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Abstract—The integration of industrial automation systems
and software agents has been practiced for many years. However,
such an integration is usually done by experts and there is no
consistent way to assess these practices and to optimally select
one for a specific system. Standards such as the ISO/IEC 25023
propose measures that could be used to obtain a quantification
on the characteristics of such integration. In this work, the
suitability of these characteristics and their proposed calculation
for assessing the connection of industrial automation systems
with software agents is discussed. Results show that although
most of the measures are relevant for the integration of agents
and industrial automation systems, some are not relevant in
this context. Additionally, it was noticed that some measures,
especially those of a more technical nature, were either very
difficult to computed in the automation system integration, or
did not provide sufficient guidance to identify a practice to be
used.

I. INTRODUCTION

Industrial Agents (IA) [1] have often been used for a
variety of activities in industry, including their integration with
automation systems. With the emergence of Cyber-Physical
Systems (CPS) and the Internet of Things (IoT) approaches
such agent-based integrations are expected to be further
widespread into different domains like factory automation,
power & energy systems, and building automation [2]–[5].

In cybernetics [4], the integration of software and hardware
systems still remains a highly challenging issue [6], [7]. There
are several factors causing integration failures [8], some of
which may be better tackled or even prevented by focusing on
integration practices that are more suitable for the specific use
case. Hence, a key issue is the lack of an easy and consistent
way to assess such integration practices [9] and to select the
most appropriate ones for a particular use case.

In software systems research, several quality attributes
and metrics are studied [10], [11]. Standards, such as
ISO/IEC 25010 [12], define several high-level characteristics
which are relevant to this context [13]. However, to be able
to get a quantifiable assessment, there is a need to check
the concrete measures and their calculation as proposed by
ISO/IEC 25023 [14] which also belongs to the same standards
family. The primary contributions of this paper, therefore, is a
critical discussion of the usage of those measures for assessing

the integration of software agents and low-level automation
functions of industrial systems.

In a CPS context, characterized by a network of entities
that integrate computational and physical counterparts, IA
extend the traditional characteristics of software agents, partic-
ularly intelligence, autonomy, and cooperation, with industrial
requirements, namely hardware integration, reliability, fault-
tolerance, scalability, standard compliance, quality assurance,
resilience, manageability, and maintainability [15]. In this per-
spective, the interface between software agents, often referred
to as High-Level Control (HLC), and Low-Level Controllers
(LLC) performing industrial automation functions (like Pro-
grammable Logic Controllers (PLC), Industry PCs (IPC), or
robots) assumes critical importance to achieve the industrial
requirements, to fully comply with the enterprise operational
context and to guarantee the business continuity.

As illustrated in Figure 1, this interface usually comprises of
an HLC Application Programming Interface (API), a commu-
nication channel and a LLC API [16], [17]. The agents execute
in an agent platform and interact with industrial devices via
those APIs. The nature of the interaction varies such as local
or remote calls, publish/subscribe or client/server messages,
etc. The communication channel may also differ between
practices. Besides, there are several variations concerning the
physical location of the agent (e.g., on-device and remotely).
All practices can be to a degree mapped to this high-level inte-
gration model [9], which can be used to apply the measurable
characteristics investigated in this work.

Agent (HLC) LLC

HLC API LLC API

Interface

channel

Figure 1. Industrial Agent Integration Model.

The remaining parts of this paper are organized as follows:
section II presents the assessment of the different character-
istics and sub-characteristics established by ISO/IEC 25023
to be applied in the software interface context. section III



discusses the main findings of this work and finally, section IV
rounds up the paper with conclusions and future works.

II. ASSESSMENT OF ISO/IEC 25023 SUITABILITY

Table I presents an overview of the different characteristics,
sub-characteristics, measures and finally the assessment of
each measure (discussed below) with respect to its suitability
in the integration of software a and low-level automation
functions. To assess the level of suitability of each measure,
a Likert scale with the following coding is being used: Very
Good, Good, Neutral, Poor, and Very Poor.

In the following the different characteristics and sub-
characteristics are being analyzed regarding their suitability
to assess the integration of software agents with low-level
automation functions.

A. Functional Suitability

Functional suitability refers to the degree “to which a
product or system provides functions that meet stated and im-
plied needs when used under specified conditions” [12]. This
characteristic is critical to ensure the proper operation of the
interface integrating IA and low-level automation functions.

1) Functional Completeness: This sub-characteristic can be
measured by considering the system functional coverage, that
is the metric of how much the specified and designed function-
alities have been implemented and covered by the testbench.
This measure applies to the assessment of interfacing practices,
contributing to determine the percentage of specified functions
that the interface implements.

