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Abstract—The smart grid vision relies on active interaction
with all of its stakeholders. As consumers are acquiring energy
generation capabilities, hence becoming prosumers (producers
and consumers), a meaningful way to interact among them would
be to trade over a marketplace. Market-driven interactions have
been proposed as a promising potential interaction method due
to the monetary incentives and other benefits involved for the
participants [1]. In the Internet era an on-line marketplace
is an thriving concept as it overcomes potential accessibility
issues, however it is not clear how they should be structured,
operated, what their limits and benefits might be. The design,
implementation, modus-operandi as well as the assessment of
such an energy market place for smart grid neighbourhoods is
presented.

I. MOTIVATION

The current electricity grid follows with minor changes a
100 years old paradigm, in which electricity is mainly gener-
ated by a few far-off high-capacity generators and transmitted
and distributed to end consumers. However, due to various
reasons (including high cost, resource availability, sustainabil-
ity, resilience, and environmental concerns) electrical energy is
increasingly being produced by small-scale generators located
closer to points-of-use. In conjunction with rapidly advancing
information and communication technologies that empower
the smart grid, this results in a highly sophisticated IT-based
dynamic grid infrastructure [2].

As the paradigm changes from a centralized to a distributed
production model, a significant impact is made on business
in the electric energy domain. Assuming the continuation of
the trend, in the near future, it will even be common for
households to have their own production units, such as photo-
voltaic panels, CHPs etc. These units will be used to meet
internal demand, while surplus generation could possibly be
used to meet local demand, in the neighbourhood. As such,
considering that a significant percentage of the citizens have
such generation capabilities, it makes sense to be able to trade
an energy surplus locally. For instance, a surplus of energy
generated from a rooftop photo-voltaic panel of one user,
could be used to meet a portion of another user’s demand.
In this way, if energy is traded locally, a good portion of
energy transmission costs can be reduced. Additionally, the
dynamics of renewable resources, which is subject to localized
conditions, such as the availability of sunlight or wind, could
be better fitted if the surplus of other prosumers is available
and can be communicated effectively.

Today, local generation is mostly bound to feed-in tariffs

which however are slowly being reduced, and will finally be
removed. Hence, a new approach is needed that will not rely
on subsidization, but rather on free market rules. If such a
market can be realized locally e.g. in a smart grid city, it
will be possible to trade energy (both buying and selling)
with various benefits for all stakeholders [1]. The existence
of several local energy markets will bring new possibilities
as well as challenges [3] to the traditional business relations
and processes. However, the expectation is to offer a better
way to manage highly volatile networks due to the large
scale distribution of both production (e.g. solar panels, wind
generation etc.) and consumption (e.g. electric cars etc.) by
relying on economics. In this line of thought, a new kind of
complex dynamic system will emerge that due to its cyber-
physical nature [3], [4] has to be carefully designed and
realized.

II. NEIGHBOURHOOD ENERGY TRADING

For energy trading to be realized, the necessary tools as well
as timely information exchange between all stakeholders need
to be provided. Part of it is also the actual smart metering i.e.
the high granularity of metering data acquisition e.g. every
15 mins. Through better resolution of the production and
consumption (prosumption) data and effective analysis, any
market participant is able to monitor and even predict his
energy behaviour. With smart meter technology deployments
in large scale, as well as the necessary energy services [5],
prosumers are able to offer and purchase electricity. As an
example of these new capabilities, within the NOBEL project
(www.ict-nobel.eu) a local energy market at smart neighbour-
hood/district level is realized and will be assessed with in
the Spanish city of Alginet in 2012. The primary goal is
to facilitate and manage the electricity trading between the
citizens of a smart city. Additionally, the implied aim is also
to use it for market-driven demand-response (DR).

By participating on the NOBEL market, participants can
take optimal advantage of local conditions and consume
electricity produced locally. Not only can one avoid the
transportation costs and energy losses, but better planning
around and management of local networks may be achieved.
Eventually this concept could lead to interconnected micro-
grid-like networks that may cooperate within a greater region
and provide emergent behaviour to the electricity network.
It has to be pointed out again that such a network is a
system of systems [6], which will get even more complex as



decentralization and integration of real-time information flows
among prosumers increases.

