
A System for Enabling Facility Management to Achieve
Deterministic Energy Behaviour in the Smart Grid Era
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Abstract:
The vision of the Smart Grid empowers a variety of innovative approaches for flexible energy
management that fuse the business goals with the asset monitoring and control offered by the
Internet of Things. The facility management domain can benefit from these advances by building
upon Smart Grid energy services thereby realizing new business opportunities that make the best
out of its assets. Due to the increasing integration of highly dynamic assets in future buildings,
short-term deterministic behaviour is difficult. However with the availability of controlled variable
storage, and futuristic services such as energy trading, errors in prediction can be absorbed inter-
nally or traded with the ultimate aim of “making the best” out of the assets and situations. The
latter has the potential to enable facility managers to reach strategic objectives and potentially
use assets more effectively by seizing new business opportunities. In this work we propose an ar-
chitecture, describe its key components and depict in scenarios its usage with the goal of enabling
facility management to take informed business decisions by following enterprise strategies as well
as considering the volatility of the available energy excess or shortage.

1 MOTIVATION

The combination of deregulated energy mar-
kets and prevalence of modern Information and
Communication Technologies (ICT) on the elec-
tricity infrastructure is paving the way towards
the Smart Grid (European Commission, 2012;
BDI, 2010). According to the Smart Grid vision
(Yu et al., 2011), improved energy management
may stem from the near real-time bidirectional
communication between, and within, stakehold-
ers. Today, several projects are under-way (Gior-
dano et al., 2013) that apply innovative concepts
to realize different aspects of this vision. The re-
alisation of this vision heavily relies on the preva-
lence of the Internet of Things (International
Telecommunication Union, 2005), which intro-
duces intelligent networked devices (such as sen-
sors and actuators) to everyday objects, house-
hold appliances, industrial systems, etc. and
leads to the fusion of the physical and virtual
worlds (acatech, 2011).

Among ongoing research and development
projects (Giordano et al., 2013), there are ef-
forts towards better grid management, integra-
tion of smart-houses (Karnouskos, 2013) and
smart-buildings, accommodation of intermittent
energy resources including Electric Vehicles (EV),
demand-response schemes (Mathieu et al., 2011),
local energy markets for business interactions (Ilić
et al., 2012), etc. Through the shift towards inte-
gration of small, highly-distributed, energy pro-
duction and storage capabilities, not only will
new stakeholders will (European Commission,
2012), but even the current ones may assume new
roles. Combining advanced information-driven
services (Karnouskos et al., 2012) with these new
capabilities will give rise to new infrastructures
(Karnouskos, 2011) eager for innovative business
opportunities.

Future on-premise capabilities, such as on-
site energy generation or EV fleets (Tomić and
Kempton, 2007), will provide industrial facilities
with new business and management opportuni-



ties (Kanchev et al., 2011). Since a typical in-
dustrial building can be seen as an ecosystem
(Carosio et al., 2013), its internal (e.g. build-
ing infrastructure) as well as the new extended
components (e.g. EVs, storage etc.) can coop-
erate to improve energy management (Palensky
and Dietrich, 2011). This in turn can enable new
forms of business interaction with other stake-
holders that are either currently impossible, or
incur high integration costs. Of particular inter-
est is a facility’s ability to keep-up with previously
planned (Blank and Lehnhoff, 2013), or forecast
(Vonk et al., 2012), levels of energy consumption
and/or production, and its flexibly in adjusting
to new situations while trying to minimize costs,
or increase revenue for its owners (Korpaas et al.,
2003). By providing a reliable prediction, such a
facility could generate revenue through effective
participation in, for instance, local energy mar-
kets (Goncalves Da Silva et al., 2014), or demand
response programs (US DoE, 2006).

Forecasting the electricity consumption
and/or production behaviour of a building will
of course lead to errors (Mathieu et al., 2011)
internally; however these may not need to be
propagated to external stakeholders as it is done
today. The challenge is on how to leverage the
facility’s capabilities (Teleke et al., 2009) and
external interactions in order to benefit the
enterprise. More specifically, how the existing
and new assets that are under the control of
the facility management can be empowered with
Smart Grid technologies and services, and be
effectively used to address any energy shortage
or excess caused by the on-site prediction errors
(Pinson et al., 2009).

