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Abstract—In the emerging smart grid, using flexible infrastruc-
tures to realize better energy management via demand response
scenarios is at its core. The potential of electric vehicles used
to realize such flexibility is widely experimented with. In this
work, we take a closer look at a specific case of enterprise-
owned electric vehicles, parked at enterprise premises, and how
their charging can be optimized in order to both adhere to the
enterprise operational constraints, as well as consider dynamic
changes stemming from other grid stakeholders. A simplified
optimization using an evolutionary algorithm is realized, and the
approach is evaluated under two scenarios of interest.

Index Terms—Energy Management; Smart Grids; Optimiza-
tion; Renewable Energy Sources; Supply and Demand; Electric
Vehicles; Cost Function;Load Management

I. MOTIVATION

Significant efforts [1] have been devoted the last years to-
wards exploring the new capabilities offered by the smart grid
and how to grasp its benefits. Of special interest are the cases
devoted to Demand Side Management (DSM) and especially
Demand Response (DR) [2] which now can be realized in a
better way as well as in large scale with tangible benefits [3].
Such scenarios are empowered by bidirectional interactions
among the legacy and emerging smart grid stakeholders [4],
over a standardized infrastructure [5].

Of specific interest to the many smart grid stakeholders are
the DR scenarios [4], as these can yield additional (usually
monetary) benefits to the involved stakeholders, while in
parallel tackling key problems in the grid due to highly
dynamic energy production stemming from Renewable Energy
Sources (RES). The role of the Electric Vehicles (EVs) in
smart grid is increasingly investigated [6], including their
utilization as dynamic storage [7], since, if a critical mass
of them is reached, they can have a significant energy impact
on existing infrastructure, future planning and naturally in any
energy optimization scenario.

EVs can be an active participant in DR, since they provide
flexibility during longer standing times. This is especially of
interest when larger numbers of them are available, which
is the case e.g., for EV fleets. Several uncertainties are
coupled with individual EVs including, their presence, the
authorization to centrally control charging, the acceptance by
the consumer (EV owner), the impact on the EV battery, etc.
However, many of these considerations, can be set aside in
specific cases, such as those involving enterprise-owned cars.

In this work we focus on this area and introduce two DR
scenarios (a price-based and an incentive-based one) that are
attractive for enterprise fleets of electric vehicles. The latter
can react to DR events, with the flexibility given by long
and predictable parking times without interfering with their
operational plan. We introduce an optimization approach that
allows operators of such EV fleets to react to two different
types of DR events. Finally we evaluate these two scenarios
and the optimization realized, with real world data both for
available RES and enterprise EV fleet.

II. DEMAND RESPONSE FOR DSO AND SUPPLIERS

In the context of enterprise-owned EVs, different motiva-
tions exist for shifting electrical loads over time. From a local
point of view, such load shifts can help reducing consumption
(due to EV charging) at times where electricity is expensive
in order to reduce overall enterprise costs. In addition, EVs
can also be used to prevent the overall power draw from
exceeding technical or contractual limitations which could lead
to physical damages or penalty fees. DR allows extending
this concept from local boundary conditions to more global
aspects, as due to the bi-directional communication among the
involved stakeholders, other parties such as energy suppliers
and grid operators can influence consumers in order to make
them shift their loads in a specific manner, and result to
tangible benefits for all.

A prerequisite for demand response is a standardized com-
munication between the involved energy market participants.
Since the grid operator usually doesn’t interact directly with
consumers, the energy supplier in our scenarios can be seen in
the central role of a demand response provider and aggregator.
A supplier knows his consumers since he has contracts with
them and usually also has detailed analytics on their energy
behavioral patterns. In this work, we consider two types of
DR scenarios i.e., price-based DR for suppliers and incentive-
based DR for grid operators or other energy market partici-
pants.