The market idea has been in the heart of major roadmaps for
the Smart Grid [7], [8]. Efforts already exist [9], [10] where a
continuous double auction model is applied. In [9] an agent-
based framework is described, and emphasis is given to trading
agents and the architecture of the overall system, rather than
the behaviour and outcomes of the system. In [10] the market
is used to price the flow of electricity through inter-connectors,
in order to manage network congestion. In the approach
depicted in this paper, the focus is more on the market aspects
and energy trading at neighbourhood/district level. Here, it
is considered that the prices of energy trading include the
necessary transmission costs, hence the transmission system
costs are considered static or a varying percentage but are
hidden from the end-user at this stage.

III. THE NOBEL MARKET DESIGN

The NOBEL market is based the stock exchange model,
with the difference that the trading periods are discrete fixed-
sized time slots throughout the day. To favour a decentralised
approach, the order book and last transaction price (for all x)
are made public. The timeslots are defined as x ∈ X , where
X is the set of all timeslots where trading (buying or selling)
can be realized. Each timeslot is considered to be of the same
length δ and is limited by the start time txd (this is also the
delivery start time) and the trading end time txd + δ. The time
interval from txd to txd + δ is the time frame energy is traded
for. Every participant willing to trade can place a market order
oxi ∈ Ox, where i ∈ N and Ox is the order book for timeslot x.
Figure 1 depicts market slots where each slot’s price develops
as orders get matched, in this case to the slot x.

Load Reporting Flow 

t 
x 

p 

t t0 

p(t0) 

x-3 x+2 

x 

Figure 1. Market slots and their price development as orders (Ox) get
matched

To facilitate meaningful interactions in the market, both
consumers and producers should be capable of predicting
their electricity demand/supply for a particular timeslot x.
As timeslot x opens for trading at time txo = txd − τ ,
where τ is fixed for every x before its delivery time. For
txo ≤ t ≤ txc , where txc is the closing time, the timeslot x
is open for participants to place their orders. Orders can, of
course, be adjusted. This is needed as no prediction tool can be
completely accurate and therefore participants should be able
to adjust their orders. Any prediction deviations e.g. caused by
dynamically changing behaviours can possibly be considered
by adjusting the orders, provided that the timeslot is still open

for trading. For instance, if a household has overestimated the
amount of energy it would use in a particular timeslot, it is
able to sell the difference back to the market. Once the market
order quantity is defined, the participant still has to put the
limits for selling back the energy.

For each o, the type (buy or sell) is specified for the number
of units u ∈ N∗ and the price p (per unit) s/he is willing to
trade for. In the simplest case, the participant can observe the
top of each book “the best (highest) buy and the best (lowest)
sell” also known as the “inside market”. It then assumed
that the market’s consensus about the price lies somewhere
between these two numbers. In Figure 2 the best buy price
is 25.21, and the best sell price is 25.30 (the inside market
is 25.21..., 25.30), and the “true price” of an energy block is
in this interval. Now, the market participant can use the top
of each order book as a reference point for positioning his
initial quotes e.g. at 25.22..., 25.29 as depicted in Figure 2(b),
and update his spread as the book evolves with new arrivals,
transactions and cancellations.

Figure 2. Order book example

Every order represents an acceptable price p for each
unit of quantity in an order, of a participant. An order oxi
may represent only a portion of the participant’s electricity
demand/supply to be met locally. If a buy order has the price
pbuy and a sell order has price psell, a transaction (order
matching) will occur only if pbuy ≥ psell. The matching
process will be repeated every time a new order is received.
Therefore an order oxi may partially match with multiple orders
from the slot’s set of orders Ox. Since an order may not be
fully executed, it possibly stays in the order book but only
with the remaining (unmatched) quantity.