2) Functional Correctness: It refers to the input-output
behavior of an algorithm or system, i.e., the expected output
produced by the system for a specific input. This measure
is useful to assess the IA interfacing practices since it can
indicate the percentage of functions and services implemented
by the interface that provides the correct results, i.e., are
working correctly.

3) Functional Appropriateness: Two different measures
can be considered in the assessment of the functional ap-
propriateness of an interface practice. Firstly, the functional
appropriateness of the usage objective refers to what portion
of the functions required by the user provides the appropriate
outcome to achieve a specific usage objective, and secondly,
the functional appropriateness of the system refers to what
proportion of the functions required by the users to achieve
their objectives provides an appropriate outcome. Both mea-
sures apply to assess the interfacing practices.

B. Performance Efficiency

Performance efficiency enables assessing the performance
relative to the amount of resources used under stated condi-
tions and may include software products, system configuration
or materials [12]. Performance metrics are of paramount
importance when assessing an integration practice in industrial
automation, as failing to meet the performance requirements
voids the validity of the practice itself.

Table I
APPLICABILITY OF ISO/IEC 25023 MEASURES IN THE IA CONTEXT.

Characteristics Sub-characteristics Measure IA suitability
Functional Completeness Functional coverage Good

Functional Correctness Functional correctness Very Good

Functional appropriateness of usage objective Very Good
Functional Suitability

Functional Appropriateness
Functional appropriateness of the system Good

Mean response time Very Good

Response time adequacy Good

Mean turnaround time Very Good

Turnaround time adequacy GoodTime behavior
Mean throughput Very Good

Mean processor utilization Neutral

Mean memory utilization Neutral

Mean I/O devices utilization Neutral
Resource Utilization

Bandwidth utilization Good

Transaction processing capacity Poor

User access capacity Poor

Performance Efficiency

Capacity
User access increase adequacy Poor

Co-existence Co-existence with other products Poor

Data formats exchangeability Neutral

Data exchange protocol sufficiency NeutralCompatibility Interoperability
External interface adequacy Poor

Description completeness Good

Demonstration coverage NeutralAppropriateness recognisability
Entry point self-descriptiveness Very Poor

User guidance completeness Very Good

Entry fields defaults Very Good

Error messages understandability Very Good
Learnability

Self-explanatory user interface Good

Operational consistency Very Good

Message clarity Very Good

Functional customizability Good

User interface customizability Poor

Monitoring capability Very Good

Undo capability Very Good

Understandable categorization of information Very Good

Appearance consistency Good

Operability

Input device support Good

Avoidance of user operation error Very Good

User entry error correction Very GoodUser error protection
User error recoverability Very Good

User interface aesthetics Appearance aesthetics of user interfaces Very Poor

Accessibility for users with disabilities Very Poor

Usability

Accessibility
Supported languages adequacy Very Poor

Fault correction Poor

Mean time between failure (MTBF) Very Good

Failure rate Very GoodMaturity

Test coverage Poor

System availability Very Good
Availability

Mean down time Very Good

Failure avoidance Good

Redundancy of components NeutralFault tolerance
Mean fault notification time Very Good

Mean recovery time Very Good

Reliability

Recoverability
Backup data completeness Poor

Access controllability Very Good

Data encryption correctness NeutralConfidentiality
Strength of cryptographic algorithms Neutral

Data integrity Very Good

Internal data corruption prevention GoodIntegrity
Buffer overflow prevention Neutral

Non-repudiation Digital signature usage Good

User audit trail completeness Neutral
Accountability

System log retention Very Good

Authentication mechanism sufficiency Very Good

Security

Authenticity
Authentication rules conformity Very Good

Coupling of components Very Good
Modularity

Cyclomatic complexity adequacy Neutral

Reusability assets Very Good
Reusability

Coding rules conformity Good

System log completeness Very Good

Diagnosis function effectiveness PoorAnalyzability
Diagnosis function sufficiency Poor

Modification efficiency Neutral

Modification correctness Very GoodModifiability
Modification capability Neutral

Test function completeness Good

Autonomous testability Very Good

Maintainability

Testability
Test restartability Neutral

Hardware environmental adaptability Very Good

System software environmental adaptability GoodAdaptability
Operational environment adaptability Very Good

