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The Impact of Smart Grid Prosumer Grouping on

Forecasting Accuracy and its Benefits for Local

Electricity Market Trading
Per Goncalves Da Silva, Dejan Ilić, and Stamatis Karnouskos

Abstract—Local electricity markets may emerge as a mecha-
nism for managing the increasing numbers of distributed genera-
tion resources. However, in order to be successful, these markets
will heavily rely on accurate forecasts of consumption and/or
production from its participants. This issue has not been widely
researched in the context of such markets, and it presents a clear
roadblock for wide market adoption as forecasting errors result
in penalty and opportunity costs. Forecasting individual demand
often leads to large errors. However, these errors can be reduced
through the creation of groups, however small. In the work
presented here, we investigate the relationship between group size
and forecast accuracy, based on Seasonal-Naı̈ve and Holt-Winters
algorithms, and the effects forecasting errors have on trading
in an intra-day local electricity market composed of consumers
and “prosumers”. Furthermore, we measure the performance of
a group participating on the market, and demonstrate how it
can be a mitigating strategy to enable even highly unpredictable
individuals to reduce their costs, and participate more effectively
in the market.

Index Terms—Smart Grids, demand forecasting, autonomous

agents, renewable energy resources, energy management

I. INTRODUCTION

THE smart grid [1] poses a paradigm change in the

electricity domain that will empower a new generation

of innovative applications and services. The increasing pen-

etration of distributed renewable generation and the dynamic

involvement of the envisioned stakeholders [2] will have a

dramatic effect on the power grid [3]. In the smart grid era,

traditionally passive consumers, such as households and small

businesses, are being empowered to also become producers.

As they are outfitted with generation capacity, such as roof-

mounted solar photo-voltaic (PV) panels, they can take a

more active role in the system. The locational, and sometimes

intermittent, character of distributed generation will empha-

size local energy management and require higher stakeholder

engagement, such as through the creation of cooperatives, or

“energy communities” [4], and local electricity markets [5].

Electricity markets are seen as the cornerstone of liberalized

power systems, and in the smart grid era they can also be

applied as a “soft management control” at local level. They

provide an efficient mechanism for the allocation and pricing

of the generation capacity used to meet power demand. Market

models such as [6], [7], and the NOBEL market model [8] used

in our evaluation, have been shown to be an effective method
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for the coordination of local consumption and production.

Given the instantaneous transfer of generated power, electricity

markets heavily rely on forecasting in order to help ensure the

operational stability of the power system, which requires a

near constant balance between demand and supply.

In a local and intraday electricity market such as NO-

BEL, forecasting accuracy plays a key role for success of

participants and market itself. High forecasting accuracy can

also enable the market to provide enough feedback to push

consumers towards periods of high availability (i.e. low prices)

and producers to periods of high demand (i.e. high prices),

thus alleviating peak consumption, making better use of in-

termittent renewable generation, and leading to economically

favorable outcomes to the participants. However, forecasting

demand requirements for small highly-dynamic entities, such

as single households, can lead to higher errors and conse-

quently to the market-related penalty costs. This might be a

potential barrier for economically feasible participation and

realization of such markets. Although such aspects will depend

on applicable business models, it is expected that forecast

accuracy will still be highly beneficial for the majority of them.

An important property of markets, in general, is that they

provide a common interface through which different types

of participants can interact in a timely and well-informed

manner. As such, a participant’s internal management and

composition (e.g. a single household, group of households or a

fleet of electric vehicles) may be hidden from the market, and

therefore many different solutions could be proposed to tackle

the issue of forecasting accuracy. One possible solution could

be aggregating certain participants into small virtual groups

named Prosumer Virtual Power Plants (pVPPs) [2] based on

some key characteristics (e.g. social, consumption, location). A

“prosumer” is a consumer that has its own production capacity

(e.g. PV panel). Such groups not only exhibit lower forecasting

errors, as we will demonstrate, but can also potentially lower

the risk of market participation for their members through

the internal sharing of resources, costs and benefits. The

latter enables even unpredictable stakeholders to participate

effectively in the market, which due to the incurred costs

would otherwise not be economically sound.

In this work, we investigate the positive impact of grouping

on forecasting accuracy, and how it can be exploited for

effective participation within the NOBEL local electricity

market. The evaluation is carried out through a simulation

of the market interactions of various prosumers, consumers,

and groups. The simulation is based on smart metering data
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collected during the NOBEL field trial in the city of Alginet,

Spain in 2012. Furthermore, the PV generation output is

calculated from historical solar irradiation and weather data

for the same area during the trial. The main thrust of this

work is guided towards the following key contributions:

• We investigate the relationship between forecast accuracy

and group size, and show that significant improvement

can be eve seen for small group sizes.