To address this problem, we propose a sys-
tem that takes advantage of existing (including
temporal) assets and Smart Grid services, and
enables facility management to actively adjust
its energy consumption/production behaviour as
seen by external stakeholders, while adhering to
its internal goals and strategies. The proposed
system considers a stakeholder with variable stor-
age and energy trading capabilities, which may be
the norm in the years to come. We describe sev-
eral management strategies that can be realized
with this system to demonstrate its capabilities.
Although individual aspects may exist in ongoing
research work, the proposed system combines sev-
eral of them together i.e. forecasting, storage and
trading, with clear applications in facility man-
agement (i.e. buildings) and with a down to earth
design that may enable it to be productively used

in the short-term.

2 SYSTEM ARCHITECTURE

2.1 Overview

The proposed system is modular and designed to
empower the collaboration of the independently
operating sub-systems, as well as the homogeniza-
tion of their functionalities in a mash-up end-
user application. As depicted in FMC notation
(www.fmc-modeling.org) in Figure 1, we can dis-
tinguish the interactions of the end-user via the
cockpit, the main systems involved in the back-
end i.e. energy load forecast (ELF), variable en-
ergy storage (VES) and energy trading (ET), as
well as the reliance on external parties such as an
energy market or an external energy stakeholder.
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Figure 1: System architecture overview

The Energy Load Forecast (ELF) is the system
responsible for forecasting the energy signature
based on historical smart metering data (residing
in the metering system) as well as real-time data
acquired by the infrastructure (Karnouskos et al.,
2011). Its results form the basis for the decision
making process of how to handle the excess or
shortage of energy predicted.

The Variable Energy Storage (VES) consists
of managing the available “storage” in the enter-
prise (Ilić et al., 2013). The latter may include
static as well as dynamic energy storage (such as a
fleet of EVs). The VES is also envisioned to have
the capability of managing processes that could
store or re-feed energy, such as, the rescheduling
of a process.

The Energy Trading (ET) is able to trade en-
ergy on smart city marketplaces, that is, intelli-

www.fmc-modeling.org


gently buying or selling energy depending on the
needs of the overall system (Goncalves Da Silva
et al., 2013).

The Energy Management (EM) is a coordinat-
ing entity which enables the collaboration among
the different sub-systems, in our case ELF, VES
and ET, while in parallel taking the decisions on
the actions to be enforced. Based on the enter-
prise goals and strategies set by the facility man-
ager, it may dynamically decide between the por-
tions of energy that can be “stored” in the VES
or traded by ET in an electricity market.

The Cockpit is the user interface (UI) that the
end-user, i.e. the facility manager dealing with
the energy related aspects, interacts with. The
cockpit is envisioned as a mash-up application
depicting key aspects of the status of the under-
lying infrastructure, including enterprise related
key performance indicators. It can depict in real-
time all information related to the utilization of
the storage, the energy forecasting as well as the
achieved energy accuracy, the energy traded and
related costs, the currently available and followed
energy management strategies etc. The cockpit is
considered to be easily realised as a web applica-
tion hosted in the cloud, easily accessible via the
browser e.g. of a mobile device or laptop.

Finally, we have to note that the envisioned
system can communicate with external parties
and services such as an energy market and ex-
ternal energy stakeholders in order to expand its
capabilities. This also implies the role of being
part of a larger ecosystem and the capability of
being easily integrated in its business processes;
for instance the goals pursued by the facility man-
agement could be adjusted to reflect dynamically
changing enterprise needs.

2.2 Energy Load Forecast (ELF)

Forecasting is a well known component of ev-
ery energy management system. Imbalances pro-
voked due energy load forecast errors may result
in a shortage or excess of energy that must be ac-
commodated, e.g. in form of charging or discharg-
ing a battery. The ELF requires the availability
of the actual energy load y[n] of a stakeholder
(an interval n of size T ) in the past, i.e. its smart
metering data and potentially other information
such as weather data, asset specific behaviour or
participation in processes, etc. With the avail-
ability of y[n], an interval self-forecast ẏ[n] can be
reported with minimum offset of ∆, thus always
reporting ẏ[n − ∆] at interval n. The reporting

as such can be observed in Figure 2.
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Figure 2: Forecasting on different horizons and inter-
vals to improve the forecast accuracy

