
SOCRADES: A Web Service based Shop Floor
Integration Infrastructure

Luciana Moreira Sá de Souza, Patrik Spiess, Dominique Guinard,
Moritz Köhler, Stamatis Karnouskos, and Domnic Savio

SAP Research
Vincenz-Priessnitz-Strasse 1, D-76131, Karlsruhe, Germany

Kreuzplatz 20, CH-8008, Zurich, Switzerland
{luciana.moreira.sa.de.souza, patrik.spiess, dominique.guinard,

mo.koehler, stamatis.karnouskos, domnic.savio} @sap.com

Abstract. On the one hand, enterprises manufacturing any kinds of
goods require agile production technology to be able to fully accommo-
date their customers’ demand for flexibility. On the other hand, Smart
Objects, such as networked intelligent machines or tagged raw materials,
exhibit ever increasing capabilities, up to the point where they offer their
smart behaviour as web services. The two trends towards higher flexibil-
ity and more capable objects will lead to a service-oriented infrastructure
where complex processes will span over all types of systems — from the
backend enterprise system down to the Smart Objects. To fully support
this, we present SOCRADES, an integration architecture that can serve
the requirements of future manufacturing. SOCRADES provides generic
components upon which sophisticated production processes can be mod-
elled. In this paper we in particular give a list of requirements, the design,
and the reference implementation of that integration architecture.

1 Introduction

In the manufacturing domain, constant improvements and innovation in the
business processes are key factors in order to keep enterprises competitive in the
market. Manufacturing businesses are standing on the brink of a new era, one
that will considerably transform the way business processes are handled.

With the introduction of ubiquitous computing on the shop floor1, an en-
tirely new dynamic network of networked devices can be created - an Internet
of Things (IoT) for manufacturing. The Internet of Things is a concept which
first appeared shortly after 2000. Until now, several approaches to describe the
IoT have been undertaken of which most have focused on RFID technologies
and their application ([5, 13]).

Only recently, new technologies such as Smart Embedded Devices and Sensor
Networks have entered the scene and can be considered as part of the IoT [11].

1 In manufacturing, the shop floor is the location where machines are located and
products produced.



Smart Embedded Devices are embedded electronic systems which can sense their
internal state and are able to communicate it through data networks. In contrast
to this, Sensor Networks not only can measure internal states of their nodes,
but also external states of the environment. We group these three technologies -
RFID, Smart Embedded Devices, and Sensor Networks - under the notion Smart
Objects.

Smart Objects are the nerve cells, which are interconnected through the
Internet and thus build the IoT. RFID has already been proved to open fun-
damentally new ways of executing business processes, and the technology has
already been adopted by several key players in the industry. Therefore the focus
of this paper is on Smart Embedded Devices and Sensor Networks and their
effects on automatic business process execution.

Although client-server architectures still play an important role in the field
of business software systems, the Service Oriented Architecture (SOA) is on the
move and it is foreseeable that this architectural paradigm will be predominant
in the future. The integration of devices into the business IT-landscape through
SOA is a promising approach to connect physical objects and to make them avail-
able to IT-systems. This can be achieved by running instances of web services
on these devices, which moves the integration of back end applications, such as
Enterprise Resource Planning (ERP) systems, with the devices one step forward,
enabling them to interact and create an Internet of Services that collaborates
and empowers the future service-based factory.

Enabling efficient collaboration between device-level SOA and services and
applications that constitute the enterprise back-end on the other hand, is a
challenging task. The introduction of web service concepts at a level as low as
the production device or facility automation makes this integration significantly
less complex. But there are still differences between device-level SOA and the one
that is used in the back end. To name but a few of them, device-level services are
of higher granularity, exhibit a lower reliability (especially if they are connected
wirelessly) and higher dynamicity and are more focused on technical issues than
on business aspects.

These differences can be overcome by introducing a middleware between the
back end applications and the services that are offered by devices, service me-
diators, and gateways. This middleware adds the required reliability, provides
means to deal with services appearing and disappearing, and allows intermedi-
ate service composition to raise the technical interfaces of low-level services to
business-relevant ones.

In this paper we present the SOCRADES middleware for business integra-
tion; an architecture focused on coupling web service enabled devices with en-
terprise applications such as ERP Systems. Our approach combines existing
technologies and proposes new concepts for the management of services running
on the devices.

This paper is organized as follows: in section 2 we discuss the current state of
the art in coupling technologies for shop floor and enterprise applications. Section
3 presents the requirements for our approach, followed by section 4 where we



discuss our approach. We propose a prototype for evaluating our approach in
section 5 and perform an analysis in section 6. Section 7 concludes this paper.