• We quantify the effects of forecasting errors on local

electricity trading under different levels of distributed

generation penetration.

• We quantify and compare the behavior of a group on

the market, with that of its members under an individual

trading regimen.

• We demonstrate that by participating as a group, the par-

ticipants can reduce their potential market-related penalty

and opportunity costs.

The remainder of this paper is organized as follows: in

Section II, we summarize current efforts in the local electricity

market domain, and describe the NOBEL market. In Section

III, we investigate the behavior of forecasting accuracy in

function of group size and show how forecasting errors can be

dramatically reduced, even for small groups. In Section IV-A,

we outline our evaluation methodology, simulation environ-

ment, and data. In Section V, we evaluate the impact of fore-

casting errors on the market. In Section VI, we demonstrate

how participants can benefit from improved forecast accuracy

and resource sharing to reduce their potential market related

risks and costs. Finally, we conclude the paper in Section VII.

II. MARKET ASPECTS

The current focus on renewable generation and demand-

side flexibility has placed new electricity market models at

the heart of major roadmaps for the smart grid [9], [10].

In this section, we outline fundamental market concepts,

present current efforts in this domain, and compare them to

the NOBEL market model. Many of the proposed electricity

market models found in literature have followed the double-

sided auction approach, that is, auction models with many

buyers and many sellers that generally fall into two categories:

continuous double auctions (CDA) or call auctions (CA).

The CDA is the basis for many financial markets, such as

the New York Stock Exchange. In the CDA, the market is

cleared continuously as new orders are submitted. The CDA

mechanism offers a highly efficient and decentralized approach

to resource allocation, where the allocation emerges from the

continuous interaction between participants. Generally, every

time an order is submitted to the market, a transaction will

occur only if there is a price match between buy and sell

orders. Any submitted order that is not matched is stored in

a publicly viewable order book. By accessing this informa-

tion, the participants can quickly adapt to sudden changes in

supply and demand. These sudden changes are a prominent

characteristic of future electric grids, especially in the light

of renewable generation, electric vehicles, and demand-side

management and/or response. However, it should be noted

that protocols and clearing rules for CDAs can vary between

models and their target applications. As a reference, a widely

studied CDA model can be found in [11] and CDA-based

models in the energy domain can be found in [12], [13].

In contrast, in a CA the market clears at discrete time

intervals. While this can lead to an optimal allocation, it can

also hamper participants’ efforts to adapt to changing market

conditions. As such, we concentrate our research on CDA-

based models. However, some CA-based electricity market

models have been proposed [3], [13], [14].

The NOBEL market [8] model is based on the European

Power Exchange (EPEX) Intraday Market (www.eex.com). It

is composed of a series of concurrent CDAs, called timeslots.

Every timeslot represents an interval (e.g. 15 minutes) within

a known horizon (e.g. next 24 hours) where participants can

place their orders to buy or sell electricity. The sequence of

timeslots offers a platform for continuous trading in a rolling

horizon. Participants use the interval of each timeslot as a ref-

erence to place orders based on their consumption/production

forecast. The timeslot clears continuously as the participants

submit orders. Generally, a transaction occurs when two orders

match in price, that is, the bid price is greater or equal to the

offer price. The price is set to the incoming order price (i.e.

the order that makes the market “move”), while the quantity

traded will be equal to the minimum quantity between the

matching orders. Unmatched and partially matched orders are

stored in the public order book or the respective timeslot.

Furthermore, the model includes other order attributes that are

considered by the clearing mechanism. For instance, a market

order could be submitted to accept any price, or an order

could stipulate that its entire quantity needs to be met (if not

entirely met, transaction will not occur). The efficiency of the

NOBEL market was already evaluated in terms of the usage

of its underlying available resources [8]. In this case, under

simple trading behaviors, trading at random prices, a lower-

bound of about 75% efficiency was determined. Furthermore,

it has been demonstrated to be scalable [15].