ELF utilizes advanced forecasting algorithms
that continuously provide accurate predictions
ŷ[n] over smaller horizons. Its accuracy depends
on multiple conditions such as the applied fore-
cast algorithm, the required horizon etc. In this
work, ELF provides a forecast of the system for
any horizon h in the future, so the continuous
load forecast is done for an interval ŷ[n − h]. It
is expected that many components of the system
will require different horizons, as h ≈ ∆ might not
be of interest. Figure 2 depicts the accuracy of
ŷ[n] as being higher than ẏ[n] (since h < ∆). The
ELF configuration is expected to be done inter-
nally based on historic accuracy of the achieved
performance.

2.3 Variable Energy Storage
(VES)

The VES component combines both static and
dynamic storage into one (virtual) unit of ca-
pacity. A static storage has constant capacity if
performance degradation is not considered. In
contrast, dynamic storage is composed of multi-
ple (potentially mobile) units that are at some
point in time connected to the grid (e.g. EVs).
While static storage can charge or discharge in
dependence to its actual state of charge (SOC),
these dynamic units are the actual energy-flexible
components, when of course connected to the
grid. This flexibility is gained by controlling the
amount of energy that they charge or discharge as
well as rescheduling such activities over an inter-
val n of length T . As it will not always be possible
to compensate the exact energy needed, e.g. due
to technical restrictions, on every reschedule re-
quest, the error that should be absorbed ṡ[n], is
not expected to be fully addressed, but reduced
to what is actually stored s[n]. This gap can be
however addressed within the variable storage as
a whole, since it is combined from its dynamic and



its static part (which does not have the same tem-
poral restrictions). A potential usage of the VES
might be to use its dynamic part to compensate
the closest value possible, while the static part
can correct the uncompensated part of the error
by charging or discharging the amount of energy
needed. However, the exact usage may depend
on various other technical or financial constraints,
and is out of the scope of this work.

A stakeholder owned EV fleet (for which it
is assumed that the facility management has full
control over) is a good example of the dynamic
part of a variable storage, while it is limited
by scheduling and vehicle restrictions. For the
rescheduling step, different priorities will need to
be satisfied in order to ensure that these EVs are
always within the fleet requirements. As such,
any EV fleet can be used to calculate the max-
imal shiftable load to positive ∆s+[n] and neg-
ative ∆s−[n]. For this calculation it has to be
considered, that EVs can only vary their charg-
ing between the maximal and minimal power, or
interrupt the charging completely. Within these
limits, the fleet can react on energy shortage or
surplus at stakeholder’s premise, e.g. by interact-
ing with an energy market or even compensating
forecast errors by rescheduling or shifting loads
in an interval n. Therefore in case of an energy
demand change, discharging of EVs would be a
secondary option, while rescheduling has prece-
dence, since no losses are made due to the storage
efficiency.

2.4 Energy Trading (ET)

Local energy markets may emerge as a scalable
methodology for controlling the levels of con-
sumption and production on the grid (Ilić et al.,
2012; Goncalves Da Silva et al., 2013), in partic-
ularly as a response to the increasing deployment
of distributed energy resources (e.g. PV panels,
wind farms, µCHP generators, etc.). Within the
proposed architecture, a energy local market is
considered as an opportunity for a stakeholder
not only to maintain its predictability, but to
also, in some cases, better utilize and capitalize on
its storage facilities. With that in mind, the ET
system component interfaces with the local mar-
ket to buy/sell energy by applying different trad-
ing strategies, such as (Cliff and Bruten, 2000;
Vytelingum et al., 2010).

The stakeholder calculates, on an interval ba-
sis, the energy trading target τ̇ [n] based on its
internal strategies and goals. For instance, the

trading targets could be based on the forecast-
ing errors provided by the ELF. A limit price,
τp[n],for either buying or selling is optionally set
with each target to indicate the maximum (min-
imum) buying (selling) price for interval n. If
the pricing information for a particular interval
is undefined, the ET will trade aggressively on
the market to ensure that the targets are met,
so τ [n] presents the net quantity traded by the
ET with the interval. Otherwise, each target can
only be met within the bounds of the its pricing
constraints.