2 Related Work

Manufacturing companies need agile production systems that can support re-
configurability and flexibility to economically manufacture products. These sys-
tems must be able to inform resource planning systems like SAP ERP in advance,
about the upcoming breakdown of a whole production processes or parts of them,
so that adaptation in the workflow can be elaborated.

Currently Manufacturing Execution Systems (MES) are bridging the gap
between the shop floor and ERP systems that run in the back end. The In-
ternational Systems and Automation Society - 95 (ISA-95) derivative from the
Instrumentation Systems and Automation Society define the standards for this
interface [1]. Although MES systems exist as gateways between the enterprise
world and the shop floor, they have to be tailored to the individual group of
devices and protocols that exist on this shop floor.

By integrating web services on the shop floor, devices have the possibility
of interacting seamlessly with the back end system ([9, 8]). Currently products
like SIMATIC WinCC Smart Access [2] from Siemens Automation use SOAP
for accessing tag based data from devices like display panels to PC’s. However,
they neither provide mechanisms to discover other web-service enabled devices,
nor mechanisms for maintaining a catalogue of discovered devices.

The domain of Holonic Manufacturing Execution Systems (HMS) [6] is also
relevant to our work. HMS are used in the context of collaborative computing,
and use web service concepts to integrate different sources and destinations in-
side a production environment. They do, however, not offer support to process
orchestration or service composition.

Amongst others, European Commission funded projects like SIRENA [4]
showed the feasibility and benefit of embedding web services in production de-
vices. However, since these were only initial efforts for proving the concept, not
much attention has been given to issues such as device supervision, device life cy-
cle management, or catalogues for maintaining the status of discovered devices,
etc. The consortium of the SOCRADES project has integrated partners, code
and concepts from SIRENA, and aims to further design and implement a more
sophisticated infrastructure of web-service enabled devices. SODA (www.soda-
itea.org) aims at creating a comprehensive, scalable, easy to deploy ecosystem
built on top of the foundations laid by the SIRENA project.

The SODA ecosystem will comprise a comprehensive tool suite and will tar-
get industry standard platforms supported by wired and wireless communica-
tions. Although EU projects like SIRENA showed the feasibility and benefit of
embedding web services in devices used for production, they do not offer an
infrastructure or a framework for device supervision or device life cycle. They
neither do provide a catalogue for maintaining the status of discovered devices
[4]. Changes due to the current development are moving towards a more promis-



ing approach of integrating shop floor devices and ERP systems more strongly
[14].

Some authors are criticizing the use of RPC-style interaction in ubiquitous
computing [12] (we consider the smart manufacturing devices a special case
of that). We believe this does not concern our approach, since web services also
allow for interaction with asynchronous, one-way messages and publish-subscribe
communication.

SAP xApp Manufacturing Integration and Intelligence (SAP xMII) is a man-
ufacturing intelligence portal that uses a web server to extract data from mul-
tiple sources, aggregate it at the server, transform it into business context and
personalize the delivered results to the users [7]. The user community can in-
clude existing personal computers running internet browsers, wireless PDAs or
other UIs. Using database connectivity, any legacy device can expose itself to
the enterprise systems using this technology.

The drawback of this product is that every device has to communicate to the
system using a driver that is tailored to the database connectivity. In this way,
SAP xMII limits itself to devices or gateway solutions that support database
connectivity.

In [10], we proposed a service-oriented architecture to bridge between shop
floor devices and enterprise applications. In this paper however, building on both
our previous work and SAP xMII, we show how the already available functional-
ity of xMII can be leveraged and extended to provide an even richer integration
platform. The added functionality comprises integration of web service enabled
devices, making them accessible through xMII, and supporting the software life
cycle of embedded services. This enables real-world devices to seamlessly par-
ticipate in business processes that span over several systems from the back end
through the middleware right down to the Smart Objects.

3 System Requirements

As embedded technology advances, more functionality that currently is hosted
on powerful back end systems and intermediate supervisory devices can now be
pushed down to the shop floor level. Although this functionality can be trans-
ferred to devices that have only a fraction of the capabilities of more complex
systems, their distributed orchestration in conjunction with the fact that they
execute very task-specific processing, allows us to realise approaches that can
outperform centralised systems in means of functionality. By embedding web
services on devices, these can become part of a modern Enterprise SOA commu-
nication infrastructure.