The NOBEL market differentiates itself from other proposed

models, e.g. [12], [13], in that it positions itself squarely at

the distribution system, without considering any transmission

system aspects. Furthermore, the NOBEL market promotes

balance between the local resources and demand, as a cheaper

alternative to the retailer contracted electricity. Hence, the

market becomes a tool for indirect price-based management of

demand/supply operating under dynamic conditions. To make

some realistic assumptions about the operational aspects of

such a market, we consider that a portion of the consumer

demand can be serviced through the market, while the remain-

der can always be provided through the retailer. The latter is

mandatory due to security of supply conditions, and acts as

a backup solution if not all energy can be provided via the

market-based channels. This also makes harder constraints,

such as inelastic demand, unnecessary.

Additionally, while calculating generation costs can be

straightforward (i.e. fuel costs and capacity factors can be

easily estimated), calculating the buy prices might not be

as easy. A household might not be too concerned with the

micro-cost associations of, for instance, watching TV, using

the computer, or any other household task. However, in this
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case, the retailer costs can be used as a basis for trading on

the market. Any price below the retailer contract price will

represent a saving. Of course, this entails that the generation

costs in the market are below that of the retailer costs. This

is not currently the case, but as distributed generation costs

decrease, and retailer centralized costs increase, we assume it

will be the case in the future. For these reasons, we choose

the NOBEL market model in our evaluation.

To summarize, intra-day CDA-based markets allow par-

ticipants to follow and take advantage of the market as it

develops. While CDAs will not always lead to an optimal

allocation, current research suggests they are highly efficient.

The evaluation of these novel market mechanisms has gener-

ally focused on their efficiency at solving different allocation

problems. Inadequate attention has been given to the negative

effects forecasting errors can have on these markets and

their participants’ activities. Large forecasting errors can be a

fundamental barrier for the successful realization and adoption

of local markets, as these are envisioned in the smart grid era.

As such, these effects need to be analyzed and understood.

This is especially true in the case of small-scale individual

traders, like households, that may take a more active role in

the future electricity markets as standalone or as part of ad-hoc

groups like the pVPPs [2].

III. GROUP-FORECASTING ACCURACY BEHAVIOR

We have assessed the effects of grouping on demand-

forecasting errors based on smart-meter measurements col-

lected in the NOBEL project trial [16]. The measurement

sampling rate was at 15 minutes for each meter. The original

data set was quality-screened in order to obtain a high number

of smart-meters without faulty or missing measurements. The

resulting had 1974 smart-meters with sufficient historical data

to, in our demonstration case, predict demand behavior for

Tuesday, 07-Jun-2011. In order to understand the impact of

grouping on achieving a higher load forecast accuracy, groups

of different sizes were created by randomly choosing smart-

meters from the dataset. Using this approach, we measured the

changes in forecast accuracy as a function of different group

sizes.

The smart-metering data was aggregated into groups on

equal timestamps to produce a single demand time-series.

Different forecasting algorithms were then applied, and the

resulting predicted values were compared with the actual

values. To measure the resulting accuracy, the Mean Absolute

Percentage Error (MAPE) was used, as it can be compared

regardless of the magnitude of the measurements taken. For

instance, commercial customers will have a higher demand

than residential customers.

An experiment was executed 100 times for each group of

size n. Each time, a different group was randomly generated,

and had its MAPE measured under different forecasting algo-

rithms. The first subinterval was n = [1, 25], by incremental

steps of 1 (or 25 different group sizes), second n = [26, 50]
by steps of 5, third n = [51, 100] by steps of 10, and fourth

n = [101, 180] by steps of 20. Figure 1 depicts the average

MAPE for one day ahead forecast of two forecasting methods
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Figure 1. Grouping effect on the prediction accuracy (MAPE)

i.e. Holt-Winters (HW) [17] and Seasonal Naı̈ve (SN) [18].

As can be seen, the forecast accuracy increased with group

size, while in parallel the rate of improvement was decreased.

The results show that the simple forecasting method SN

performs almost identically to the more advanced HW algo-

rithm. This is interesting as the SN method, of one day season,

uses identical values of a previous day interval to make the

forecast, while 4 weeks of meter readings were used to train

HW to forecast one day ahead. Nevertheless, HW showed a

slightly better accuracy for all groups, concluding that the set

resulted with an average MAPE of less than 5% already at the

group size n = 160.

Improving forecasting accuracy through aggregation is noth-

ing new for the electricity domain. For instance, [19] showed

how prediction errors of wind power output are lower for a

group of wind-farms than for a single site. However, here we

demonstrate how rapid the forecast error reduces, even for

relatively small groups, and how fast its point of convergence

is reached. Next, we evaluate if this effect can be exploited to

improve the trading outcomes of the market participants.