Installation time efficiency Good
Installability

Ease of installation Very Good

Usage similarity Very Good

Product quality equivalence Good

Functional inclusiveness Good

Portability

Replaceability

Data reusability/import capability Neutral
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1) Time behavior: Each practice should be able to meet
certain timing objectives like mean response time, in terms of
first response, or mean turnaround time, in respect to full task
completion. These measurements are generally highly suitable.
The adequacy of a practice with respect to response time
adequacy or turnaround time adequacy needs to be assessed
in two distinct scenarios. Hard-real-time capable practices in
industrial automation should offer 100% adequacy. However,
in soft-real-time applications, deviations are inherent and ad-
equacy measurements are a proper indicator of the practice’s
capabilities. In these cases, the rate of task completion (mean
throughput) is also variable and the number of tasks completed
for a reference time frame may provide a complementary
adequate performance measurement. Nevertheless, the require-
ments and suitability of the different time behavior related
metrics are inherently bound to the application domain where
the practice is going to be operationalized.

2) Resource Utilization: Resource utilization metrics such
as mean processor, memory, I/O device utilization, and band-
width utilization indicate the consumption of CPU time,
memory, and bandwidth for given performance measures.
Bandwidth utilization can, in principle, be easily quantified
for each practice. Quantifying CPU time and memory footprint
is challenging as these require isolating agent processes and
low-level aspects of a practice; this is very difficult for multi-
core systems using modern self-optimizing operating systems.
While on the agent side it may be possible to isolate these
processes, on the side of the low-level controller the variety of
implementation options increases the variability of the results.

3) Capacity: Capacity measurements such as transaction
processing capacity, user access capacity and user access
increase adequacy are related to the ability of the system to
accommodate simultaneous user access. Typically, a practice,
as discussed in this context, has one specific user, the agent,
part of which is included in the practice itself. In case of
increasing the number of agents (e.g., in a multi-agent system)
that are operated by different users, and compete for the same
goal (e.g., access to the automation device), the case is more
complex, and the proposed user access increase adequacy
proposed measure becomes relevant.

C. Compatibility

Compatibility measurements “assess the degree to which
a product, system or component can exchange information
with other products, systems or components, and perform
its required functions while sharing the same hardware or
software environment” [12].

1) Co-existence: Co-existence tries to capture the ability
to mix software on the same computational platform. Well-
designed software should be able to co-exist without inter-
fering with the operation of other running systems on the
same computational platform. Certain classes of software are
however noticeably known for not tolerating the presence
of similar software. Typical examples are anti-virus, security
suites, backup or software upgrade processes. In the discussed
context, properly designed practices must be able to co-
exist given sufficient computational resources. However, it is

generally very challenging to characterize co-existence in a
proper way in the discussed agent integration case.

2) Interoperability: Interoperability is fundamental in soft-
ware integration efforts, especially when it pertains to complex
industrial devices. Interoperable systems successfully connect
among them following a well defined and compatible set of
interaction protocols, syntax and data formats, that are minimal
and essential to enable them to interact. The measures defined
in [12] are seen as partly appropriate, at least from their
description, as they refer to data format exchangeability and
data exchange protocol sufficiency. For agent and industrial
system integrations, more than one data format may exist,
but it is not a common case. Similarly for data exchange
protocols, usually only one protocol is available, over which
the data is exchanged during the interaction. Therefore, the
proposed measurement function, which is a ratio of supported
over the total number of formats or protocols, is not seen as
meaningful for very focused small systems such as the ones
which are addressed here. Adding more for example protocols
or data formats to a practice may increase the measures
as currently defined in [12], but does not provide adequate
info on the quality of these. In addition, doing so may be
considered as establishing a new practice whose characteristics
need to be analyzed for that specific instantiation. In that
case interoperability measurements as defined in [12] hardly
apply (since most practices feature a single data exchange
protocol and a single data format). In addition, the external
interface adequacy is not seen as appropriate, as usually
external interfaces are exposed only when they are to be
used, but not otherwise, as typical interaction processes in
automation systems are well-defined.

D. Usability

Usability measures ensure that product usage can be
easily understood, learned and operated. As usability is
highly subjective, a representative and sufficiently large group
of user feedback needs to be obtained. The suitability
of the ISO/IEC 25023 proposed measures varies, and al-
though description-wise some would be relevant, the way
ISO/IEC 25023 proposes to measure them may not be suitable
for the context we investigate in this work.

1) Appropriateness recognizability: Users need to be able
to easily recognize and match product descriptions, demon-
stration features and other capabilities to their purposes. To
do so, description completeness, demonstration coverage and
entry point self-descriptiveness measures are defined as the
ratios of what is explained to what the product is capable
of. While these measures help recognize the product capabil-
ities, for industrial integration such description could be done
directly using code examples and manuals. Entry point self-
descriptiveness is linked to the product website and may not
be very relevant as a low-level integration measure.