The first step to come closer to realize this vision, is to create a list of re-
quirements. We have come up with this list through interviews with project
partners and customers from the application domain, as well as a series of tech-
nical workshops with partners form the solution domain. As usually done in
software engineering, we separated the list into functional and non-functional
requirements.



Functional Requirements

– WS based direct access to devices: Back end services must be able to
discover and directly communicate with devices, and consume the services
they offer. This implies the capability of event notifications from the device
side, to which other services can subscribe to.

– WS based direct access to back end services: Most efforts in the
research domain today focus on how to open the shop floor functionality to
the back end systems. The next challenge is to open back end systems to the
shop floor. E.g. devices must be able to subscribe to events and use enterprise
services. Having achieved that, business logic executing locally on shop floor
devices can now take decisions not only based on its local information, but
also on information from back end systems.

– Service Discovery: Having the services on devices will not be of much
use if they can not be dynamically discovered by other entities. Automatic
service discovery will allow us to access them in a dynamic way without
having explicit task knowledge and the need of a priori binding. The last
would also prevent the system from scaling and we could not create abstract
business process models.

– Brokered access to events: Events are a fundamental pillar of a service
based infrastructure. Therefore access to these has to be eased. As many
devices are expected to be mobile, and their online status often change (in-
cluding the services they host), buffered service invocation should be in-place
to guarantee that any started process will continue when the device becomes
available again. Also, since not all applications expose web services, a pull
point should be realised that will offer access to infrastructure events by
polling.

– Service life cycle management: In future factories, various services are
expected to be installed, updated, deleted, started, and stopped. Therefore,
we need an open ways of managing their life cycle. Therefore the requirement
is to provide basic support in the infrastructure itself that can offer an open
way of handling these issues.

– Legacy device integration: Devices of older generations should be also
part of the new infrastructure. Although their role will be mostly providing
(and not consuming) information, we have to make sure that this informa-
tion can be acquired and transformed to fit in the new WS-enabled factory.
Therefore the requirement is to implement gateways and service mediators
to allow integration of the non-ws enabled devices.

– Middleware historian: In an information-rich future factory, logging of
data, events, and the history of devices is needed. The middleware historian
is needed which offers information to middleware services, especially when
an analysis of up-to-now behavior of devices and services is needed.

– Middleware device management: Web service enabled devices, will con-
tain both, static and dynamic data. This data can now be better and more
reliably integrated to back end systems offering a more accurate view of the
shop floor state. Furthermore by checking device data and enterprise inven-
tory, incompatibilities can be discovered and tackled. Therefore we require



approaches that will effectively enable the full integration of device data and
their exploitation above the device-layer.

Non-Functional Requirements

– Security support: Shop floors are more or less closed environments with
limited and controlled communication among their components. However,
because of open (and partially wireless) communication networks, this is fun-
damentally changing. Issues like confidentiality, integrity, availability must
be tackled. In a web service mash-up - as the future factory is expected to
be -, devices must be able to a) authenticate themselves to external services
and b) authenticate/control access to services they offer.

– Semantics support: This requirement facilitates the basic blocks primar-
ily for service composition but also for meaningful data understanding and
integration. Support for the usage of ontologies and semantic-web concepts
will also enhance collaboration as a formal description of concepts, terms,
and relationships within a manufacturing knowledge domain.

– Service composition: In a SOA infrastructure, service composition will
allow us to build more sophisticated services on top of generic ones, there-
fore allowing thin add-ons for enhanced functionality. This implies a mixed
environment where one could compose services a) at device level b) at back
end level and c) in a bidirectional cross-level way.

In the above list we have described both, functional and non-functional re-
quirements. In our architecture these requirements will be realized through com-
ponents, each one offering a unique functionality.

4 Architecture

4.1 Overview

In this chapter, we present a concrete integration architecture focusing on lever-
aging the benefits of existing technologies and taking them to a next level of inte-
gration through the use of DPWS and the SOCRADES middleware. The archi-
tecture proposed in Figure 1 is composed of four main layers: Device Layer, SO-
CRADES middleware (consisting of an application and a device services part),
xMII, and Enterprise Applications.