A. Price-Based Demand Response

Price-based demand response uses short term price shifts
in order to influence the power consumption at a given point
in the near future. By increasing the price, demand can be
reduced and vice versa. Price-based DR can therefore be used
by suppliers to increase or decrease their customers’ demand
in order to meet their market predictions and avoid buying



expensive balancing energy. The advantage of this DR type is
its simplicity, while its drawback is the fact that the supplier
cannot exactly predict the individual consumer behavior. As
such, customers could e.g., accept a higher price without
changing their behavior when a reaction is inconvenient for
them. In order to not entirely compromise the customer
planning security, some restrictions are put in place.
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Figure 1. Example for price based DR

The price-based demand response could potentially be more
customer-friendly if it is bound to predefined time- and price-
frames and if only a limited number of events per year
are allowed. These limitations may lead to more trust from
the customer side than frequent dynamic changes from the
energy market, and therefore there might be a higher chance
for customer acceptance and participation in such schemes.
We consider that for success, such adjustments must be
non-intrusive, require no additional customer-interaction, and
respect fully constraints set by them. Such details could be
specified in the contract between supplier and consumer. The
execution of price-based demand response is simple; when the
supplier detects an upcoming mismatch between the energy he
purchased for a given time frame and the predicted demand
of his customers, he can increase or decrease the energy
price within that time frame for all participating customers
(as exemplified in Figure 1). The latter could be done for
specific targeted groups based on several criteria e.g., in a
specific location, capability to react quickly and at mass, prior
adherence to similar events, flexibility etc.

B. Incentive Based Demand Response

The incentive-based demand response we investigate, repre-
sents a tool for grid operators that they can use to reduce power
consumption in a specific grid area in order to avoid overloads.
Since grid-operators generally do not have direct contracts
with consumers and therefore cannot directly influence the
price, this type of DR is more complex than price-based
demand response. It must also be considered, that a direct
influence of the consumer behavior might harm the supplier
who has to meet the predictions for his balance group in order
to avoid penalty fees. Therefore, a way needs to be found
that involves energy suppliers, when a grid operator wants
to influence the demand in a grid sector. For grid operators,
shifting the demand is of high priority, especially when the
grid load risks reaching the grid capacity. In this context, grid

operators like EnBW in Germany, talk about a so called grid
traffic light that distinguishes between three phases:

• Green: The grid load is far below the maximum grid
capacity. No action is needed.

• Yellow: The grid load is near the maximum grid capacity
but has not yet reached it. To avoid possible outages due
to a further increase of the load, incentive based demand
response can be used in order to lower the demand.

• Red: The load has reached the maximum grid capacity
and the grid operator is forced to separate single con-
sumers from the grid in order to avoid severe general
outages and to restore the grid stability.

Incentive-based demand response is mostly interesting dur-
ing the yellow phase, when all possible measures have to
be taken to avoid the red phase. It allows to figure out for
which consumers a load reduction causes less disadvantages
and costs. Separating consumers from the grid in the red phase
affects (usually arbitrarily) consumers, it may lead to physical
damages to their infrastructure (like e.g., electric vehicles)
and does therefore not represent a valuable substitute to DR.
Furthermore in cases of EV fleets controlling the grid capacity
by secondary actors without the agreement of the fleet operator
could lead to violations of the operational plan. The reduction
of available capacity or cutting it off completely can delay the
charging of EVs that are needed in business operations and
lead to additional business cost for the operating enterprise.
The incentive-based demand response avoids this by respecting
the operational plan and the business usage of the EVs, and
only uses the flexibility given by that schedule.
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Figure 2. Overview of stakeholder interactions in incentive-based DR

Based on the capabilities offered by the smart grid, and
especially due to the bidirectional communication among



the stakeholders, a negotiation can take place. As shown in
Figure 2, an incentive-based DR that involves both the grid
operator and different suppliers can be executed. When a grid-
operator wants to reduce the demand in a grid-sector, he can
send a request to the suppliers who have customers in the
respective grid segment. The request should include the time
frame for which a load reduction is desired.