2) Learnability: The ease at which we can learn to use
a product is linked to appropriateness recognizability. The
standard defines several measures to assess learnability. User
guidance completeness is highly relevant as for software and
hardware integration as is our case. Similarly, entry fields
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defaults empower the users and simplify integration by uti-
lizing meaningful default values that subsequently the user
can change. Understanding why an error has happened is
measured in error messages understandability and is important
for complex systems that span both software and hardware.
Self-explanatory user interface addresses the need for an easy
understanding of the elements presented to the user, and while
most current implementations do not usually feature a user
interface, this is seen also as a must to ease user on-boarding.

3) Operability: Several measures are as the ease with which
the product is operated/controlled. The consistent behavior
measured by operational consistency is a must for indus-
trial systems that need a reliable and deterministic execution
pattern. Equally important is message clarity that assesses
the correctness of instructions from the product to the user,
as in industry ambiguous instructions may have far-reaching
effects, especially in critical systems domain. In this context
also understandable categorization of information measure
is suitable, in order to enable easy and correct information
categorization, e.g., if an alarm is raised and what its severity
level might be. Customization of functions and user inter-
face as measured by functional customizability is seen as
highly relevant. Aspects relevant to the user interface such
as user interface customizability and appearance consistency
are suitable measures but of lesser importance mainly to the
currently wide-spread lack of user interfaces for agent and low-
level automation function practices. Measuring monitoring
capability is seen as extremely important, as any deployment
in industrial environments needs to be subjected to a wide
range of third-party infrastructure and process monitoring
tools. The undo capability has also its merits, in order to be
able to go back to a previous functional state that reverses
the changes introduced in the system and which may have
unwanted effects, usually discovered only during operation
stage. The input device support measures the extent to which
tasks can be initiated by other input modalities, and is very
suitable as the agent solution needs to interact with other
systems.

4) User error protection: Protecting the users from mak-
ing errors during the operational stage is a highly relevant
quality as they protect both the system and the users. The
avoidance of user operation error measure is suitable, but
its assessment may imply reverting to interactive mode, e.g.,
to ask for operator confirmation. Being able to recognize
potential malfunctioning due to a false user entry, and propose
a correct value with appropriate justification is assessed in
user entry error correction is very suitable for agent-based
integrations. Similarly important is to be able to recover from
a user error, and as so user error recoverability is seen as key.
In industrial settings, proper testing minimizes the possibility
for such errors, and the interaction with the user is limited.
However, when things go wrong, and no such error protection
measures are in place, cascaded effects may be horrendous.

5) User interface aesthetics: Aesthetic satisfaction of the
user is addressed in appearance aesthetics of user interfaces.
However, as already mentioned due to the general lack of user
interfaces when it comes to the agent and industrial system

integration, this measure is of low importance.
6) Accessibility: Similar to the aesthetics, accessibility as

measured in accessibility for users with disabilities and sup-
ported languages adequacy are not seen as relevant due to the
general lack of user interaction, as agent and industrial system
integration relies mostly on automated interactions, and not
really on human users.

E. Reliability

Reliability refers to the degree “to which a system, product
or component performs specified functions under specified
conditions for a specified period of time” [12]. In industrial
environments, the reliability of the interface between IA and
low-level automation is so much more important as greater is
the criticality of the application.

1) Maturity: The Mean Time Between Failure (MTBF) is
the predicted elapsed time between inherent failures of an
interface practice during its normal operation, and can be
calculated as the average time between failures. A higher
MTBF indicates that an interface practice works longer before
failing, increasing its maturity and consequently its reliability.
The failure rate provides the frequency with which the inter-
face practice fails, expressed in failures per unit of time. The
failure rate and MTBF measures play an important role to
assess the different interface practices. Two other measures
are proposed by ISO/IEC 25023, but are more related to
the design, coding and testing phases. The fault correction
measure indicates the proportion of detected faults that have
been corrected during the design/coding/testing phase, and the
test coverage measure indicates the percentage of the interface
practice capabilities or functions that are executed when a
particular test suite runs. An interface practice with higher
test coverage has more of its functions executed during the
testing phase, which suggests a lower possibility of presenting
undetected bugs when compared with a practice with a lower
test coverage. However, when aiming to assess the operation
phase of an interface practice, these last two measures are of
low relevance.