The Device Layer comprises the devices in the shop floor. These devices when
enabled with DPWS connect to the SOCRADES middleware for more advanced
features. Nevertheless, since they support web services, they provide the means
for a direct connection to Enterprise Applications. For the intermediate part
of the SOCRADES architecture, bridging between enterprise and device layer,
we identified an SAP product that partly covered our requirements: SAP xApp
Manufacturing Integration and Intelligence (SAP xMII). The features already
available in xMII are:



ENTERPRISE APPLICATIONS

Hardware
Vendor

Implementation

Proprietary
Protocol

xMII

Gateway

Shop floor
standard

HTML-GUI /
Applets

Web Services

SOCRADES MIDDLEWARE APP SERVICES

Visualization Services
Applets

Display Controls
Displays

GUI Widgets

Data ServicesLegacy Connector SOCRADES Connector

Business Logic Services
Business Process Monitoring

Alert

Invoker

Asynchronous
Buffer

(Event)
Pull Point

Eventing

Notification
Broker

Se
rv

ic
e

Li
fe

cy
cl

e
M

an
ag

em
en

t

Services
Repository

Service
Mapper

Device Manager
and Monitor

Service
Discovery

Web Services

Web Services

SOCRADES MIDDLEWARE DEVICE SERVICES

SAP
Protocols

SAP Connectivity

SAP Transaction
Access

Cross-layer
Service

Catalogue

Composed
Services
Runtime

DPWS
Back-end
Services

Service Access Control

Middleware
Historian

OPC UA
over DPWS

OPC UA
over DPWS

DEVICE LAYER

Fig. 1. SOCRADES Integrated Architecture

– Connectivity to non web service enabled devices via various shop floor com-
munication standards

– Graphical modelling and execution of business rules
– Visualization Services
– Connectivity to older SAP software through SAP-specific protocols

We decided not to re-implement that functionality but use it as a basis and
extend it by what we call the SOCRADES middleware. The SOCRADES mid-
dleware and xMII perform together a full integration of devices with ERP sys-
tems, adding functionalities such as graphical visualization of device data and
life cycle management of services running on the devices. In this setting, xMII
provides the handling of business logic, process monitoring and visualization of
the current status of the devices.

Finally, the connection with Enterprise Applications is realized in three ways.
SAP xMII can be used to generate rich web content that can be integrated into
the GUI of an enterprise system in mash-up style. Alternatively, it can be used
to establish the connection to older SAP systems using SAP-specific protocols.

Current, web service based enterprise software can access devices either via
web services of the SOCRADES middleware, benefiting from the additional func-
tionality, or they can directly bind against the web services of DPWS-enabled
devices. The data delivered to Enterprise Applications is currently provided by
xMII. Nevertheless with the introduction of the SOCRADES middleware and



the use of DPWS, this data can be also delivered directly by the regarding de-
vices, leaving to xMII only the task of delivering processed data that requires a
global view of the shop floor and of the business process.

4.2 Features and Components of the SOCRADES Middleware

The SOCRADES middleware is the bridging technology that enables the use of
features of existing software systems with DPWS enabled devices. Together with
SAP xMII, this middleware connects the shop floor to the top floor, providing ad-
ditional functionality not available in either one of these layers. Although direct
access from an ERP system to devices is possible, the SOCRADES middleware
simplifies the management of the shop floor devices. In the following, we list
this additional functionality and show how the components of the architecture
implement them.

Brokered Access to Devices. Brokered access means to have an intermediate
party in the communication between web service clients and servers that adds
functionality. Example are asynchronous invocations, a pull point for handling
events, and a publish-subscribe mechanism for events. Asynchronous invocations
are useful when dealing with devices that are occasionally connected so that in-
vocations have to be buffered until the device re-appears; they are implemented
by the Invoker component. Pull points enable applications to access events with-
out having to expose a web service interface to receive them. The application can
instruct the pull point to buffer events and can obtain them by a web service call
whenever it is ready. Alternatively, to be notified immediately, the application
can expose a web service endpoint and register it at the notification broker for
any type of event.

Service Discovery: The service discovery components carries out the actual
service discovery on the shop floor level. This component is distributed and
replicated at each physical site because the DPWS discovery mechanism WS-
Discovery relies on UDP multicast, a feature that may not be enabled globally
across all subsidiaries in a corporate network. All discovered devices from all
physically distributed sites and all the services that each device runs are then
in a central repository called Device Manager and Monitor, which acts as the
single access point where ERP systems can find all devices even when they have
no direct access to the shop floor network.

Device Supervision: Device Management and Monitor and DPWS Historian
provide the necessary static and dynamic information about each DPWS-enabled
physical device available in the system. The device manager holds any static
device data of all on-line and off-line devices while the device monitor contains
information about the current state of each device. The middleware historian can
be configured to log any event occurring at middleware level for later diagnosis



and analysis. Many low-level production systems feature historians, but they
are concerned with logging low-level data that might be irrelevant for business-
level analysis. Only a middleware historian can capture high-level events that
are constructed within this architectural layer.