While new orders can be placed, updating p for existing
ones is at the heart of our market. An order update within a
slot x possibly affects the rest of the orders in the set Ox.
Each order update first cancels the original order, and a new
order is created. Update requests can be classified into two cat-
egories representing two different types of strategies. The first
attempts to foresee the upcoming market movements (either
from the order book imbalances or from short-term patterns),
and adjust the spread according to these expectations. The
second reasons solely on the information about the current
inside market. These ”non-predictive” strategies are inherently



simpler and therefore better suited for our examination of the
local electronic market making.

As the matching process is repeated every time an order
is inserted or updated, it is important to understand key
advantages/disadvantages of the proposed market. Similarly to
the stock market model, matching is based on the First-Come,
First-Served (FCFS) service policy. Every newly received
order, update, or cancellation, will be sequentially executed.
Therefore, if a market participant places a new order oxi at t0, it
has an advantage over participants placing orders on timeslot
x at t > t0. This policy also affects the price fluctuations.
In order to fully execute an order, one side (buy or sell) has
to overcome the price spread of the x. Consequently, timing
in the updated and cancellation process becomes even more
important. If a new order oxi is located in the execution queue
before the oxj cancellation request, the two orders may be
matched before oxj gets cancelled.

Every matched order in the trading period for a timeslot can
be considered as the contracted good. This contract is made
between participants of the matched orders executed by the
matching algorithm. Unmatched orders will simply be aborted
by the market execution cycle. These have no contractual value
for any participant.

A timeslot closes for trading at time txc = txd − ω, where
ω is fixed time period before txd and τ > ω. Once a timeslot
is closed, historical analysis can be used for future decisions.
As an example, a participant can use it to understand its final
costs in comparison to average block price, or minimum price,
of an acquired block in a particular slot, etc.

IV. MARKET IMPLEMENTATION

The proposed market has been designed and implemented;
the following sections provide an insight to the architecture
and configuration decisions we made.

A. Order Configuration

Given that this is a marketplace for trading energy, different
order configurations should be made available to the partici-
pants. Using order configurations, one can express specific
energy requirements, or usage patters. The order configurations
are composed of two behaviours, as depicted in Table I. The
first dimension, specifies whether units of an order can be
partially matched, or if must be fully matched. “Fully match”
indicated if a participant wants everything or nothing. The
second dimension specifies if an order has to be matched im-
mediately. If immediate match is required, possible matching
is executed while the unmatched part of the order is automati-
cally cancelled. Matching limitations of this dimension are the
trading price and availability of the trading commodity. With
these four order configurations, participants should be able
to express their internal processes, or trading strategies. For
instance, a fully matching order could be used for a process
which requires the full amount of energy to be available for
the entire duration. These same order configurations are also
available in the EPEX intraday market (www.epexspot.com)
as well as in other European and American markets.

Table I
ORDER CONFIGURATIONS

hhhhhhhhhhhhhFully Match
Immediate Match

YES NO

YES Standard Immediate or Cancel (IOC)
NO All Or None (AON) Fill Or Kill

B. Architecture

The proposed and implemented market architecture can
be seen in Figure 3. A market participant submits an order
to the market through the market communication manager
(who performs the necessary security checks). Firstly, the
order validity check is made within the verification module.
It checks if an order complies with all market rules, that is,
price limitations, order configuration, timeslot validity etc. If
an order fails the verification process, an appropriate response
is returned to the market participant. Otherwise the verification
module forwards it to the market kernel module and participant
gets notified of a successful order submission.

The market kernel module is responsible for managing the
life-cycle of the timeslots, their order books, and the order
matching process. Once a new order comes in, it is passed
to the matching algorithm, along with the order book for the
order’s timeslot. If there is a matching executed, the state of
an order changes, and the market output manager is notified
of the transaction. Since an order might not match as soon as
it arrives, the output of the market is handled asynchronously.
Market participants and other tools (e.g. an external analytics
service) can subscribe to this module and receive the produced
market notifications. Of course, the information a subscriber
has access to, is limited by his credentials. Thus, it is ensured
that a market participant only has access to the outcome of
his/her orders.
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Figure 3. Overview of market modules

It must be made clear that the architecture of Figure 3
depicts the main market components, upon which other stake-
holders and services can built their functionalities. For instance
the analytics service has the credentials to gather all market



outcomes (it stores them as they are received) in order to
process the data with various algorithms and analyse the
market behaviour.