2) Availability: The system availability measure provides
an indication of the percentage of the time that the interface
practice is actually available over the scheduled operational
time, translated by the probability that the interface practice is
functioning when needed, under normal operating conditions.
The Mean Down Time (MDT) measure is the average time that
the interface practice stays non-operational (unavailable). The
downtime appears after the occurrence of a failure and includes
all downtime associated with repair, corrective and preventive
maintenance, and logistic delays to correct the system in order
to be operational again. A lower MDT means better availability
and consequently better reliability of the interface practice.

3) Fault tolerance: An interface practice can be tested
by injecting some faults or undesired signals and see how
the interface practice reacts to them. Additionally, the failure
avoidance measure indicates the degree of mitigation of fault
patterns, i.e., the percentage of fault patterns brought under
control to avoid critical and serious failures. In critical systems,
aiming to increase the reliability of the system, some critical
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parts should be redundant. The redundancy of components
measure shows the percentage of system components that need
to be installed redundantly to avoid the system failure. The
fault tolerance is also improved, depending on the fastness
of the notification of faults. In particular, the Mean Fault
Notification Time (MFNT) measure indicates how fast the
system reports the occurrence of faults (the closer to zero,
the better the system fault tolerance is). These measures are
adequate to assess the interfacing practices, but the redundancy
of components measure is not critical in the interface practice
context.

4) Recoverability: The Mean Recovery Time (MRT) mea-
sure is the average time that the interface practice will take
to recover from failure(s). The lower the MRT is, the better
the reliability of the interface practice is. In case of redundant
systems, the MRT is zero (or close to it) since the redundant
components (that won’t exhibit failure) can take over the
instant the primary one fails. However, one has to consider
that for this, a switchover overhead from the primary one to
the redundant one might be evident. This measure, therefore,
applies very well to the assessment of the interfacing practices.
Another measure of the recoverability of a system is to analyze
how data is periodically backed up and can be restored in case
of failure. The Backup Data Completeness (BDC) measure
indicates the percentage of data items that are backed up
regularly. In the interface practice context, this measure is not
seen as suitable.

F. Security

Security relates to the protection of data, networks, and
hardware, with data security being most important. In this
context, systems containing industrial agents integrated with
low-level control functions require that the interaction between
them is secure. Moreover, they may also communicate securely
with other systems (supervisory control, visualization, etc.).

1) Confidentiality: Confidentiality requires data accesses to
be restricted to only authorized users or components, and to
do so, the standard proposes three confidentiality measures.
Access controllability is computed as the proportion of data
items requiring access control that can only be accessed with
proper authorization. Data encryption correctness relates to
the proportion of data items that are correctly encrypted or
decrypted within the system. Finally, strength of cryptographic
algorithm relates to the proportion of protected items for
which adequately strong cryptographic algorithms have been
chosen. Access controllability is arguably the most relevant
measure since IA and low-level control functions must ad-
here to the explicit or implicit scope of information access.
Data encryption correctness and the type of cryptographic
algorithms utilized are not so useful, often because these
measures are met using means like secure networks, or through
allowing access between components on one side (e.g., the
shop floor) and another (e.g., an Internet service) through well-
defined and secure interfaces. During the software design of
such systems, confidentiality concerns are often deferred to
the deployment stage when one or more of these means for
ensuring confidentiality can be selected.

2) Integrity: Integrity is concerned with the prevention of
unauthorized access and subsequent modification of data or
program code. The standard describes three measures to assess
integrity. Data integrity is computed as the proportion of
data items to be protected that remain uncorrupted. Internal
data corruption prevention is the proportion of available and
recommended prevention methods that have been implemented
into the system. Finally, buffer overflow prevention is the pro-
portion of memory accesses driven through user input that are
bounds checked to ensure data integrity. In this work’s context,
integrity assessment is very important but is carried out quite
late during the development of systems containing software
agents and low-level control. Buffer overflow prevention, and
to some extent, data integrity, can be tested before the system
is deployed. Internal data corruption prevention can be checked
just before deployment through a checklist of prevention
mechanisms derived from a target security standard.

3) Non-repudiation: Non-repudiation is the degree to
which a coherent, consistent and immutable log of events can
be maintained during system execution, often for diagnostics
purposes. The standard presents a single measure, i.e., digital
signature usage. which is the proportion of events that are
captured using a digital signature, certificates or other security
algorithms. This is an important measure in isolating faults
and identifying causality within interfaces. This measure can
be strengthened through the use of blockchains, which provide
a decentralized and immutable record of events, and can act
as an alternative to digital signatures.