Service Life Cycle Management: Some hardware platforms allow exchang-
ing the embedded software running on them via the network. In a service-enabled
shop floor this means that one can update services running on devices. The
management of these installed services is handled through the use of the Service
Mapper and Services Repository. These components together make a selection
of the software that should run in each device and perform the deployment.

Cross-Layer Service Catalogue: The cross-layer service catalogue comprises
two components. One is the Composed Services Runtime that executes service
composition descriptions, therefore realizing service composition at the middle-
ware layer. The second component is the DPWS device for back end services
that allows DPWS devices to discover and use a relevant set of services of the
ERP system.

The Composed Services Runtime is used to enrich the services offered by the
shop floor devices with business context, such as associating an ID read from
an RFID tag with the corresponding order. A compound service can deliver this
data by both invoking a service on the RFID reader, and from a warehouse
application. A Composed Services Runtime, which is an execution engine for
such service composition descriptions, e.g., BPEL [3], is placed in the middleware
because only from there, all DPWS services on the shop floor as well as all back
end services can be reached.

Another requirement is that shop floor devices must be able to access enter-
prise application services, which can be achieved by making a relevant subset
available through the DPWS discovery. This way, devices that run DPWS clients
can invoke back end services in exactly the same way they invoke services on
their peer devices. Providing only the relevant back end services allows for some
access control and reduces overhead during discovery of devices. Co-locating
both sub-components in the same component has the advantage that also the
composed services that the Composed Services Runtime provides, can be made
available to the devices through the virtual DPWS device for back end services.

Security support: The (optional) security features supported by the middle-
ware are role-based access control of devices communication to middleware and
back end services and vice versa. Event filtering based on roles is also possi-
ble. Both the devices as well as back end and middleware services have to be
authorized when they want to communicate. Access control is enforced by the
respective component. Additionally, message integrity and confidentiality is pro-
vided by the WS-Security standard.



To demonstrate the feasibility of our approach and to make some first evalu-
ations, we implemented a simple manufacturing scenario. We used a first imple-
mentation of our architecture to connect two DPWS-enabled real-world devices
with an enterprise application.

5 Reference Implementation

In order to prove the feasibility of our concept, we have started realising a ref-
erence implementation. From a functional point of view, it demonstrates two
of the most important incentives for the use of standardized device level web
services in manufacturing: flexibility and integration with enterprise software.
Indeed, the scenario shows DPWS-enabled devices can be combined easily to
create higher-level services and behaviours that can then be integrated into top-
floor applications.

The business benefits from adopting such an architecture are numerous:

– lower cost of information delivery
– increased flexibility and thus total cost of ownership (TCO) of machines.
– increased visibility of the entire manufacturing process to the shop floor.
– ability to model at the enterprise layer processes with only abstract view of

the underlying layer, therefore easing the creation of new applications and
services from non-domain experts.

5.1 Scenario

To support this idea we consider a simple setting with two DPWS devices:

– A robotic arm that can be operated through web service calls. Additionally
it offers status information to subscribers through the SOCRADES eventing
system.

– A wireless sensor node providing various information about the current en-
vironment, delivered as events. Furthermore, the sensor nodes provide actu-
ators that are accessible through standard service calls.

The manufacturing process is created on the shop floor using a simple ser-
vice composition scheme: from the atomic services offered by the arm (such
as start/stop, etc.) a simple manufacturing process p is created. The robot ma-
nipulates heat-sensitive chemicals. As a consequence it is identified that the
manufacturing process cannot continue if the temperature rises above 45 �.

The robot may not have a temperature sensor (or this is malfunctioning),
but as mentioned before the manufacturing plant is equipped with a network
of wireless sensor nodes providing information about the environment. Thus,
in order to enforce the business rule, the chief operator uses a visual composi-
tion language to combine p with the temperature information published by the
service-enabled sensor node: t.

In pseudo code, such a rule looks like:



if (t > 45) then p.stopTransportProcess();

Furthermore, the operator instantiates a simple gauge fed with the tempera-
ture data (provided by t). For this purpose he uses a manufacturing intelligence
software and displays the gauge on a screen situated close the robot.

Finally, the sales manager can also leverage the service oriented architecture
of this factory. Indeed, the output of the business rule is connected to an ERP
system which provides up-to-date information about the execution of the current
orders. Whenever the process is stopped because the rule was triggered, an event
is sent to the ERP system through its web service interface. The ERP system
then updates the orders accordingly and informs the clients of a possible delay
in the delivery.