A supplier who receives such a request will analyze it and
under consideration of all boundary conditions and costs he
can calculate incentives (e.g., e per reduced kW) he can pay
to customers who are willing to adjust their future load in the
respective time frame. The supplier sends this incentive offer
to all his customers among which in our case we have an
operator of an electric EV pool (fleet manager). Considering
the incentive, the fleet operator calculates how much load he
is willing to shift and communicates this to his supplier. As
a follow-up, the supplier aggregates all load shifts that his
customer(s) have agreed upon, and under consideration of all
his costs he makes an offer to the grid operator.

The grid operator compares the offers of the different
suppliers and those who made the best offer will receive a
request which specifies how many kW the overall load of their
customers should be reduced. Finally, the supplier calculates
internally how to distribute this request and redirects the
requests to his customers. Due to the technical restrictions of
the EVs and the charging stations, especially the maximum and
minimum charging power, not every arbitrary load shift request
can be implemented by the EV fleet. Therefore the optimiza-
tion calculates the closest possible value to this requested
load shift. This small difference is then communicated in the
confirmation, and at aggregated level is usually insignificant.

III. OPTIMIZING EV CHARGING FOR DR PARTICIPATION

Many enterprises today provide as a benefit to their em-
ployees cars, and increasingly these cars are EVs. While
these EVs are used by the employees both for business and
private utilization, their lifecycle activities are managed by
the respective enterprise team. Practically this implies that
some considerations such as the impact on the EV battery,
the acceptance by the EV owner etc. are no longer an issue.

In addition, the presence of these EVs is highly correlated
to the work schedule of the respective employee and this can
be highly predictable or derived from other sources (e.g., em-
ployee calendar, vacation application, business meetings etc.).
During the charging of the EV at enterprise premises, which
in practice might resolve to approx. 08:00–17:00 timeframe,
the EV as well as its charging are under the control of the
enterprise and as such, centrally planned optimization can be
realized and enforced.

Such optimizations however, have to consider not only
enterprise needs and benefits, but also comply to the consumer
needs and plans for the rest of the day. So the result is a multi-
constrained optimization that needs to consider the varying
needs of the involved stakeholders (described as constraints)
as well as being able to accommodate dynamic changes to
these constraints.

If a critical mass of EVs is reached, they can have a signif-
icant impact on energy optimization scenarios. Uncoordinated
charging load of electric vehicles may increase peak loads of
the power grid. A “valley-filling” charging scenario offers a
cheap approach [8], however it is not always applicable to
dynamic changes especially in short time frames. With the
appropriate strategy EVs may charge while keeping the peak
demand unchanged [6]. Tangible benefits can stem from DR
programs as well as potential cost savings and benefits related
to different market components concluded with a selected DR-
experiment carried out by a utility [9].

In this work, we focus on real-world cases for enterprise
owned EVs that charge at work premises, which overcomes
some limitations and uncertainties coupled to EV presence,
the authorization to centrally control charging, the acceptance
by the consumer (EV owner), the impact on the EV battery,
etc. In the enterprise context, users have to book the fleet
EVs in advance to ensure a charged battery at their departure
time. This allows the operator to create an operation plan
which can be considered as reliable for a participation in DR
events. To calculate the initial charging plan, as well as to
accommodate recalculations due to dynamic changes dictated
by DR events, we use an evolutionary algorithm which we
will shortly describe in the next section. A description of the
mathematical model and the algorithm in more details can be
found in [10].

A. EV Charging Optimization Algorithm

For the optimization algorithm there are hard constraints,
which must not be violated. These include the grid capacity
and the charging power constraint. The latter include the charg-
ing stations and the EV’s minimum and maximum charging
power of both, or is 0. The soft constraints contextualize the
desired state of charge at the end of the charging process. If
not enough capacity is available, the desired energy amount of
some EVs will not be reached or EVs scheduled for charging
have to be rejected. An evolutionary algorithm is used to
generate an intelligent charging plan considering grid capacity
and energy price as discrete function with 15 minutes time
intervals.