4) Accountability: Similar to non-repudiation, accountabil-
ity also relates to tracing back an action in the system to
the entity that took that action. Likewise, this is important
in dynamic systems containing software agents and low-level
control. The standard proposes two measures: user audit
trail completeness and system log retention, each relating
to keeping a log of user accesses and system actions for a
suitable retention period, respectively. In the paper’s context,
user access logs can be handled by external interfaces, such
as the standardized human-machine interface provided by
systems like supervisory control. Keeping system logs is more
important, and tricky, as the system can contain a multitude
of software agents and low-level control functions.

5) Authenticity: Authenticity relates to ensuring that a
resource within the system can be proved to be authentic. The
standard measure authenticity through authentication mecha-
nism sufficiency and authentication rules conformity. The for-
mer is the proportion of authentication mechanisms required
in the system which have been implemented, and the latter is
measured as the proportion of specified authentication rules
that have been implemented. In our context, both measures
can be encoded within the interfaces between software agents
and low-level control. Moreover, both are equally important, as
the system is dynamic by design and communication between
these entities may change as time progresses.

G. Maintainability

Maintainability refers to the ease at which a system can be
modified after it has been operationalized. It includes the on-
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going assessment and replacement of individual components,
as well as the addition of new components to the system.

1) Modularity: More modular systems are easier to main-
tain as the addition of a component or an update to an
existing one tends to have a limited impact on the rest of
the system. ISO/IEC 25023 measures modularity via coupling
of components, which is the ratio of completely independent
components in a system to the number of components that
must be independent. An independent component has zero
impact on other parts of the system during maintenance. The
standard also adds another software-specific measure, relating
to the adequacy of cyclomatic complexity, computed as the
proportion of all software modules that have an acceptable
cyclomatic complexity. Acceptable cyclomatic complexity de-
pends on the type of system. For this paper’s context, coupling
is an extremely important metric to capture maintainability
via modularity. The highly dynamic nature of agent-control
integrations requires low (or ideally zero) coupling. Cyclo-
matic complexity adequacy is not so important here, as often
software modules within interfaces are built through the reuse
of smaller, well-tested software functions.

2) Reusability: The ability to use one asset (hardware or
software) in another system or sub-system is at the heart of
most industrial systems. ISO/IEC 25023 measures it through
two units: reusability of assets and coding rules conformity.
Reusability of assets is the proportion of assets that are
designed to be reusable. Coding rules conformity is the propor-
tion of software modules that conform to given coding rules.
In this context, the widespread use of automation development
standards such as IEC 61131-3 and IEC 61499 means that
reusability within software modules is in-built. Moreover,
due to this high reusability of assets through the use of
development standards, coding rule conformity is also built-in
to a greater extent.

3) Analysability: Assessing a complete system for the
impact from a localized change, identifying deficiencies, and
finding parts that need to be modified are used in the an-
alyzability context. System log completeness refers to the
proportion of required logs that are actually recorded in a sys-
tem. Diagnosis function effectiveness and diagnosis function
sufficiency measure the proportion of implemented diagnostic
functions that are useful, and the proportion of required diag-
nostics functions that are implemented, respectively. For this
work’s context, system log completeness is important not only
for maintainability, but also for other qualities like security,
reliability, and also for fault detection and reconfiguration.
Diagnostics, while also important, have not found uniform use
via development standards for industrial automation systems.

4) Modifiability: The ease at which a system or its parts can
be modified without affecting overall product quality is closely
linked with other sub-characteristics like modularity. Modifi-
cation efficiency is measured as the average time taken per
modification, normalized to the amount of modification time
expected. Modification correctness measures the proportion of
modifications that do not cause a quality degradation in the
system, and modification capability is a time-boxed proportion
of required modifications that could actually be implemented.

In the paper’s context, modification correctness is the most
important measure, as it can be influenced through careful and
systematic design. The other measures are historical, and can
only be computed after the system has been operationalized.

5) Testability: The ease at which any part of a system can
be tested to determine if it meets its target requirements and
goals is also relevant. Test function completeness is a measure
of how comprehensively tests are implemented within a sys-
tem. Autonomous testability is the proportion of tests that can
be run directly on individual components without depending
on other (sub-)systems. It is linked closely with modularity
measures. Test restartability is the proportion of tests that can
be paused and restarted. In this work’s context, autonomous
testability is enabled through the use of development standards
like IEC 61131-3 and IEC 61499. Software agent-control
interfaces developed have well-defined test interfaces. Test
function completeness is relevant but usually not a very achiev-
able target given the highly compositional and distributed
nature of such systems. However, aspects of the systems,
such as human-machine interfaces, can be made more testable
through provisions within accepted interfacing mechanisms
like supervisory control. Test restartability is elusive in such
dynamic systems, especially when agents are involved, as test
playback to restart points is almost impossible.