Current targets can be updated as new infor-
mation is made available to the stakeholder. In
such cases, the ET updates its market position to
meet the new targets. For instance, if the target
is set to τ̇ [n] = 50 Wh, of which current trading
is τ [n] = 20 Wh, when a new target of −30 Wh is
received, the ET should then sell τ [n] = −50 Wh
to meet the new target. The performance of the
ET can be tracked by requesting the total traded
quantities τ [n]. Furthermore, for purposes of a
cockpit (thus assistance to an operator), the ET
provides interfaces to access the overall market
information, as prices p[n] and trading volumes
per time interval.

2.5 Energy Management (EM)

The facility manager, as illustrated in Figure 1,
interacts with the system via a cockpit. An ex-
ample of such a cockpit and information it offers
is depicted in Figure 3. The facility manager can
consume the (real-time) information depicted and
by calibrating or setting the overall goals can ex-
ercise high-level control over the infrastructure.
Such goals could be the optimization of the infras-
tructure reaction to the energy surplus or short-
age reported by ELF towards economic objectives
such as minimization of cost, or other corporate
social responsibility related ones, e.g. maximiza-
tion of usage of green electricity or even simpler
ones such as making sure that the EVs of the
employees are fully-charged by the end of their
workday.

The transformation of user goals (calibrated
via the cockpit) to strategies are processed by the
EM, which takes into consideration all other con-
straints of the system and takes the overall deci-
sion on the appropriate strategies to be followed.
EM acts also as a communication broker among
the different parts of the system as it holds the
system-wide knowledge that is not available to
the individual parts i.e. the ELF, ET, VES, en-
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Figure 3: The envisioned system cockpit as a mash-
up application

abling the latter scaling or extension of the sys-
tem with other components or variations of the
existing ones.

EM acts as the coordinator and decision en-
gine, which communicates with ELF, ET and
VES, and provides them with the operational
context info. As an example, in a scenario where
the EM is informed about the energy surplus
available due to a forecast error, it may decide
to redirect part of it towards charging the EVs
while another part may be redirected to the ET
(by charging schedule adjustment) in order to be
traded to the market (because the price is high
or can not be covered wholly by the VES). More
example scenarios will be depicted in section 3.

3 ENERGY MANAGEMENT
STRATEGIES

3.1 Overview

The system proposed, whose main components
are illustrated in Figure 1, is flexible enough to ac-
commodate several envisioned scenarios, depend-
ing on the goals set by the user, the available at
time capabilities, and actions to be enforced. The
scenarios we will focus upon, are in no way ex-
haustive, but serve to provide some understand-
ing of the potential strategies that could be fol-
lowed by the facility management. Our aim is to
showcase the system’s flexibility, which is a key
part of realizing agile enterprises in the future.

A general view of the workflow is depicted in
Figure 4. The user input is acquired, which to-
gether with the forecast error and the underlying
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Figure 4: General view of the activity involving the
architecture components

status and constraints of the subsystems, are used
to reach a decision for either trading or storing
of energy (or both). Some key strategies will be
discussed in more detail i.e. Storing Energy not
Traded by ET, Trading Energy not Accommo-
dated by VES, and Trading Available VES Ca-
pacity.

Generally, each envisioned strategy may not
involve all parts of the system, as this depends
on the actual constraints imposed at the time of
the decision making. This also signals that an or-
ganization does not have to wait until all of the
architecture parts are deployed and become oper-
ational to start realising (a limited set of) energy
management strategies. As an example, the ELF
and the VES could be realized today, while the
ET could be realized some years later when en-
ergy markets are available at smart city level and
it makes economic sense for the facility managers
to participate in them. Hence, the system archi-
tecture accommodates the “migration” i.e. incre-
mental evolution of the infrastructure towards the
fully-fledged Smart Grid vision.



3.2 Storing Energy not Traded by
ET

The decision making process (as depicted in Fig-
ure 4) may consider a strategy that is described as
follows: after the estimation of the energy error
within an interval by the ELF, try to trade the dif-
ference via the ET and differ any non-traded en-
ergy to the VES for storage. The workflow of such
strategy is illustrated in Figure 5. ET accommo-
dated τ [n] for the interval in question (potentially
even at different prices p), and VES is contacted
in order to absorb the remaining ṡ[n].