The representation of a solution was chosen to be the per-
mutation of EVs, while for each EVs additionally a maximum
charging power is set. This maximum charging power differs
from the technical restriction, in the way that it is chosen
randomly among the restrictions given by the EV and the
charging station.

Each EV then gets optimized with a greedy approach,
considering its new given maximum charging power and for
the following fitness evaluation the overall costs of each
solution are calculated, including the energy price combined
with penalty costs for the violations of soft constraints.

B. Experimental Setting

The first task of the energy management system responsible
within which also the charging optimization functionality lies,
is to avoid violation of the load limits, respect the technical



restrictions of each EV, and minimize the energy costs. To do
so, it has to calculate the optimal charging plan for each EV
with respect to the cost for the entire fleet. Necessary data
from the energy market, the EV and the pool fleet operator
is collected e.g., from the technical parameters of each EV,
the (forecasted) electricity price curve, as well as the load
limitations for a specific period of time e.g., 24 hours. The
operation plan, as well as the desired energy for each pool
EV, is posed by the employees who book the respective EVs
in 24 hours in advance for business use, in order to guarantee
that the EV is charged for the planned trip on the next day.

Based on the available data the evolutionary algorithm cal-
culates a cost optimal charging plan for the fleet, that respects
the aforementioned constraints. The resulting charging plan is
then communicated to the charging stations, which enforce it
and control the charging of the EVs. Since the data from the
energy market is communicated in advance, dynamic changes
may appear while a charging plan is executed. To address these
changes we use DR events, as depicted in Figure 2. After
each event the algorithm will calculate a new charging profile
starting in the next 15 min interval after the actualization.

To evaluate a possible reaction to such DR events, we look
at a simulated pool of EVs owned by the enterprise and
used by employees. These EVs are charged at the enterprise
premises and the total cost for charging is paid by the pool
fleet operator. This means that the goal of cost optimization
is reducing the overall cost for the EV charging and not
necessarily that of individual EVs.

The simulation is based on real-world data that has been
collected by the Future Fleet project in Germany. From the
collected data we did not consider the sessions that were
longer than one day or shorter than one minute. For the wind
scenarios we chose 50 charging sessions randomly, while for
the solar scenario 50 charging sessions that occur in daytime
have been selected randomly. In this way we created an
operation plan for one day. In the Future Fleet project only one
vehicle type i.e., STROMOS from the company German E-
CARS, has been used. Since today’s scenarios usually involve
different EV types, we carry out the simulation on EVs with
different battery capacities as well as charging powers and
therefore assume the following vehicle types:

• 17 Renault Zoe with battery capacity of 22 kWh, a
minimum charging power of 7.6 kW and a maximum
charging power of 22 kW,

• 12 BMW i3 with battery capacity of 19 kWh, a minimum
charging power of 1.38 kW and a maximum charging
power of 7.36 kW,

• 5 e-Smart with battery capacity of 19 kWh, a minimum
charging power of 1.38 kW and a maximum charging
power of 3.68 kW,

• 16 Mercedes-Benz A-Class E-CELL with battery capac-
ity of 36 kWh, a minimum charging power of 2.76 kW
and a maximum charging power of 7.36 kW.

These are not the original EVs that were used in the German
Future Fleet project; however their characteristics are included
in the simulation, and are fit for our goal of simulating a

broader and more diverse spectrum of EVs with different
battery capacities and charging power. The values for the
battery capacities and the charging power are oriented at
the values given in the EV specifications, as well as the
measured values from test with this vehicles. As a delimitation,
we intentionally simplify the potential constrains and do not
consider the impact on the EVs e.g., overcharging of EVs,
battery degradation [11] etc. Such fine-grained considerations
are left for future work.