H. Portability

Portability is used to judge on the level of transferability
among different hardware, software or operational environ-
ments. To asses portability, ISO/IEC 25023 defines measures
for adaptability, installability and replaceability. Although all
of these metrics are relevant for industrial environments, the
way some of them are measured needs to be in a more fine-
grained context.

1) Adaptability: The degree of adaptability to different
environments is assessed in different directions via hardware
environmental adaptability, system software environmental
adaptability, and operational environment adaptability. All
three measures are considered as ratios of software functions
that successfully operate on new conditions. Although for IA
integration, all of the measures are relevant, one needs to
explicitly define what the context and how much of the stack
is attributed to the agent solution, e.g., if the OS on which
running the agent platform is included, etc.

2) Installability: A successful installation is measured
through time efficiency, and ease of installation customization.
Installation time efficiency is highly relevant, however, this
is measured against expected time, something that may be
challenging to estimate. Also what the “installation” phase
includes needs to be put into context, especially considering
that there are common components (e.g., the agent platform,
upon which variations of solutions may be installed); hence
potentially this might be treated not at the system level,
but down to individual components. Customization of the
installation procedures is measured in ease of installation and
is relevant, especially for agent solutions that feature self-X
characteristics (configuration, adaption, etc.) and adjust their
installation to their environments. This may also be linked
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with other phases like dealing with proper pre-operational
correctness testing.

3) Replaceability: The level at which the agent-based solu-
tion can replace other solutions in the same environment is also
relevant. All measurements are seen as suitable i.e. (i) usage
similarity, which provides a metric of the functions that can
be replaced (without workarounds or additional learning), (ii)
product quality equivalence, which shows if the new product is
better or equal than the previous, (iii) functional inclusiveness
which reveals the percentage of functions that may give similar
results with the old ones, and (iv) data reusability/import
capability which assesses if the same data can be used as
with the previous product. In industrial settings, if agent-based
solutions are to replace existing monolithic products, the level
of replaceability provides a highly relevant indicator, so that
systems can be migrated to new ones, that perform similarly
or better than the older counterparts.

III. DISCUSSION

Integrating software agents and automation/control systems
face broadly the same challenges as any other software
projects, albeit there are context-specific distinctions which
this paper attempts to highlight. ISO/IEC 25023 based mea-
sures for the eight characteristics (see section II) of quality
software prove helpful towards comparing practices for inte-
grating software agents and low-level automation functions.

Some of the measures, as shown in Table I, pose a very
good fit overall, and as they are unambiguous and well-
defined across any software system, such as the performance
measures. However, some other measures have a low degree of
suitability, since, although their corresponding characteristics
can be relevant, the way ISO/IEC 25023 proposes to measure
them may not be applicable or very difficult to realize in the
IA integration context. For instance, some of these measures
are vague or are designed to provide measurements for large
software systems, capturing their system-level aspects. Hence,
these need to be put into a more concrete perspective when
discussing how to quantify them and clearly link them to an
abstract model such as the one presented in Figure 1.

In some situations, while a measure proposed by the
standard itself might be valid, the parameters used for that
measurement may not fit the context. For instance, con-
sider cyclomatic complexity adequacy which is a measure for
modularity/maintainability. In a generic software system, the
cyclomatic complexity of a module or sub-system must be kept
reasonably low. However, in industrial automation systems
in general, development standards are built strongly around
the concept of high reuse through composition. In fact, the
configuration of highly complex software made from reusable
components is generally preferred over developing new, less
complex blocks. This strategy keeps the number of reused
software building blocks low, which then become easier to
test comprehensively compared to having many blocks that
are not reused as much. However, the cyclomatic complexity
of blocks typically goes up, which goes against the measure
as prescribed by the standard.

Some parameters defined in the ISO/IEC 25023 are quite
similar and probably, selecting only a subset of them may
be adequate to capture the necessary practice aspects for
assessing it. As an example, the failure rate and the MTBF
parameters are somehow similar in expressing the maturity
of a software system and particularly the interface practice.
Since they are correlated, it is usually preferable to use MTBF
since the use of large numbers (e.g., 1000 hours) is more
intuitive and easier to manage than very small numbers (e.g.,
0.001 per hour). Another example is the coupling measure
for modularity and the related measure modification efficiency
for modifiability. Modification efficiency depends directly on
coupling, that forms the basis for almost every other measure
for maintainability, indicating that it is the most important
measure to be captured for this characteristic.