IV. EVALUATION METHODOLOGY

A. Simulation Model and Data

The effects of grouping on the forecast error reduction

are evaluated through a discrete simulation model of the

NOBEL market in a similar setup to the one described in

[15]. The simulation comprises 1897 participants trading on

unique 15 minute intervals of the market for the month of

September 2012. The participants are divided into two roles:

consumers and prosumers. All participants have their own

predicted electricity demand profile, while only the prosumers

have generation capacity. The simulation advances 15 minutes

per time-step, the duration of the market timeslots. At each

time-step, the earliest timeslot is closed for trading, a new

one is opened at the end of the sequence, and the participants

submit orders to the market based on their forecasts. Data for

each participant (e.g. real demand, predicted demand, quantity

bought/sold) and for each timeslot (e.g. total consumption,

total production, total energy traded) is collected for the

evaluation.
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The electricity consumption for each of the simulated partic-

ipants is based on real smart-metering. These measurements,

with a sampling resolution of 15 minutes and precision of

1kWh were taken during the NOBEL field trial, which took

place in Spain at the end of 2012. These measurements are

interpolated to produce the real demand profile of each partic-

ipant. The SN forecasting algorithm is then applied to each

smart meter individually, to produce the predicted demand

for each participant. Although the HW algorithm displayed

slightly better results, as depicted on Figure 1, we chose the

SN algorithm for its simplicity and to form a baseline for

future comparison.

The generation profile of the prosumers in the evaluation

scenarios is simulated. The PV generation technology was

chosen as it is a main player in the context of distributed

generation, and due to its increasing growth in the residential

and commercial rooftop segment [20]. Any participant with

generation capacity is outfitted with a PV installation with

an assumed efficiency of η = 15%. The installation is

sized so that it will produce up to 50% of the participants

total demand for the simulated period. For instance, if a

participant consumes 100 kWh within the simulated period,

its PV installation would ideally produce 50 kWh over the

same period, weather effects not withstanding. At this level,

the average self-consumption rate over all prosumers will be

roughly 70%, which was observed to be the saturation point

of self-consumption for Spanish prosumers equipped with a

photovoltaic system [21].

The solar radiation data used to simulate the participant’s

production is acquired from the European Commission’s Joint

Research Center’s Photovoltaic Geographical Information Sys-

tem (re.jrc.ec.europa.eu/pvgis). The monthly radiation data is

used to calculate the PV capacity of a participant, while the

daily radiation data is used to calculate the 15 minute interval

energy output (Wh) of the installation. The weather data is

collected from the web-services offered by Wunderground

(www.wunderground.com). Both irradiation and weather data

are collected for the city of Alginet, in Spain, where the

NOBEL trials took place. As an example, Figure 2 depicts

the demand, predicted demand, and generation output of one

day for one of the participants.
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Figure 2. Example day of actual demand, predicted demand, and generation
output for one of the participants.

For simplicity, no prediction errors are attributed to the

production profile of the participants. As such, the amount

of energy generated by a PV installation within an interval

t is calculated as follows: E(t) = ηαIg(t)ω(t)τ , where η
is the efficiency of the installation, α is the area (m2) of

the installation, Ig is the global irradiation in a fixed plane

(W/m2), 0 ≤ ω(t) ≤ 1 is a dimensionless scaling factor in

function of the weather conditions (e.g. clear sky is 1 while

a thunder storm is 0), and τ is the timeslot duration in hours

(0.25 in this case).

B. Trading Strategy

At each time-step, the participants trade on the earliest open

timeslot based on their demand prediction, and generation

output, if any. If the participant’s forecast demand is greater

than its generation output, it will attempt to buy the difference

on the market. If the participant’s generation output is greater

than its forecast demand, it will attempt to sell the difference

on the market. Thus, on any given timeslot, a participant

is either a buyer or a seller. The underlying assumption in

experiments is that the participants will try to consume their

internal generation before going to the market. The participants

will attempt to trade the entire calculated quantity. That is,

they take no measures to reduce their errors by, for instance,

trading only a portion of the calculated amount.

The Zero-Intelligence Plus trading strategy (ZIP) [22] is uti-

lized by participants to simulate their market interactions. The

ZIP trading strategy uses simple heuristics to adapt the partic-

ipant’s profit margin in response to market events: unmatched

orders and transactions. The profit margin is calculated from

the participant’s limit prices for buying or selling. A limit price

is the maximal (minimal) price a buyer (seller) will pay (offer).