To apply realistic boundary conditions to this scenario, data
from renewable energy sources like solar and wind is used.
These datasets for wind and solar refer to a single location
in Spain as collected by the NOBEL project platform [12].
For solar we arbitrary selected the production data of the 06-
Jun-2012. To calculate the energy production from the wind
data, we used the model for the “Tornado 1 kW” turbine.
According to [13] there are regions in Spain where the mean
wind speed lies between 4 and 5 m/s such as the region close
to the NOBEL trial from where we have the field data. The
dataset we used in our evaluation resulted in an average wind
speed of 4.76 m/s. For the evaluation, the arbitrary example
03-Oct-2013 from the dataset was chosen.

All company pool EVs are treated equally and it is consid-
ered that the pool fleet operator can send a charging plan to
each EV to control the charging within the given flexibility.
This charging plan has to ensure that all EVs are charged at
least to the level that fulfills the wishes of the next reservation
(i.e., respect consumer constraints); otherwise the employee
would not be able to meet the next appointment, which is not
acceptable business-wise.

If charging is possible, then in most cases there exists for
each EV i during the standing time Ti an infinite number of
valid charging functions Lj

i , that fulfill the condition to charge
the desired energy amount. The potential for load shift is then
given as the union of all these valid charging functions

⋃
j L

j
i .

The load shift potential is given as the boundary of this set.
For a positive load shift it is the charging plan with the lowest
charged energy, while for negative load shift it is the one with
the highest possible charging energy in a certain time interval.

IV. EVALUATION

For the parameters used in the algorithm, a standard sugges-
tion is used [14], advising that the population size should lie
between 1 and 30 solutions, and that the best selection for the
quotient between parent solutions and number of solutions in
the evaluation of the fitness has a value between 1

5 and 1
7 . In

our case this leads to a start population of 20 solutions, and in
each evolution process 40 child individuals are generated via
recombination and another 40 child individuals are generated
via mutation. For the next generation the 20 best solutions are
selected and is repeated for a certain number of generations.

We evaluated the algorithm according to its run time and
improvement of the fitness function by stepwise increasing
the number of generations. The critical point is the feasibility
for the chosen scenarios, like calculating a charging plan and



reaction to demand response events like short term changes in
price curve or request for load shifts.

The experiments show that for all three scenarios the first
populations tend to start with a poor fitness (as expected)
which significantly changes within the first 5–10 generations.
Afterwards, the fitness increases only minimally over the next
approximately 500 generations. In the majority of experiments
(20 for each scenario) the fitness does not noticeably change
(less then 0,1%) after the 500th–1000th generation. The execu-
tion time for the algorithm with 500 generations is less than
20 seconds, which evidences that even with this number of
generations the algorithm is still fast enough to quickly react
to time-sensitive DR requests.
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Figure 3. Charging plan for a company pool fleet of 50 EVs with restricted
capacity due to limited wind production

In our scenario we consider energy supplier and grid
provider as two independent stakeholders. Therefore the price
profile (denoted by a red line in the figures) is not necessarily
correlated to the wind profile, even though in future, especially
in DR scenarios, this might be increasingly the case. This
scenario shows that the algorithm can handle both possibilities.
The first priority is to respect the capacity restriction which
is not necessarily the physical grid restriction, it can also be
the limit given by renewable production. With the flexibility
which is given (under these restrictions) the algorithm chooses
the best and cheapest solution for the EV fleet.

This set-up allows the EV fleet operator to negotiate in the
future a preferential contract with the supplier for a better
energy price. Furthermore the EV fleet operator may couple
such actions with its corporate social responsibility (CSR)
and sustainability goals e.g., lowering its CO2 emissions by
charging the EVs only when energy from RES is available.
Another possibility would be that the grid provider is the
owner of the wind farm and aims at absorbing the maximum
available RES energy generated before deciding on interacting
with other stakeholders [15].

