
An agent-based simulation of SOA-ready devices

Stamatis Karnouskos , Mian Mohammad Junaid Tariq

SAP Research
Vincenz-Priessnitz-Strasse, 1 Karlsruhe, Germany

E-mail: {stamatis.karnouskos, mian.mohammad.junaid.tariq} @sap.com

Abstract

In the future Internet of Things, intelligent
embedded devices are expected to not only offer their
functionality as a web service, but also to be able to
discover and cooperate with other devices and services
in a peer-to-peer way. The new capabilities of the
emerging infrastructure will have a significant impact
on industrial applications, services and business
practices. In this paper we explore the simulation of
such an infrastructure composed of heterogeneous
web-service enabled (SOA-ready) devices with the help
of a multi-agent system.

1. Introduction
We are witnessing the miniaturization of computing

devices, and the expansion of their computing as well
as communication capabilities. In the envisioned
“Internet of Things” [1] large numbers of distributed
networked embedded devices (NEDs) will be able to
collaborate autonomously in order to achieve their
goals. As embedded devices are becoming more
sophisticated we see slowly a paradigm change
characterized mostly from the efforts to migrate
advanced functionality previously hosted in powerful
static back-end systems, towards more lightweight
mobile distributed embedded devices.

Interoperability will be a major challenge in this
highly heterogeneous infrastructure. Although special
flavors of the Internet Protocol (such as the 6lowpan
[2]) are expected to efficiently connect large
populations of these devices with each other, being
able to seamlessly support interoperable Machine to
Machine (M2M) interaction over the network is a must
in order to provide wide access to its resources and
functionality. A concept successfully tested in the
business environment to tackle interoperability is that
of Service-Oriented Architectures (SOA) where web
services are used in order to focus on the functionality
rather than the underlying implementation.

Web services nowadays can be implemented directly
on devices, providing them with the necessary

technology abstraction and making them easily
integrateable in heterogeneous environments. As an
example the SOCRADES project [3] is implementing
web services on devices and integrates them with
modern enterprise systems [4]. By including the NEDs
in enterprise applications, new innovative services are
expected to empower business solutions and provide
new approaches to known problems that were not
possible today due to the missing granularity and real-
time delivery of information such the one swarms of
NEDs can deliver. Therefore it is expected that
services depending on these devices will be vital for
future business scenarios in a number of industry
domains [5].

2. Requirements analysis
Simulating an infrastructure populated by a high
number of web service enabled devices is not trivial,
but it could provide a very useful tool in the hands of
enterprise application developers. In order to achieve
simulation of even the most basic characteristics of it,
some basic requirements need to be fulfilled.

● Transparent simulation devices and their
functionality. This implies that the simulated
devices should not be distinguished in their
behavior from the devices they actually
simulate. This implies web-service direct
access to the simulated devices, dynamic
discovery of their services, management of
their lifecycle etc.

● Mobility support: trends in shop-floor show an
increasing penetration of mobile devices. As
such simulating the mobility/roaming of
devices and their services in distributed should
be feasible.

● Dynamic Environments: the new
infrastructure is expected to be highly volatile
since it will be composed of multiple
heterogeneous devices and services that will
appear or disappear/fail etc. As such any
simulator should be able to provide a flexible

way of trying out such non-deterministic
models.

● Micro and macro simulation support: Micro
simulation techniques model behaviors of
individuals and fit very well in the envisioned
infrastructure. The web service enabled
devices are expected not only to provide their
functionality as a service, but compose
sophisticated services running also in other
devices and/or enterprise systems and
cooperate with them. Therefore we want to be
able to simulate swarm behaviors as a system
(macro) but also as individuals (micro).

● Self-X behavior: Future infrastructures will
depict self-X characteristics e.g. self-
configuration (automatic configuration of
components), self-healing (automatic
discovery and correction of faults), self-
optimization (automatic monitoring and
control of resources to ensure the optimal
functioning with respect to the defined
requirements) and self-protection (proactive
identification and protection from arbitrary
attacks). Therefore our simulation approach
should be able to capture this dimension.

Of course there are many other requirements if we
were to fully simulate all features of such a dynamic
complex infrastructure. However our aim is to start
with some very initial ones and provide the first to our
knowledge such simulator of its kind. Have also in
mind that our interest is more on the enterprise
integration side and the effects it might have on
concepts and integration of business applications.

3. Technologies
Picking up the right technology is always a challenging
issue as they have an impact on the overall architecture.
We focus here mostly on the choice of technologies for
the web-service enabled devices and their simulator.