To simulate the continuous trading of the participants, within

each time-step there are 1000 trading rounds. In a round, each

active participants submits, or updates, an order. The new

order will include the updated price, based on the recalculated

profit margin, and any remaining quantity left to buy or sell.

Once a participant has bought or sold its required quantity it

becomes inactive and leaves the market. We have selected the

ZIP for its simplicity and minimal complexity. However, no

parameter tuning was carried out to improve the performance

of the trading strategy. In this way, just as with the choice of

prediction algorithm, a baseline can be established for future

comparative assessment.

In our evaluation, all participants have a retailer contract

of 14 c/kWh (as this is used in the NOBEL). This value

defines the limit price for buyers in the market. An assumed

production cost of 5 c/kWh is attributed to the PV installations

of the prosumers, which sets their limit price for sellers. Since

PV production costs are still more expensive than retailer

costs, an assumed cost was chosen such that meaningful

trading could be realized on the market. In our evaluation,

we focus on the amounts of energy that can be attributed to

penalty and opportunity costs, and defer economic analysis

for future work. As such, the assumed costs are not critical to

our evaluation. Our only requirement is that there be enough

market activity to properly measure the effects of forecasting
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errors on the market. Furthermore, while the marginal cost

of PV production is 0, we assume a positive, non-zero, cost

to reflect the investment costs of the installation. Should the

market prices fall bellow the limit price of the producers, it

may be feasible that they would still sell into the market.

However, in this evaluation, a simple, general purpose, trading

mechanism is assumed. In the future, more advanced, and

specifically tailored, trading mechanisms can be explored.

C. Evaluation Measurements

The evaluation is carried out in two parts. In the first part,

the effects of forecasting errors on the market are evaluated

under varying levels of PV penetration. In this case, all

participants trade individually. This is done by comparing two

scenarios, one in which all participants have no forecasting

errors, and one in which they do. In the second part, the

outcomes of group participation are evaluated. This is done

by creating a group of participants that trade on the forecast

aggregate behavior of its members. We then compare the

performance of the group against the individual performance

of its members. In both parts, the evaluation is centered

on four key measurements: demand imbalance, uncapitalized

generation, unnecessary buys and sells. If every participant

p acting on a timeslot t has a (actual) consumption Cp,t,

(actual) production Pp,t, amount bought from the market Bp,t,

and amount sold to the market Sp,t, these measurements are

defined as follows:

Definition 1: A participant can have a Demand Imbalance

δp,t on a timeslot if there was an amount of energy bought

from the market that could not be used by the participant due

to insufficient demand. That is, δp,t = max(Bp,t − Cp,t, 0).
Definition 2: A participant can have Uncapitalized Gener-

ation γp,t on a timeslot if there was an amount of energy it

could have produced that was not sold on the market, and

could not be used to service its internal demand. This could

happen due to trading inefficiencies, that is, it was unable to

sell all of its excess production. Additionally, due to forecast

errors, the participant might have sold less than it should have,

or bought energy when it could have used its own generation.

That is, γp,t = max(Pp,t − Sp,t −max(Cp,t −Bp,t, 0), 0).
Definition 3: An Unnecessary buy βp,t occurs when a

prosumer, a participant with generation capacity, buys energy

from the market in lieu of using its internal production. That

is, βp,t = max(Bp,t − max(Cp,t − Pp,t, 0), 0), if Pp,t > 0.

Unnecessary buys are caused exclusively by forecast errors.

Definition 4: An Unnecessary sell σp,t occurs when a

prosumer sells energy to the market that could have been used

to abate its internal demand. That is, σp,t = max(Sp,t −

max(Pp,t − Cp,t, 0), 0), if Pp,t > 0. Unnecessary sells are

caused exclusively by forecast errors.

The demand imbalance measures the amount of energy for

which a participant would have to pay penalties. If it buys

more energy from the market than it can use, this results in a

broken contract. A “supply imbalance” can also be considered

when a participant sells more than it can produce. However,

because generation forecasting errors are not considered, the

supply imbalance will always be zero in our case.

Uncapitalized generation measures the amount of energy a

participant could not capitalize on. This happens either due to

an inability to sell it on the market or through miscalculation

given the demand forecasting errors, which resulted in it not

selling as much as it could have. We make no assumptions as

to what happens to this energy, if the participant ramps down

its production to avoid possible imbalances, or if the energy

is injected into the grid anyway. As such, it may or may not

be penalized. In any case, it characterizes the opportunity cost

of the prosumer given that it did not sell, or use the energy

itself.