Some of the parameters of the market can be changed
at runtime by updating the verification rules module. All
parameters can be changed without difficulties except for
parameters related to timeslot management, e.g. opening or
closing time. Due to the effect such a change can have on
market processes, parameter changes only affect timeslots
which are in a previous state than the one the parameter
defines. That is:

• Changing the value of τ only affects the upcoming
timeslots

• Changing the value of ω affects all timeslots except the
already closed ones

The matching algorithm must cope with the different order
configuration outlined in Table I. As such it must handle
different cases when a particular order type is being matched
with another order type. In the case where an order requires
immediate matching, the trigger order passed to the process is
used. If, after a run of the matching algorithm, this order is not
fully executed, all the remaining quantity is cancelled. When
one or two orders which need full matching match together,
the availability of all quantity has to be checked.

To reduce CPU cycles of the matching process, all orders
are ordered according to their price and their type (BUY or
SELL). Their quantities are added until the required quantity
is reached. If the quantity is achieved and the price limit is not
breached, the entire quantity needed by the order is available
at, or bellow, the required price; hence a trade takes place.
However if the incoming order only required partial matching,
and the top order required full matching, this process also
needs to be run again for that particular order, as there can be
previous orders with whom the total quantity can produce a
match.

The matching algorithm may not let a full matching order
block trading. For instance, if the cheapest sell order required
fully matching, and there is no combination of buy orders
which can fulfil the sell order, the market should not wait until
the sell order can be processed before processing the other sell
orders. Therefore, in this case, the top order is ignored, and
matching is attempted with the remainder of the orders.

The proposed market has been implemented in Java SE
version 6 and is available into two forms (i) as a simulator
with accelerated time clock that may run locally and (ii)
as an Internet application that runs on the Glassfish 3.1
Application Server making its functionalities available as Java
REST services. The business data are stored in amySQL
DB (www.mysql.com). All external communication is done
via an encrypted channel i.e. HTTPS and a security (with
role-based authorization and authentication) framework is in
place based on Apache Shiro (shiro.apache.org). Additionally
for performance reasons, all services interact using Google
Protocol Buffers (code.google.com/p/protobuf/) which offer a
highly efficient binary format. The developed market forms an

integral part of a platform providing energy services for the
smart grid city [5].

V. EVALUATION

In order to evaluate the realized NOBEL market, a sim-
ulation platform was built in which trading agents could be
defined and trade in the market. All output pertaining to the
market, i.e. bids, offers and transactions was collected and
analysed. In the following sections, the trading agent, scenario,
and key measures are described.

A. Trading via Agents

To evaluate the market, agents that interact with the market
on behalf of their stakeholders and buy and sell energy were
implemented. As a very initial investigation, the focus has
been on very simple approaches i.e. experimented with “Zero
Intelligence” (ZI) agents [11]. A ZI has no memory, and
no guiding trading strategy, and simply bids to the market
using random (within a user-specified limit) pricing. Since the
behaviour of ZI can help reach a high level of order matching,
the equilibria of the market can be found. Thus, the aim is not
to apply a trading strategy e.g. to maximize the profit, but to
try to understand what the outcome of the market model is
given its rules.

In our case, a ZI agent is defined by (i) the minimum
price `min, (ii) the maximum price `max and (iii) the max-
imum sleep time tsleep. The maximum and minimum price
parameters define the range of price range the agent uses to
randomly bid. In our implementation, each agent is a thread,
and the maximum sleep time defines the duration the agent
waits between running cycles.