5.2 Components

This section describes the architecture of our prototype from an abstract point of
view. Its aim is to understand the functionality whose concrete implementation
will be described within the next section.

Functional Components The system comprises four main components as
shown on Figure 2 that we shall briefly describe:

– Smart Devices: Manufacturing devices, sensors and Smart Things (i.e.
Smart Objects) are the actors forming an Internet of Services in the factory
as well as outside of the factory. They all offer web service interfaces, ei-
ther directly or through the use of gateways or service mediators. Through
these interfaces they offer functional services (e.g. start/stop, swap to man-
ual/automatic mode) or status information (e.g. power consumption, mode
of operation, usage statistics, etc.).

– Composed Service: The component aggregates the services offered by
smart objects. Indeed, it is in charge of exposing coarse-grained services
to the upper layers. In the case of the robotic arm for instance, it will con-
sume the open(), close() and move(...), methods and use them to offer
a doTransportProcess (...) service.

– Business Logic Services and Visualisation Services: In our prototype,
the business logic services are supported by a service composition engine and
visualized using a visualization toolkit. The former component is used to
model business rules or higher-level processes, known as business logic ser-
vices in our architecture. As an example the operator can use it to create the
business rules exposed above. The latter component is used to build a plant-
floor visualisation of the devices’ status and the overall process execution.
As an example the operator can instantiate and use a set of widgets such as
gauges and graphs to monitor the status of the machines. The production
manager can also use it to obtain real-time graphs of the process execution
and status.



– Enterprise Applications: This is the place of high-end business software
such as ERPs or PLMs. The idea at this level is to visualize processes rather
than the machines executing the processes. This layer is connected to the
plant-floor devices through the other layers. As such it can report machines
failures and plant-floor information on the process visualization and work-
flow. Furthermore, business actions (e.g. inform customers about a possible
delay) can be executed based on this information.

Fig. 2. The DPWS service bus.

Cross-Component Communication In a mash-up, the architecture is not
layered but rather flat, enabling any functional component to talk to any other.
Such architectures need a common denominator in order for the components to
be able to invoke services on one another. In our case the common denominator
is the enhanced DPWS we developed. Each component is DPWS-enabled and
thus, consumes DPWS services and exposes a DPWS interface to invoke the
operations it offers. The service invocations can be done either synchronously or
asynchronously via the web service eventing system. For instance the temper-
ature is gathered via a subscription to the temperature service (asynchronous)
whereas the transport process is stopped by invoking an operation on the process
middleware. Figure 2 depicts the architecture by representing the components
connected to a common (DPWS) ESB (Enterprise Service Bus).

5.3 Implementation

The system described in this paper is a reference implementation of concepts
described in the architecture rather than a stand-alone concept. Therefore it
uses and extends several software and hardware components rather than writing
them from scratch. In this section we will briefly describe what these components
are and how they interact together, taking a bottom up approach.



Functional Components

– Smart Devices: The wireless sensor network providing temperature in-
formation is implemented using the Sun Microsystems’ SunSPOT sensor
nodes. Since the nodes are not web services enabled, we had to imple-
ment a gateway (as described in our architecture), that would capture the
temperature readings and provide it via DPWS as services one can sub-
scribe to. The gateway component hides the communication protocol be-
tween the SunSPOTs and exposes their functionalities as device level web
services (DPWS). More concretely the SunSPOT offer services for sensing
the environment (e.g. getTemperature()) or providing output directly on
the nodes (e.g. turnLightOn(Color)). The robotic arm was implemented
as a clamp offering DPWS services for both monitoring and control. The
clamp makes these operations available as DPWS SOAP calls on a PLC
(Programmable Logic Controller) over gateway. For monitoring services (e.g.
getPowerConsumption()) the calls are issued directly on the gateway stand-
ing for the clamp. For control services the idea is slightly different.

– Composed Service: Typical operations at the clamp level are openClamp()
and closeClamp(). In order to consistently use these operations on the top-
floor we need to add some business semantics already on the shop floor. This
is the role of composed services which aggregate an number of coarse-grained
operations (e.g. openClamp()) and turn them into higher level services. This
way the start(), openClamp(), closeClamp(), move(x), stop() operations
are combined to offer the startTransportProcess() service.