The unnecessary buys and sells measure the volume of

erroneous trades on the market by the participant. The level

of their impact is directly related to the transaction costs of

the trades. For instance, in the case of an unnecessary sell, in

certain circumstances it could make economical sense to sell

the entire capacity on the market, rather than use it internally.

This would only happen if the acquired revenue is greater than

the costs and savings of using the energy. A similar point can

be made about unnecessary buys.

V. THE IMPACT OF INDIVIDUAL TRADING

In this part of the evaluation, we measure the impact of

forecasting errors on the NOBEL market when all participants

are trading individually. We compare the outcomes of the

simulation under two cases that we term Ideal and Predicted.

In the ideal case, the participants trade based on their real

demand profile, that is, there are no prediction errors. In the

predicted case, they trade based on their predicted demand

profile, resulted from the SN algorithm. The number of par-

ticipants having a PV capacity varies from 10% to 100% of

the total number of participants, in steps of 10%. Thus, we can

evaluate the effects of forecasting errors on the market, under

different levels of the PV penetration. For each penetration

level and case a single trial was conducted. The same random

number generator seed was used in all experiments, therefore

guaranteeing that the same participants have PV installations

between each case.

In the ideal case, given that there are no forecasting errors,

the demand imbalance, unnecessary buys and unnecessary

sells measurements are always zero. However, the participants

can have some uncapitalized generation due to trading-strategy

inefficiencies that result in it not being able to sell everything

that was offered into the market. Additionally, depending on

the level of PV penetration, there can be intervals where

more supply is available than demand on the market; this

is called the excess generation. Figure 3 shows the sold,

unsold, and excess generation as a percentage of the total

generation. It also depicts the total generation output (MWh)

in the system over the entire simulated period for each level

of PV penetration.

The introduction of prediction errors causes the amount of

uncapitalized generation to increase dramatically as depicted

in Figure 4. In the ideal case, between 0.56% and 2.24% of

the usable generation goes uncapitalized due to inefficiencies

in the trading behavior. However, in the predicted case, with

the same trading inefficiencies the incurred uncapitalized gen-

eration was between 9.33% and 11.26% of the total usable
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Figure 3. The outcomes of the traded generation as a percentage of total
generation, and the increase in total generation (MWh) as a result of increased
PV penetration.

generation. This already illustrates how important accurate

forecasts will be for market participation.
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Figure 4. The total uncapitalized generation as a percentage of the total usable
generation (total generation – excess).

Forecast errors are responsible for erroneous trading and

demand imbalances. They can cause participants to buy more

or less than they require, or sell energy that they could use.

Furthermore, the error could be so severe that a prosumer

could miscalculate its role entirely, acting as buyer when it

should have been a seller, and vice-versa. The total demand

imbalance, unnecessary buys and unnecessary sells measured

in each scenario are depicted in (Figure 5). We observe that

while the share of unnecessary buys grows exponentially,

the shares of unnecessary sells and demand imbalance grow

only slightly. To understand this, one must be reminded that

unnecessary buys and sells measure only prosumer behavior,

and that the number of prosumers relative to consumers on the

market grows as the PV penetration increases. Hence, while

most of the electricity available for sale on the market is sold,

leading to the very slight growth in unnecessary sells, the

portion on electricity that goes to prosumers increases more

dramatically as the number of prosumers increase. The demand

imbalance grows slightly for similar reasons. Prosumers, due

to their internal production, will have on average smaller

demand imbalances than consumers. However, while when

there is little electricity available on the market most of it

goes to consumers, when there is a lot it goes to the prosumers.

Thus, stabilizing the share of demand imbalance.
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Figure 5. Erroneous transaction volume as a percentage of total transaction
volume

As we have seen from the results, forecasting errors can

have a significant impact on the individual market participants.

They can result in participants miscalculating their role in

the market (mistrading), leading to a significant potential for

penalty and opportunity costs. Furthermore, forecasting errors

have a serious impact on the overall resource usage efficiency

of the system. Inefficiencies in the trading mechanism are

responsible for uncapitalized generation, as indicated by the

ideal case. As such, while making use of better trading

strategies can have a positive impact, finding strategies to

reduce forecast errors can be far more significant for the

individual traders.

VI. THE BENEFITS OF GROUP TRADING

The impact of group trading on the market is evaluated by

comparing two cases: the group case and the individual case.

The group case simulates trading on the market with a group.

In the individual case, all participants trade individually, as in

the individual trading evaluation. A probability of 60% of a

participant having a PV installation is assigned in both cases.