In the implemented scenario, each agent has access to its
future consumption and/or production behaviour (which of
course represents the end-user’s behaviour). Each agent trades
only once per timeslot (after txo ). The order price is chosen
from the range [`min, `max] ∈ R using uniform distribution.
The quantity is defined as the forecast energy behaviour in the
timeslot. As always the surplus is traded, if an agent has more
production, a buy bid is submitted, and similarly if the agent
has more consumption, a sell bid is submitted. Once the agent
bids, it sleeps for a random time ts : 0 < ts ≤ tsleep. At each
run of the agent, a new price and sleep time are generated.

B. Simulation Scenario

In the evaluation scenario, the timeslot duration δ = 15min,
as this is the typical smart metering measurement frequency.
Also, txo and txc are set through preconfigured τ = 2days and
ω = 2hours. There are two types of agents in this scenario
i.e. 50 producers and 50 consumers. Their price parameters
are fixed to `min = 12.00 and `max = 20.00 (cents/kWh)
with the double digit precision. The tsleep parameter is set to
a value smaller than δ, implying execution of (at least) one
trading cycle for every slot opening.

For the market consumers we have used the German repre-
sentative load profile for households H0. Figure 4 depicts this
load curve. The are two types of producers, 80% are fit with



photovoltaic (PV) panels. Their output is produced from the
radiation data (as reported in [12]) with an assumed efficiency
of 19%. The remaining 20% of production agents are equipped
with wind turbines of 4kW power of 30% average efficiency.
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Figure 4. Aggregated production and consumption profile per agent used

Randomness is introduced for both production patterns.
The PV area is randomized over an average area of 100m2

per agent with static radiation data (of May 2011). The
wind turbine W outputs are uniformly distributed over range
[0 . . . , 1.2]kW . The later is calculated as 4kW ∗30% efficiency
and hence the upper limit is 1.2kW ∗ δ

60h = 0, 3kWh per
agent. The two production types are aggregated on Figure 4.
The consumption and production profiles of each agent are
converted to energy based on the preconfigured slot size δ.
As Figure 4 depicts, at some time the energy supply exceeds
the energy demand. Although this scenario might only be
considered realistic in the future (where large-scale distributed
generation is in place), we use it to analyse the market
behaviour.

C. Measures

The price statistics for each timeslot, as well as the alloca-
tive efficiency measure [11] were recorded for each timeslot
over 365 days of simulation. Here, we measure the allocative
efficiency as the ratio of traded energy to the maximum amount
of energy that could have been traded in a timeslot. All
measures where averaged over the same timeslot for each day
of simulation. That is, for δ = 15min one day has s = 96
different trading timeslots. Daily data is then averaged based
on the step size of s ∈ N∗ as Xj ⊂ X : Xj = {xds+j}
where j ∈ [0, s) represents the timeslot shift and d ∈ N∗
total number of days. All the trades in the slot have trading
price p, with average trade price p̄. If expressed over Xj ,
we have the average price p̄Xj = 〈p̄x〉,∀x ∈ Xj . For
the average maximum price, as for the minimum, we have
p̄
Xj
max = 〈max(px)〉,∀x ∈ Xj .
In case of the allocative efficiency ε the trading quantity

is considered. For each timeslot x the ε is calculated as ratio
of total traded quantity qtotal and total tradeable quantity. In
equation we have ε = qtotal

min(qbuy,qsell)
where qbuy and qsell

represent total available buy and sell quantity respectively.
If expressed over Xj the average efficiency is calculated as

εXj = 〈εx〉∀x ∈ Xj . Since it is expected that ε is affected by
ratio between qbuy and qsell, the absolute ratio r indicator is
introduced. This indicator is calculated as r =

max(qbuy,qsell)
min(qbuy,qsell)

having always r ≥ 1. Similarly to efficiency, r can be
expressed over set of timeslots as rXj = 〈rx〉,∀x ∈ Xj . The
absolute ratio, r, quantifies the relationship between supply
and demand. As such it is used as a guiding measure for
understanding the behaviour of the price and the allocative
efficiency measures.