– Business Logic Services and Vizualisation Services: Services offered
by both the sensors and the clamp are combined to create a business rule.
The creation of this business logic service is supported by xMII, SAP’s Man-
ufacturing Integration and Intelligence software. As mentioned before, the
aim of this software is firstly to offer a mean for gathering monitoring data
from different device aggregators on the shop floor such as MESs (Manufac-
turing Execution Systems). This functionality is depicted on Figure 3.
Since the SOCRADES infrastructure proposes to DPWS-enable all the de-
vices on the plant-floor, we can enhance the model by directly connecting
the devices to xMII. Additionally, xMII offers a business intelligence tool.
Using its data visualization services we create a visualization of process-
related and monitoring data. Finally, we use the visual composition tool
offered by xMII to create the rule. Whenever this rule is triggered the
stopTransportProcess()operation is invoked on the middleware to stop
the clamp.

– Enterprise Applications: Whenever the business rule is triggered, xMII
invokes the updateOrderStatus()on the ERP. As mentioned before this
latter component displays the failure and its consequences (i.e. a delay in
the production) in the orders’ list. Additionally, if the alert lasts for a while,
it informs the customer by email providing him with information about a
probable delay.



Fig. 3. xMII indirect device connectivity.

Fig. 4. Direct connectivity to the DPWS devices.



Cross-Component Communication Figure 5 presents the communication
amongst the components whenever the business rule is triggered. At first the
SunSPOT dispatches the temperature change by placing a SOAP message on
the DPWS service bus. The xMII is subscribed to this event and thus, receives
the message and feeds it to its rules engine. Since the reported temperature
is above the threshold xMII fires the rule. As a consequence it invokes the
stopTransportProcess()operation on the Process Service middleware. This
component contacts the clamp and stops it. Furthermore, xMII triggers the
updateOrderStatus()operation on the ERP. This latter system update the
status of the concerned order accordingly and decides whether to contact the
customer to inform him by email about the delay.

Fig. 5. Interactions when the business rule is triggered.

6 System Analysis

In this section we will discuss the properties of our architecture and give decision
makers a framework at hand through which they can assess the concrete value of
our system for their organisation. Since the work we are presenting in this paper
is part of ongoing research, we think it is helpful to have such a framework, in
particular to assess future work.

In the field of Systems Management several standards exist [ref. Standards,
ITIL, etc.] which aim to support a structured dealing with IT systems. One
framework in particular helpful for central corporate functions such as produc-



tion is the ISO model FCAPS (Fault, Configuration, Administration, Perfor-
mance, Security). Although being a framework for network management, it is
relevant for our architecture because it is enabling low level networked interac-
tion between Smart Objects. Here we will give a first attempt to evaluate the
architecture.

– Fault Management: Since our system will be part of the manufacturing
IT-landscape we need to manage both, faults of particular parts of the man-
ufacturing process and faults in our system. Due to the tight integration
these types of faults inherently become the same. In particular the SOA
based approach of device integration enables the user to identify faults in
his production process, at a level never seen before. It also gives the possibil-
ity to build redundancy at system critical stages which ensures fast recovery
from local failures. Finally the flexibility given by our SOA approach lets the
user decide to what extend he wants to introduce capabilities of quick fault
recovery, depending on his individual needs.

– Configuration Management: Mainly the two components Service Lifecy-
cle Management and Cross-Layer Service Catalogue support dynamic con-
figuration management. However, at the current point of view we see code
updated to Smart Devices as a major challenge which until today has not
been resolved sufficiently. Configuration also includes the composition of
services into higher-level services. In a future version, our Service Discovery
module will use semantic annotation of services to find appropriate service
instances for online service composition. Using ontologies to specify the be-
haviour and parameters of web services in their interface descriptions and
metadata allows flexible service composition. Especially in the very well de-
fined domain of manufacturing we can make use of existing ontologies that
describe production processes.

– Administrative Management: The Device Manager provides the neces-
sary static and dynamic information about each Smart Device. Through the
strict use of web-service interfaces, it will be possible to easily integrate de-
vices into management dash-boards. Through this technically we allow easy
and user friendly access to Smart Devices. However, taking the possibly very
large number of devices into account, we belief that our middle-ware has defi-
ciencies in offering this user friendly administration. Although this problem
is subject to other fields of research such as sensor networks, (e.g, macro
programming), we will dedicate our research efforts to the problem.