This penetration level was chosen as it was the highest level

that displayed only slight levels of excess generation (around

0.29%). Hence, all of the generation can be used in the system,

while any excess generation will only be a small component

of the results. The group behaves like any other participant in

the market; the only difference is that it trades based on its

aggregated generation capacity, and on the prediction of the

aggregated demand.

Within this evaluation framework, we conduct two exper-

iments. In the first, we evaluate the performance of a small

group of consumers, demonstrating the positive effects of their

increased forecasting accuracy. In the second experiment, we

simulate the participation of mixed a group of consumers and

prosumers, and evaluate not only their performance, but also

their impact on the market as whole.
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A. Consumer Group

The group considered is constituted of 50 randomly chosen

consumers (i.e. participants without generation capacity). The

average individual MAPE of the demand forecasts of these

individuals is 44.62%, while the group’s MAPE is 10.09%.

Since they are consumers, only the measurement of demand

imbalance is pertinent. The performance of the group, and of

its participants in the individual case, is depicted in Figure 6.
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Figure 6. The performance of a consumer group compared to the individual
performance of its members.

From Figure 6, the total volume of purchased electricity in

the group case decreased by approximately 41% due to trading

strategy inefficiencies. However, the demand imbalances de-

creased by almost 90%. Relatively speaking, around 21.58% of

the electricity bought in the individual case leads to potential

penalty costs, which is in contrast with the 3.90% of the group

case. These results clearly highlight the positive impact of the

increased forecasting accuracy.

B. Mixed Group

In this experiment, a location-based selection is adopted,

that is, the group is composed of geographically proximate

participants, which can be seen as a small neighborhood [23].

This group contains 183 participants with an average daily

consumption of 1.3MWh. The distribution of the MAPEs of

the demand forecasts for each of the participants in the group

is depicted in Figure 7. Within the 183 group participants, 108
are prosumers.

Although the average individual MAPE for participants of

the group is 48.53%, as a group they achieve MAPE of

10.59%. That is, the predictability of the group is nearly five

times better than the individual average. For the investigated

month of September, the total energy consumed by the group

is approximately 38MWh. If loads are predicted individually,

the absolute prediction error results in 20MWh (52%), while

as a group it results in only 4MWh (10.6%).

The evaluation measurements are aggregated over all partic-

ipants in both cases and compared. The percentage decrease

in the evaluation measurements between the individual and

group cases is depicted in Figure 8. As seen, the introduction

of a group in the market causes a reduction in the aggregate of
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Figure 7. The distribution of the MAPEs of the individuals of the selected
group.
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Figure 8. The percentage reduction in the aggregate evaluation measurements
between the individual and group cases.

all evaluated measurements. The same behavior can be seen

when comparing the group performance and the aggregated

performance of the group members in the individual case

(Figure 9).
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Figure 9. A comparison of group performance vs. the aggregated performance
of the individuals. The amount of energy bought and sold is also added for
reference.

We observe that the group performs far better than the
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aggregate of the individuals in the individual case. However,

in a group scenario, a prosumer’s surplus generation, which

normally would have been placed on the market, is now shared

between the members. Therefore, the decrease in uncapitalized

generation (86%) and unnecessary sells (95%) is largely due

to the drastic reduction in the amount of generation placed on

the market. However, the increased forecasting accuracy has

contributed significantly to the group reduction in unnecessary

buys (68%) and in demand imbalance (100%), the latter

being the major penalty component as it represents a broken

contract. The performance improvement of the group also

implies multi-party benefits. For instance, its future behavior

is better assessed, any penalties from erroneous behavior are

reduced in total, and depending on the cost mitigation policies

of that group, this could imply smaller market-participation

costs for all participants. Thus, the latter could enable more

effective market participation.
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Figure 10. The aggregate measures for the participants that were not part of
the group in the individual and group cases. The amount of energy bought
and sold is also added for reference.

In contrast, the aggregate performance of the non-group

members as depicted in Figure 10, reveals that only marginal,

if any, improvements are observed. This means that even

if the market was performing a bit better overall, closer to

optimum with fewer erroneous transactions, the non-grouped

participants would not benefit as much as the grouped ones.

Hence, we may derive that any efforts to enhance the behavior

of the market participants, for instance by grouping, would

have an impact on the market and the rest of the participants.

However, the latter would likely be minimal.

Even though the group performs better than the aggregate of

its members, there are cases where an individual can perform

better, in one measurement or another, by acting individually.