ELF EM ET VES

get forecast

ẏ, ŷ

error (τ̇ = ẏ − ŷ)

LoopLoop

traded(τ)

forecast update

ŷ

remaining (ṡ = ẏ − ŷ + τ)

LoopLoop

Figure 5: Strategy activity: Storing Energy not
Traded by ET

The actual outcome of the trading done by
ET depends on the real-market conditions (law
of demand and supply) and hence strategy adap-
tation might be needed over time e.g. acting
alone or as part of a larger group (Goncalves
Da Silva et al., 2014). As the ET might not
be able to fully trade the energy needed to bal-
ance the forecast error τ̇ [n] = ẏ[n] − ŷ[n], a part
of it remained non-traded. The traded quan-
tity τ [n] is then communicated back to the EM,
which instructs VES to accommodate the remain-
ing ṡ[n] = ẏ[n] − y[n] + τ [n] energy. This process
leads to a new state where the error is minimized
as a “best effort” procedure is followed by ET
(interaction with external stakeholders) and VES
(internal stakeholder) to minimize its impact.

Depending on the business motivation, this
strategy may be followed when the return of in-

vestment (ROI) by selling the energy on the mar-
ketplace is high. This may be a result of high
prices on the energy market, inability or no need
of storing the energy internally, etc. The actual
decision-making process will be dynamic and the
exact fine-tuning is not considered here.

3.3 Trading Energy not
Accommodated by VES

In compliance with the decision making process
depicted in Figure 4, here we focus on a strategy
that can be described as follows: after calculation
of the energy due to the incurring error by ELF,
try to accommodate the excess or shortage of en-
ergy via the VES (by charging/discharging) and
for the remaining part not accommodated by the
VES, use the ET. In this strategy, the ET acts
as a mitigating agent for any part of the error
that could not be absorbed by the VES, which
is shown in Figure 6. In detail, the EM acquires
the forecasting error (ṡ = ẏ − ŷ) from the ELF
and informs the VES, which attempts to accom-
modate the imbalances introduced by the errors,
and informs the EM of any amount that could not
be accommodated due to its internal constraints
(s). These amounts are then given to the ET to
be mitigated on the market (τ̇ = ẏ − y + s).

ELF EM ET VES

get forecast

ẏ, ŷ

error (ṡ = ẏ − ŷ)

absorbed (s)

remaining (τ̇ = ẏ − ŷ + s)

LoopLoop

Figure 6: Strategy activity: Trading Energy not Ac-
commodated by VES

This strategy is expected to be used when the
enterprise has the capability to store energy ex-
tensively for its own use. For instance a signif-
icant number of EVs at the disposal of facility
management, means that the VES can rely on
storing energy there and acquiring it back again
when needed. Even if the energy is not needed
during the day for tackling imbalances, the EVs
are charged and the energy can be used for the en-



terprise’s processes in the future; an action that
enhances better planning of energy-relevant ac-
tions. If a local marketplace is available, the ET
tries to trade the remaining energy (or acquire in
case of shortage) in order to make ends meet.

3.4 Trading Available VES
Capacity

Independent of the strategies followed by the fa-
cility management, the available assets might not
be fully utilized. Hence additional actions can be
run, in compliance to the decision making process
as depicted in Figure 4 and in parallel to the exist-
ing strategies. As an example, consider a strategy
that is described as follows: check the available of
VES flexibility and trade the additional shiftable
energy with the help of the ET in the local energy
market.

This example goes beyond the traditional pro-
cess of trying to cover the energy imbalances and
targets clearly the optimization area of the avail-
able assets. The VES might be underutilized
while trying to cover the occurring imbalances,
and that “unused” capacity could be transformed
into economic benefit for the company. The VES
may have its own models for estimating capacity
that will not be used, and hence can “release”
it for further usage. Then the EM may consider
this capacity and buy or sell energy with the help
of ET in order to generate additional revenue for
the company. The system is flexible enough to
accommodate such actions. However, to avoid
conflicts or side-effects, additional analysis on the
resource utilization is needed which is not part of
the investigation presented here.