 3.1 Web services for devices
In the past there have been efforts (e.g. Jini, UPnP) to
integrate devices into the networking world and make
their functionality available in an interoperable way.
The latest one, coming from UPnP and attempting to
fully integrate with the web-service world, is DPWS
(Devices Profile for Web Services [6]), which defines a
minimal set of implementation constraints to enable
secure Web Service messaging, discovery, description,
and eventing on resource-constrained devices. DPWS
builds on several core Web Services standards such as
WSDL 1.1, XML Schema, SOAP 1.2, WS-Addressing,
WS-Metadata Exchange, WS-Transfer, WS-Policy,
WS-Security, WS-Discovery and WS-Eventing.
The main issues associated with DPWS and relevant to
our requirements are i) it runs on resource-constrained

devices, ii) allows dynamic discovery of devices and
services running on devices, iii) developer
implementations of it are available as open source in
Java and C. A DPWS implementation (WSDAPI) is
also included by default in Microsoft Windows Vista
and Windows Embedded CE.
Although primarily developed for the home and office
environment, it is being piloted also in other domains
[9] such as the automation one [7] by major industrial
players. Initial efforts indicate positive results, and
therefore it is expected that in the future many devices
and their services will be able to be discoverable in a
web-service enabled way [8]. DPWS provides a solid
framework that satisfies our requirements.

 3.2 Multi-agent system simulator
Agents are considered one of the most important
paradigms for conceptualizing, designing,
implementing and simulating software systems. Multi-
agent systems (MAS) [10] support group behavior of
agents in dynamic situations, and are capable of
simulating systems with large number of heterogeneous
entities behaving differently. As such MAS are more
suitable for evaluating distributed systems that involve
complex interaction between entities, e.g., humans,
industrial robots, smart devices. As agents are
autonomous and operate without human intervention
MAS can model really complex non-deterministic
systems governed by common and possibly even
conflicting goals.
Taking into account our requirements, the availability
of DPWS implementations and considering that our
focus is not on the core protocol simulation but on the
devices using it, we concluded that multi-agent systems
are powerful enough to simulate the complex
infrastructure envisioned.
Due to the fact that significant research has already
been done especially on beliefs, desires, and intentions
(BDI), cooperation, and coordination, organization,
communication, negotiation, dependability and fault-
tolerance, we could build on top of that to simulate a
very dynamic, distributed and highly heterogeneous
infrastructure composed of large numbers of
autonomous devices that can offer their functionality
and consume web services. To our knowledge there is
no simulator available for the DPWS protocol nor for
web-service enabled devices. Therefore, we need to
develop a new one, preferably as an extension to one of
the existing frameworks, and in our case using MAS.
For the work presented in this paper we have used the
Java Agent Development framework (JADE [11]),
which is a platform allowing the coordination of
multiple FIPA-compliant agents. Although in principal
any other multi-agent system could be used, we
concluded using this one due to its Java

implementation, FIPA compatibility, open source
availability, extensibility and the tools it comes with.

4. Architecture

The envisioned overall architecture making use of the
simulator is depicted in Figure 1. We can clearly see
three layers. At the bottom layer there are the devices
(device layer), whose functionality is available via web
services. These devices directly implement web-
services (e.g. via the DPWS protocol) or if this is not
possible (e.g. due to resource constraints) they are
connected via a gateway that is capable of doing so.
Typical examples of devices that implement web
services (SOA-ready) are PLCs, robotic arms [7] etc,
while legacy devices that connect via a gateway could
be RFID tags etc.

Figure 1: Architecture of an agent-based simulator of
web-service enabled devices

On the top layer we can see the enterprise layer, where
several enterprise services and business applications
reside. Between the enterprise layer and the device
layer is the core of our work, i.e. the device simulator.
This is communicating via web services directly both
to the different devices below and the
services/applications on top, which makes it easy for
our approach to fit in modern SOA systems. In the
simulator itself each agent represents one SOA-ready
device. The agents can either get initial or continuous
data from the devices they simulate in real-time by
connecting to them via WS, by getting predefined
values stored in a database or even by generating their
own based on internal algorithms.

The simulator is part of an ecosystem and completely
transparent to the other actors of the infrastructure
including the enterprise applications and other services
and devices. As an example, SAP's xApp
Manufacturing and Intelligence (xMII) product that
typically links a shop floor system with an ERP and
provides enterprise services with information from
plant floor applications and systems, can discover the
hundreds of devices created by the simulator and can
not distinguish them from the real devices. This allows
us to create large-scale infrastructures in agnostic-ways
for the other layers.
We have to note, that agents representing devices can
communicate with the outside world via the DPWS,
while internally the facilities offered by the agent
platform can be used e.g. the Agent Communication
Language (ACL). This gives us extended capabilities
as we have two different communication and control
planes (that of agent system and of DPWS-devices)
that can be used independently.