– Performance Management: Already now we can say that local compo-
nents of our system will scale well in regards to total amount of Smart
Objects and their level of interaction. This can be justified since all inter-
action occurs locally and only a limited amount of Smart Objects is needed
to fulfil a particular task. However, it is still an open question, if our system
will scale well on a global scale and to what extend it will need to be modu-
larized. For example we will need to investigate whether central components
such as device and service registries should operate on a plant level or on



a corporate level, which could mean that these parts would have to handle
several millions or even billions of devices at the same time.

– Security Management: As mentioned in the security support section of
the architecture, our system can make use of well established security fea-
tures which already are part of web-service technologies and their protocols
such as DPWS. It is most likely that we will have to take into account in-
dustry specific security requirements, and it will be interesting to see, if we
can deliver a security specification which satisfies all manufacturing setups.

7 Conclusions

In this paper we have presented SOCRADES, a Web Service based Shop Floor
Integration Infrastructure. With SOCRADES we are offering an architecture in-
cluding a middleware which support connecting Smart Devices, i.e. intelligent
production machines from manufacturing shop floors, to high-level back-end sys-
tems such as an ERP system. Our integration strategy is to use web services
as the main connector technology. This approach is motivated by the emerg-
ing importance of Enterprise Service Oriented Architectures, which are enabled
through web services.

Our work has three main contributions: First, we elaborated and structured
a set of requirements for the integration problem. Second, we are proposing
a concrete architecture containing of components which realized the required
functionality of the system. Our third contribution is a reference implementation
of the SOCRADES architecture. In this implementation we have demonstrated
the full integration of two Smart Devices into and enterprise system. We showed
that it is possible to connect Smart Devices to an ERP system, and describe
how this is done.

Our next steps include integrating a prototype in a bigger setup and testing
it with live production systems.

8 Acknowledgments

The authors would like to thank the European Commission and the partners
of the European IST FP6 project ”Service-Oriented Cross-layer infRAstructure
for Distributed smart Embedded devices” (SOCRADES - www.socrades.eu), for
their support.

References

1. Instrumentation Systems and Automation Society. http://www.isa.org/.

2. SIMATIC WinCC flexible. http://www.siemens.com/simatic-wincc-flexible/.

3. Web Services Business Process Execution Language Version 2.0 (OASIS Standard),
April 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.



4. H. Bohn, A. Bobek, and F. Golatowski. SIRENA - Service Infrastructure for Real-
time Embedded Networked Devices: A service oriented framework for different
domains. In International Conference on Systems and International Conference on
Mobile Communications and Learning Technologies (ICNICONSMCL’06), page 43,
Washington, DC, USA, 2006. IEEE Computer Society.

5. E. Fleisch and F. Mattern, editors. Das Internet der Dinge: Ubiquitous Comput-
ing und RFID in der Praxis:Visionen, Technologien, Anwendungen, Handlungsan-
leitungen. Springer, 2005.

6. L. Gaxiola, M. de J. Ramı́rez, G. Jimenez, and A. Molina. Proposal of Holonic
Manufacturing Execution Systems Based on Web Service Technologies for Mexican
SMEs. In HoloMAS, pages 156–166, 2003.

7. G.Gorbach. Pursuing manufacturing excellence through Real-Time performance
management and continuous improvement. ARC Whitepaper, April 2006.

8. F. Jammes, A. Mensch, and H. Smit. Service-Oriented Device Communications
using the Devices Profile for Web Services. In MPAC ’05: Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-hoc computing, pages
1–8, New York, NY, USA, 2005. ACM Press.

9. F. Jammes and H. Smit. Service-oriented paradigms in industrial automation.
IEEE Transactions on Industrial Informatics, 1:62–70, 2005.

10. S. Karnouskos, O. Baecker, L. M. S. de Souza, and P. Spiess. Integration of SOA-
ready Networked Embedded Devices in Enterprise Systems via a Cross-Layered
Web Service Infrastructure. In 12th IEEE Conference on Emerging Technologies
and Factory Automation, 2007.

11. A. Reinhardt. A Machine-To-Machine ”Internet Of Things”. Business Week, April
2004.

12. U. Saif and D. J. Greaves. Communication Primitives for Ubiquitous Systems or
RPC Considered Harmful. In 21st International Conference of Distributed Com-
puting Systems (Workshop on Smart Appliances and Wearable Computing), Los
Alamitos, CA, USA, 2001. IEEE Computer Society.

13. C. R. Schoenberger. RFID: The Internet of Things. Forbes, (18), March 2002.
14. E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski. Service-Oriented Architectures for

Embedded Systems Using Devices Profile for Web Services. In 21st International
Conference on Advanced Information Networking and Applications Workshops.,
2007.


