generate data as well as
about simulations. In our experiments, simulating thousands
of cars has led to bottlenecks in SUMO as well as other
processes in our pipeline such as the heuristic for charging
optimization. More scalable algorithms or approaches based
on adaptive learning [17] may make it feasible to obtain better
charging optimizations by improving runtime (able to deal
with dynamic changes) or delivering better results (quality of
charging schedules).

As discussed in section IV, the grid connection utilization
KPI shows a point of saturation that is well below 100%. The
grid connection is a static component independent of time that
is costly and time consuming to upgrade. In comparison, EVs
typically charge on company premises only during business
hours. This suggests allowing users to introduce additional
components to the simulation to further increase utilization.
In particular flexible prosumers [4] such as energy storage
systems can be modeled and added to the simulated infras-
tructure. Furthermore, for more futuristic scenarios EVs can
be used in addition to or in support of static storage through
V2G approaches [3], [7], [12], [14].

This work concentrates exclusively on company-owned EV
fleets used by employees which distances it from other smart
charging approaches. Data used in this work is not constrained
to EV data used by typical smart charging approaches. Instead,
employee and business data supplement the EV data. This
additional data is available to the company that owns the EVs.

Capitalizing on the additional data may enhance approaches
that go beyond charging and include on-premise infrastructure
planning, EV fleet composition (BEVs/PHEVs), co-located
energy storage or interactions with energy markets.

VI. CONCLUSION

This work focuses on a niche in the context of modern
corporate EV fleets. More specifically, issues around company-
owned EV fleets used by employees are addressed. Such fleets
have particular characteristics and bring significant challenges
but also new opportunities for companies. We carry out
simulations and assess their results via selected KPIs through
the selection of three EV charging strategies. Experimental
results show that the strategy followed plays a pivotal role in
the number of EVs that can be adequately charged as well as
infrastructure utilization. In addition, it becomes evident that
the limiting factor for any charging strategy is the infrastruc-
ture grid connection to the electricity provider.

The simulation-based approach helps stakeholders by offer-
ing practical insights into how many EVs can be supported
by a given charging infrastructure, subject to a charging
strategy. In addition, it brings forward aspects such as the
available fleet SoC or their presence on company premises.
Both of these aspects can be utilized in the future for more
sophisticated scenarios. This includes participating in energy
markets, enhanced infrastructure planning, integrating on-
premises alternative energy resources or changes in company
policies.

Investigating the challenges and opportunities of company-
owned EV fleets in a cross-disciplinary manner that pertains
to computer science, energy and business is an area that holds
significant potential and this work has only scratched the
surface.
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