VI. RESULTS

A sanity test for any market model is whether the market
outcome follows the rules of supply and demand. When there
is more supply than demand, prices should decrease, and
similarly when there is more demand than supply, prices
should increase. As shown on Figure 5, this is clearly the
case in our simulation.
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Figure 5. Market price behaviour

Figure 5 shows percentage curves of p̄Xj

min, p̄
Xj
max, p̄Xj ,∀j

in respect to the `min and `max parameters. Additionally, it
also depicts the difference between supply and demand on
the market. As it can be seen, the price measures decrease
in the region where supply outweighs the demand. In this
case, the price follows the amount of supply available due to
solar radiation, which peaks around each midday. The figure
presents how averaged qtotal over all Xj impacts prices on
the market. Its variance highly impacts the percentage of
the average price in its price window 〈`min, `max〉. As we
observe, for qtotal � max(qbuy, qsell) price averages around
p̄Xj ≈ 90%, still p̄Xj

min ≈ 70%. In our case, when qtotal rise
to more than 107 traded market units (Wh), minimal averaged
price p̄Xj

min ≈ 10% for most of Xj . From Figure 4 one can see
how the market price is correctly reflecting the high PV panel
production during the day. An interesting point is when the
mean price value p approximates 〈`min, `max〉. This is can be
observed through the absolute ratio r, as will be shown that
r ≈ 1.

Although the market price fluctuations are high, the ε does
not behave accordingly. The expectation is to have lim

r→∞
ε =

1, as shown on Figure 6. Since, in this case, there will be
more than enough supply to meet the demand, or vice-versa.
As depicted, the market efficiency drops down where supply



meets demand (qbuy ≈ qsell) and stabilises back where supply
exceeds demand (qbuy � qsell). Interestingly these two drops
show a strong effect on the efficiency curve, as it drops down
to ∼ 77% (but not lower). Thus, lim

r→1
ε = min(εXj )∀j.
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Figure 6. Market efficiency

It can be also observed, that the efficiency grows rapidly for
low values of r. Figure 6 shows a high market efficiency where
e ≈ 90% only for r ≈ 2. In other words demand is twice as
much as the offered supply (or the other way around). This
is an important point as is realistic to expect qbuy � qsell for
current real-world deployments within the next 5–10 years. If
ε ≈ 90% (where demand is double wrt. to the offered supply),
a seller should have a high monetary interest to be involved
in local energy trading. Also an important point depicted in
Figure 6 is the price behaviour, where we can see that its
fluctuations impact only halfway the ε fluctuations.

The results show that the market prices follow the supply
and demand. If there is more supply than demand, prices
decrease, and on the other hand, if there is more demand than
supply, prices increase. Even though the price fluctuations are
significant, the allocative efficiency stays high. This aspect is
interesting as matching is high even for low values of r, bot-
toming out at around 75%. This is an important outcome since
the goal of the market is to facilitate trading between smart
city stakeholders e.g. neighbours, therefore a high allocative
efficiency would be needed in order for the market to work.

VII. CONCLUSION

If the trend of the distributed generation continues, local
electricity trading can be technically realized in future smart
grid cities. Using the discussed trading mechanisms, also
market-driven demand response programs may be of interest.
In local marketplaces consumers and producers can engage
into energy trading for their neighbourhood, while several
stakeholders may enjoy the generated benefits [1]. The efforts
to design and implement such a local marketplace and inves-
tigate its impact have been analysed. The initial results show
that such a market is a viable approach. It was observed how
the market efficiency and the absolute ratio react to the energy
surplus of its participants.

For simplicity, prediction errors were not considered in
this evaluation, however, they may play an important role in

evaluating economical perspectives of the market within the
smart city. Since there are heavy interactions from the end-
user side with the market, it is absolutely mandatory that the
delegation of the user interactions to intelligent agents that
can act on his behalf is realized. Hence, better strategies for
those agents capturing real-world scenarios in order to get
more realistic market evaluations need to be investigated. In
future work it is planed to concentrate on further evaluating
the market through diverse scenarios. The local conditions, the
idiosyncrasy of the participants as well as the variety of acting
strategies will need to be taken into account . Additionally a
better understanding of how the introduced market parameters
impact the overall trading efficiency for previously discussed
dynamics of participants should be achieved. .
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