5. Coupling agents and DPWS devices

As mentioned earlier, the JADE multi-agent platform is
used to create the agents representing DPWS devices.
Each agent represents one DPWS device which needs
to be created using the DPWS toolkit
(www.soa4d.org). This integration has been achieved
by creating two types of agents interacting with the
DPWS toolkit i.e.

● a DPWS Client Agent (DC-Agent), and
● a DPWS Server Agent (DS-Agent).

Figure 2: Implementation of
DC- and DS- Agents (direct

and bridge)

http://www.soa4d.org/

DC-Agent: A DC-Agent implements the client part of
DPWS toolkit, acting as client for consuming services
offered by devices as well as for services offered by
DS-Agents. This agent has no public interface (Figure
2) meaning, it does not expose any service nor it will
be visible to the external world. The DC-Agent also
acts a bridge between a device and a DS-agent offering
service(s) to applications. To keep implementation
simple, it is assumed that no agent can be DC-Agent
and DS-Agent at the same time. The main usage of
DC-Agent is to:

● Discover a DPWS-enabled device,
● Get services and data offered by this device,
● Process data according to user requirements,
● Expose customized data to applications via the

DPWS protocol

DS-Agent: This agent implements the server part of
DPWS toolkit and is more complex as it consists of
two distinct components i.e. a server and a service. The
server part instantiates the services, registers them and
listens at specified port for client requests. The service
part is exposed to the external world and handles all the
client requests.
As the DPWS toolkit is not part of the JADE
environment, we have to develop bridging concepts
that allow for functionality inclusion and interaction
between the agents and the DPWS services. Therefore
this interaction can be can be implemented in two
different ways:

1. Direct implementation: Here the server part is
directly implemented within the agent. At
service instantiation, the reference of the
service is stored, and the service part is
modified to implement a protected interface in
order to aid the internal communication
between the agent and the service (as depicted
in figure 2).

2. Bridge implementation: In this case, the
implementation is similar to the “direct
implementation” with the difference that we
neither store the service reference, nor modify
the service. Instead we implement a special
DPWS client in the agent that acts as a bridge
between the agent and its service (as depicted
in figure 2).

As it can be seen in Figure 3, all simulated devices can
be discovered by third party DPWS clients; as an
example in the Windows Vista network neighborhood
they appear as normal devices (distinguishable only by
their name), and coexist with other devices such as a
robotic arm, a SunSPOT sensor
(www.sunspotworld.com) and a windows Vista
machine. This makes it obvious that the simulator
created devices can at least be discovered/used by other
infrastructure actors in an agnostic, non-intrusive way.

6. Scenario Implementation
Our initial aim was to create the basic tools for being
able to simulate SOA-ready devices. In order to
demonstrate this, we have created an infrastructure
consisting of real devices, among others a temperature
sensor. As an example of demonstrating the simulator
capabilities, one can consider a simple device
amplification scenario: In heterogeneous industrial
environments, it is quite expensive and difficult to
evaluate the impact of large number of devices on
applications using physical hardware. Such large-scale
evaluations can be done using simulated devices.
Consider a requirement to simulate an infrastructure of
5000 temperature devices sending temperature readings
every one second to specific application(s), while
physically only 50 temperature sensors are available.
The simulator can achieve this task in the following
fashion: A management agent (DPWS – enabled) can
scan and discover all 50 physical temperature sensors
and then create 4950 agents simulating the behavior of
the 50 physical temperature sensors with a value-
adjustment algorithm. Each of these agents exposes a
temperature service via DPWS. To other devices and
business applications these agents will appear as if they
are real physical temperature sensors, in other words
applications will not see any difference between
simulated devices and real devices. Any discovery
request will result in finding 5000 temperature sensors
(the sum of real and simulated ones), each offering a
temperature service via WS, that any application can
subscribe to and get the temperature value every one
second.

Figure 3: DC-/DS-Agents discoverable in Windows
Vista network neighborhood

For our demo, the physical temperature sensor is a
SunSPOT while its functionality i.e. the temperature is
captured and represented as a web service via DPWS
[7]. As it can be seen in Figure 4, we are able to
discover the device in Windows Vista and by clicking
on its properties we are able to get more info e.g. serial
number, MAC address, IP address etc including a
device web page that can offer us the WSDL file
location and a human-readable form of the service (i.e.
temperature) value. The DPWS enabled SunSPOT
offers its temperature as a service that other DPWS
clients can subscribe to and get notified if it changes.