For instance, if the group measurements are apportioned to

each member in proportion to their demand and supply, one

participant displayed an increase in all measurements, five ad-

ditional participants showed an increase in unnecessary sells,

and several participants showed an increase in unnecessary

buys. In Figure 11, we depict the sorted differences in these

measurements, for each participant, between the group and

individual cases. Around 50% of the participants either had
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Figure 11. The difference in unnecessary buys/sells and uncapitalized
generation, for the group participants, between the group and individual cases.
The differences in each measurement are sorted from highest to lowest. A
negative value represents an improvement.

no change or an improvement in unnecessary buys, and of the

remaining participants, around 70% had an increase of less

than 1kWh for the simulated period, and the largest increase

was around 2.3kWh. However this comes at the benefit

of sharing in the cheaper supply offered by the prosumer

members. Of the prosumer’s of the group (60%), only 0.5%
had an increase in unnecessary sells, which in all cases

were negligible (around 50Wh). Furthermore, only a single

prosumer showed an increase in uncapitalized generation, of

180Wh. Figure 11 also shows that the positive effects of

grouping are far larger than the negatives.

C. Group Trading Remarks

As can be seen, groups offer clear benefits for market partic-

ipation in terms of their potential to reduce penalty costs, such

as demand imbalances. Furthermore, when considering mixed-

groups, the sharing of generation resources created added-

value for both the consumers and prosumers of the group.

On the one hand, the participants have access to cheaper,

inner-group electricity, which simultaneously increases the

utilization of these resources.

In contrast, the overall reduction and cost sharing can lead

to a more economically effective form of market participation.

These results were achieved through the use of a simple trading

behavior and forecasting methodology. This emphasizes that

even if more sophisticated methodologies are applied, and

still result in uneconomical outcomes for some participants,

the barriers for the realization of a local market and effective

participation within it can be overcome through grouping.

VII. CONCLUSION

The transition towards an information-driven smart grid will

empower new stakeholders including passive consumers to be

active in the electricity supply-chain. This also implies that

new energy-management control paradigms, such as financial

control systems realized indirectly with the operation of local

electricity markets may be a promising route to follow. As seen
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such approaches may assist towards optimal use of available

resources including intermittent renewable generation. In order

to harvest the benefits, however, a high degree of forecast

accuracy by the participants will be required to ensure that

participation makes financial sense.

In this work, we have analyzed real smart metering data,

a result that led to an understanding of the impact that

grouping has on forecasting errors under different forecasting

algorithms. It was shown that forecasting accuracy increases

as group size increases, even for small groups, which is

our focus. Additionally, we have quantified the effects of

forecasting errors on a local electricity market. It was shown,

under different levels of PV penetration, the level to which

forecasting errors can lead to erroneous trading behavior,

creating uncapitalized generation and other opportunity costs

and penalties. For instance, at a PV penetration of 50%, over

10% of the total generation capacity was uncapitalized and

roughly 10, 25 and 28% of the total traded volume were

unnecessary buys, demand imbalances and unnecessary sells,

respectively. While needless buying or selling of energy will

not necessarily incur costs, as it will depend on the transaction

prices (depending on the business model), they represent

energy over which the participant has no control.

As a potential solution for this problem, we have inves-

tigated the performance of pVPPs, which are virtual groups

of participants that act as a single unit on the market.

Such a group exploits the positive effects of aggregation on

forecasting accuracy and resource sharing. The creation of

groups led to a global reduction in potential market related

costs. In a consumer group of 50 participants, the percentage

of purchased energy that could be attributed to penalties

was reduced from 21.58% to 3.90%. In a mixed group of

183 participants (including both consumers and prosumers)

we found an overall reduction in uncapitalized generation,

erroneous transactions, and imbalances when compared to

the aggregate performance of its individuals. Such results are

important because future consumers or prosumers may exploit

the advantages of coalitions, even small ones, to reduce their

electricity-related costs. For example, given the current high

costs of solar generation, it would be possible for consumers

to share investment costs and accrue other benefits through

market participation. Here, we have shown that by acting as a

group on local electricity markets, additional benefits can be

obtained.

In our evaluation, we have focused on the energy component

of the potential penalty and opportunity costs incurred by

the participants. As such, future work will concentrate on

better defining these costs, and economically evaluating the

performance of individuals and groups. In this way, we seek

to better understand the forecasting/economical barrier for

entering the market and participating effectively as well as

assess the multi-stakeholder benefits.
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