Since the VES is trying to compensate the
error produced by the ELF, a certain state of
charge (SOC) will be achieved. Based on the ac-
tual flexibility levels with consideration of SOC,
the VES can offer a certain capacity within an
interval n for charging/discharging in order to in-
crease the enterprise’s revenue. Instead of only
offering the capacity which is left from the error
compensation, the VES may calculate the max-
imal and minimal shiftable energy ∆s+[n] and
∆s−[n]. This offered capacity can be then traded
and benefit from current price p. In another twist,
the VES may decide that the economic benefits
of trading the capacity are greater than that of
being used a storage and act accordingly, which
is blending the borders of the other two strategies
discussed.

EM ELF ET VES

get actual status

p, τ

get forecast

ẏ, ŷ

error (ṡ = ẏ − ŷ)

absorbed (s)

get flexibility

∆s+,∆s−

opportunity (∆s+,∆s−, p)

opportunity targets (τ)

LoopLoop

Figure 7: Strategy activity: Trading Available VES
Capacity

4 DISCUSSION

Several considerations on the main compo-
nents i.e. ELF, VES, ET need to be adequately
addressed. Forecasting done by the ELF, cannot
only be based solely on historical data, but needs
to include real-time information. To this end, the
Internet of Things coupled with the Cloud (Curry
et al., 2013; Karnouskos, 2013) and the vast re-
sources for analytics will help. Additionally, more
specific knowledge of the processes involved, their
scheduling at enterprise level, as well as their po-
tential interdependencies may lead to better fore-
casting and planning. For our environment this
assumes access to the building processes per se,
the impact of the employee usage of its facilities
(which extends to the EV usage), as well as poten-
tially external factors such as weather conditions
etc. The appropriate combination of such intelli-
gent algorithms with (real-time) fine-grained data
may enable the better adjustment of the infras-
tructure behaviour prediction.

Another key part of the system, the VES,
demonstrates that the temporal storage avail-
ability e.g. coming from an EV fleet, can be
used to acquire additional benefits for the enter-
prise. Although charging/discharging EV batter-
ies or even rescheduling their charging may sound
promising, at the moment few, if any, companies
have fleets large enough for these envisioned con-
cepts to be practically applicable. Furthermore,



the communication protocols of the EVs or the
charging stations might also pose challenges as
they might not allow a secondary actor to set
the charging schedule for them and always try
to charge as fast as possible.

Such constrains would tremendously lower the
possibility of interaction with other components
in a smart way. The latter gives some indication
that company-controlled fleets are the right tar-
get group for such concepts as the one presented
here. Even then, due to constraints (physical or
otherwise), fleets might not always provide the
exact flexibility that is needed. The latter can
me mitigated through the addition of static stor-
age, or another buffer-like component, that can
compensate the missing flexibility.

The ET demonstrates how interacting with
other local stakeholders can not only aid the fa-
cility in reducing its forecast error, but also cre-
ate additional opportunities though energy and
storage capacity trading. Although local energy
markets are a hot topic (Ilić et al., 2012; Lam-
parter et al., 2010; Ding et al., 2013) in Smart
Grid research, how to effectively make use and
interact with them is still unclear. As no such
market currently exists, operational assumptions
were made; however in a real-world assessment
the underlying trading behaviour must be an-
chored in a clear understanding of the market’s
rules and protocols. Additionally, in order for the
ET to meet the a wide range of strategies, such as
the ones described in section 3, it must be able to
adequately handle dynamically changing trading
goals in conjunction with market-forecasts and
enterprise’s needs.

Generally, we consider that there is added
value if such systems are operational and would
assist towards informed and automated decision-
making processes in facility management domain.
Their realization however, will need to be assessed
and fine-tuned in real-world trials once the nec-
essary Smart Grid services envisioned are main-
stream.

5 CONCLUSION

The ability to capitalize on new business op-
portunities is vital for the survival of modern en-
terprises. To that extent, fully utilizing all the
capabilities offered by its assets is pivotal. In the
Smart Grid era, the facility management can take
sophisticated decisions related to energy manage-
ment, by including innovative technologies and

concepts. The system we have presented builds
upon the orchestration (by the the EM) of three
key independent components (i.e. ELF, VES,
ET). We have provided insights on its basic com-
ponents, their operation as well as their usage in
a variety of strategies. In the latter we have also
discussed the benefits for the enterprise as well
as the roadblocks that might hinder their real-
ization. Ultimately, the proposed system enables
on-the-fly decision-making that empowers the fa-
cility managers to better meet their goals in the
emerging Smart Grid era.
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