The SunSPOT is the real device, whose services we
will use in the simulated device (the agent). The DC-
Agents created in the simulator can discover the
SunSPOT and the DS-Agents can be discovered by
other DPWS-enabled devices as it can be seen by the
Windows Vista screen shots. The DC-Agent is able to
subscribe to the temperature service offered by the
SunSPOT, process the value returned by the service
according to its simulation parameters (e.g. normalize
it within a specific range) and then communicate this
via agent-specific ways (such as ACL, or internal call)
to the DS-Agent. The results of this would be at least
one simulated device (DS-Agent) to be discoverable,
that offers the same functionality as the original
SunSPOT device.

In Figure 5, we can see on the top of it the different
discovered devices, on the left side the info from the
real device and on the right side the info from the
simulated device.

7. Conclusion and Future Work
We have presented initial work towards simulating
SOA-ready devices in future web-service dominated
landscapes. As future enterprise services will heavily
depend on the data acquired from millions of devices,
simulating such infrastructures in order to test aspects
of it such as communication overheads, performance,
model services capable of dealing with dynamic
changes etc will become critical. From our viewpoint
the simulated framework depicted here can offer some
initial insights on how this could be done.
The work presented although still at an early stage, is
promising and shows how the real world devices can
be coupled with virtual devices simulated by a multi-
agent system and how both of them can create an
ecosystem that can be used transparently by
applications and other services relying at enterprise,
network or device layer. As the basic components are
implemented, our goal is to trial large-scale landscapes
and go more in detail towards better satisfying the
requirement expectations set upon such landscapes.

8. Acknowledgments
The authors would like to thank the European
Commission and the partners of the European IST FP6
project "Service-Oriented Cross-layer infRAstructure
for Distributed smart Embedded
devices" (SOCRADES - www.socrades.eu), for their
support.

Figure 4: A SunSPOT offering with a DPWS
Temperature Service

Figure 5: Real and simulated device info

http://www.socrades.eu/

9. References
[1] E. Fleisch and F. Mattern, editors. “Das Internet

der Dinge: Ubiquitous Computing und RFID in der
Praxis: Visionen, Technologien, Anwendungen,
Handlungsanleitungen”, Springer, 2005.

[2] IPv6 over Low power WPAN (6lowpan), The
Internet Engineering Task Force (IETF),
http://www.ietf.org/html.charters/6lowpan-
charter.html

[3] Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices
(SOCRADES) project, www.socrades.eu

[4] Stamatis Karnouskos, Oliver Baecker, Luciana
Moreira Sa de Souza, Patrik Spiess, “Integration of
SOA-ready Networked Embedded Devices in
Enterprise Systems via a Cross-Layered Web
Service Infrastructure”, 12th IEEE Conference on
Emerging Technologies and Factory Automation,
September 25-28,2007, Patras, Greece

[5] Patrik Spiess , Stamatis Karnouskos, “Maximizing
the Business Value of Networked Embedded
Systems through Process-Level Integration into
Enterprise Software”, The Second International
Conference on Pervasive Computing and
Applications (ICPCA 2007), July 26-27, 2007,
Birmingham, United Kingdom.

[6] Shannon Chan et al., “Devices profile for web
services”, February 2006.
http://schemas.xmlsoap.org/ws/2006/02/devprof/,

[7] Luciana Moreira Sa de Souza, Patrik Spiess,
Moritz Koehler, Dominique Guinard, Stamatis
Karnouskos, and Domnic Savio, “SOCRADES: A
Web Service based Shop Floor Integration
Infrastructure” , Internet of Things 2008
Conference, March 26-28, 2008, Zurich,
Switzerland.

[8] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski,
“Service-Oriented Architectures for Embedded
Systems Using Devices Profile for Web Services”,
21st International Conference on Advanced
Information Networking and Applications
Workshops., 2007.

[9] H. Bohn, A. Bobek, and F. Golatowski, “Sirena -
service infrastructure for real-time embedded
networked devices: A service oriented framework
for different domains”, International Conference
on Mobile Communications and Learning
Technologies, April 2006.

[10] Michael Wooldridge, “An Introduction to
Multiagent Systems”, February 2002, John Wiley
& Sons (England). ISBN 0 47149691X.

[11] Fabio Luigi Bellifemine, Giovanni Caire, Dominic
Greenwood, “Developing Multi-Agent Systems
with JADE”, Wiley Series in Agent Technology,
2007, ISBN-10: 0470057475

http://www.socrades.eu/
http://www.ietf.org/html.charters/6lowpan-charter.html
http://www.ietf.org/html.charters/6lowpan-charter.html