The context in which the characteristics are assessed [10]
also plays a key role. For instance, the meaning of failure
needs to be agreed upon and understood in the specific context.
In the scope of this work, a failure is related to a situation
when the software agent cannot access to the low-level device
to perform regular tasks due to a problem associated to the
interface (including HLC or LLC API and communication in-
frastructure). Examples of failures can be broken connectivity,
network problems, server non-responsiveness, etc.

Some measures are inherently difficult to quantify. Take as
an example the “compatibility” context, where the integration
practice needs to support excellently a single specific data
exchange protocol and behave deterministically. However,
given the large variety of protocols and data formats in shop-
floor operations, such a practice will have low scores in
compatibility (i.e,. on “data exchange protocol sufficiency”)
as this in the standard is simply defined as a ratio over the
overall number of formats exchangeable with other systems.

Another pivotal issue is the coverage of the several life-cycle
phases of the interface practices. Some measures are more
focused in the design/testing phase, e.g., the fault correction,
coding rule conformity and the test coverage measures. Since
the main focus of the interface practices assessment is related
to the operation phase, these measures are not that relevant to
the interface practices context.

A question that arises is also which of these features are
seen as “heavyweights” and therefore would have the most
influence for a specific scenario. Surely there are no “one-
size-fits-all” solutions, but nevertheless, when considering the
specific characteristics of most industrial requirements some
issues may emerge. For instance, in a small survey [13],
carried out among the IEEE P2660.1 working group [18]
experts, it emerged that testability is seen as much more
important than others (e.g., the user interface aesthetics).
However, as seen in Table I, the three proposed measures for
assessing testability range from neutral, to good or very good.
Hence some may be adopted as they are, while others (e.g.,
test restartability), might need to be tweaked to better match
the agent context and the specific use-case requirements.

For different use cases or domains, the “heavyweightiness”
of some characteristics impacts how it is perceived and how it
can be captured in a representative way. For instance, a prac-
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tice should be able to attain high efficiency when operating in
isolation. However, such efficiency may not be representative
of the normal operation of the system, as features, e.g., the
agent’s autonomous behavior, or run-time context (unforeseen
side-effects among the services or infrastructure) may impose
additional overhead and affect the metric. Therefore, adequate
sampling of performance measurements with different soft-
ware components and operational constellations [17] must
be carefully carried out in order to produce representative
results. Performance efficiency has been characterized before
in respect to the agent platform in isolation [19], [20], but no
efforts have been reported to systematically evaluate it at the
interface between the agent platform and connected low-level
automation functions. As such, a reassessment of the practice
may be necessary, also when the practice is operational (in-
use) in order to catch local setup effects that may impact some
of the characteristics.

Apart from what is proposed by ISO/IEC 25023 and dis-
cussed so far, some additional measures can be used to more
accurately capture some of the characteristics in this paper’s
context. For example, for Testability, we define the reusability
index as the ratio of the number of blocks made from smaller
reusable components to the total number of blocks in the
system. A higher reusability index indicates that there is a
smaller set of basic building blocks that can be tested in
isolation. However, as systems and approaches become more
intelligent and self-organized in order to meet stakeholder de-
mands [4], measuring specific behaviors becomes challenging,
as the system dynamically tries to adapt to meet the posed
requirements.

The selection of measures may be differently perceived by
the involved stakeholders, and therefore removing ambiguity
about the context, the parameters, the way measurements are
calculated, etc. could be beneficial. In addition, we need to
point out that the practice assessment cannot be a one-time
action. The measure assessment may change over successive
system versions and therefore fluctuate over the lifetime of the
practice. Hence, additional considerations to capture structural
changes of the measures along evolution [21] may be needed.

IV. CONCLUSIONS

ISO/IEC 25023 proposes several measures and ways to
quantify them. When it comes to utilizing these measures in
IA-based applications and more specifically to the integration
with low-level automation functions, many but not all are
meaningfully applicable. Some well-defined measures can of
course be used and their quantification is appropriate, while
some others might need to be tweaked to better reflect the
context of IA. However, there are also other measures that
have a poor relevance, and it does not make sense to utilize
them. Independent of these results, there are also other issues
that have emerged and may affect the utilization of these
measures as discussed in section III, e.g., the lifecycle, the
domain or use-case requirements, the exact context for multi-
agent systems and federated access to devices, etc. In addition,
a challenging issue that needs to be addressed in the future is
the automated testing and evaluation of the practices based on

the criteria presented, as well as potential extensions of criteria
themselves.
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