Figure 3 depicts a charging plan (in blue) that has been
calculated by the algorithm for a company EV pool fleet of
50 EVs. The green curve shows the available energy calculated
from wind data from the 03-Oct-2013. As depicted in Figure 3,
the production capacity limit is respected, and additionally the
charging is happening during the lowest costs (price curve
shown in red) slot, which implies lower overall cost for
charging the whole fleet.
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Figure 4. Charging plan for a company pool fleet of 50 EVs with restricted
capacity due to limited wind production with price based demand response

The reaction of a price based demand response scenario is
visualized in Figure 4. The price profile is updated between
15:00–17:00, since the energy supplier gives (four hours in
advance) an incentive to consume more energy during this
time interval. With this updated price profile a recalculation
of the charging plan is initialized and after a short run time the
new charging plan is in place. The figure visualizes that the
algorithm successfully shifts consumption after the notification
to the cheap DR time slot, which was originally planned to
be charged in other time slots.
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Figure 5. Charging plan for a company pool fleet of 50 EVs with restricted
capacity due to limited solar production

Figure 5 depicts our experiments while considering solar
production. As it can be seen, the capacity boundary is
now determined by the solar production. We observe that
the consumption follows the production with respect to the
optimization of EV charging i.e., the EVs are charged when a
surplus of solar electricity is available and stop charging when
there is no production. Furthermore the cheapest time slots
with available solar production are selected by the algorithm.
In Figure 5 we see the charging plan which was calculated
with prior communicated solar production.

Our available data from Spain usually depict a perfect
Gaussian curve, except from the case depicted in Figure 5
which denotes a disruption event at 11:00 and again approx.
14:00–16:00, during which the solar generated power is not
fed into the network and hence is not available for charging
EVs. Although we do not know the source of this event
(e.g., if it was a planned maintenance etc), such events may
come well in advance from other enterprise systems (e.g.,
asset management system if planned), or may be identified



at the time of happening (in real-time). Our aim was to
show that such events can also be dynamically integrated and
compensated for by simplified and timely re-optimization of
the EV charging planning.
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Figure 6. Charging plan for a company pool fleet of 50 EVs with restricted
capacity due to limited solar production with capacity based demand response

Due to the aforementioned events a capacity based DR was
triggered, one minute before the event, with the request for
positive load shift in the time frame from 8:00–9:00. The
algorithm calculates within seconds a new charging plan and
shifts the missing load to later times. The new charging plan
is shown in Figure 6 and the EV fleet operator can offer the
energy market a load shift of 105 kWh.

It is worth noticing, that the algorithm only decides to shift
the load completely when this will not lead to violation of the
operational plan. The short run time of the algorithm shows
that it can react to dynamic changes.

V. CONCLUSION

In this work we have taken a look at two DR scenarios that
are of interest to enterprises operating EVs and wish to par-
ticipate to DR. A simplified optimization plan is generated by
an evolutionary algorithm that considers multiple constraints
stemming from the involved stakeholders. The algorithm could
also be executed with a less elitist selection strategy like
”roulette wheel” or ”tournament selection” to increase diversi-
fication in the population which could possibly lead to better
results. In various experiments with solar and wind power
generation, the algorithm is capable of adjusting the charging
plan in seconds, which in turn makes it possible to participate
in DR events and provide shiftable load to the energy market
without interfering with the business usage of the EV fleet.
In future enterprises, overall optimization of assets at large,
including EV fleets, to adhere to enterprise policies, as well
as other operational and cost constraints will be of increasing
interest. The latter is due to the new capabilities of near real-
time monitoring and control of the assets (such as the EVs),
as well as the bidirectional interactions among the smart grid
stakeholders as we have investigated. The results may yield
tangible benefits for all stakeholders, and hence there is both
technical and business interest for their assessment. Future
steps in this direction could be experiments with larger EV
fleets, while considering more fine-grained constraints and
economic objectives.
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