
Integration of SOA-ready Networked Embedded Devices in Enterprise
Systems via a Cross-Layered Web Service Infrastructure

†Stamatis Karnouskos, ‡Oliver Baecker, †Luciana Moreira Sá
de Souza, †Patrik Spieß

†SAP Research, Vincenz-Priessnitz-Straße 1,
D-76131 Karlsruhe, Germany

{stamatis.karnouskos,luciana.moreira.sa.
de.souza, patrik.spiess}@sap.com

‡SAP Research, Blumenbergplatz 9,
CH-9000 St. Gallen, Switzerland

oliver.baecker@sap.com

Abstract

Today manufacturers require efficient reaction to criti-
cal events occurring at the shop floor. Therefore, device-
level data needs to be integrated into business processes in
a standardized and flexible way to avoid time-consuming
media breaks. Current approaches are characterized by
a late indication of changes in the production environ-
ment and a delayed implementation of changed produc-
tion plans. As a solution, we propose a web service-based
integration of enterprise systems with shop-floor activi-
ties, using SOA-ready networked embedded devices. We
examine the requirements for the integration and derive
an appropriate architecture that tries to close the inte-
gration gap. The timely provision of data, the impact of
device-level information on business processes, as well as
the direct bidirectional communication with device-level
services promotes the vision of adaptive manufacturing
and leads to reduced production costs.

1. Introduction

Enterprises are moving towards service-oriented in-
frastructures where applications and business processes
are modelled on top of cross-organization service land-
scapes. Currently, shop-floor intelligent manufacturing
systems based on distributed embedded devices, incor-
porate system intelligence in a limited amount of mono-
lithic computing resources accompanied by large numbers
of resource constrained devices. The intelligence and be-
haviour are application-specific usually tailored to specific
use cases.

However, as we are moving towards an “Internet of

Things” [10] — where millions of devices are intercon-
nected, provide and consume data about the real world
and make it available to business processes that run in
the digital world — more flexible and adaptive concepts
for the integration of enterprise services with smart em-
bedded devices are necessary. In the last years we have
also witnessed the prevailment of Service oriented archi-
tectures (SOA) that use loosely coupled services to sup-
port more effectively the requirements of business pro-
cesses and users. The work presented here proposes a web
service-based approach where each device offers its func-
tionality as a set of services. At the same time, each device
can discover and invoke new functionality offered by ser-
vices of other devices dynamically and on-demand. The
cooperation of distributed, autonomous and reusable enti-
ties allows for a new dynamic infrastructure that is able to
provide a better insight into shop-floor activities for higher
level business processes and is able to adapt to changing
business needs.

Our motivation stems from the integration gap between
the business level and the production control level. Ex-
isting manufacturing execution systems (MES) and enter-
prise resource planning (ERP) systems are loosely con-
nected, usually via inflexible proprietary hierarchical sys-
tems. From the business service layer, the access to spe-
cific device functionality is often restricted, and may not
be tailored to the specific requirements of the enterprise
service. Therefore, the exchange of data between the shop
floor and the top floor is often done manually or usually
semi-automatically, e.g. by exporting a production plan
into a spreadsheet file that is then fed into the MES.

The described media break implies that data is not ex-
changed in a timely fashion and is error-prone, which
leads to poor information visibility and dissemination. In

1

1-4244-0826-1/07/$20.00 © 2007 IEEE 293

addition, it results in business process delays and a lower
responsiveness to problems because managers learn about
critical issues too late. For example due to the denoted
integration gap, if a machine breaks down in the produc-
tion line, it can take hours if not days until a key account
manager learns about missed due dates and customer or-
ders might get lost. A web service-based direct integra-
tion of the production machine with an alert resolution
dashboard observed by the key account manager would
give enough time to contact the customer in advance and
initiate counter-measures to prevent the loss of revenues.
The direct accessibility of networked embedded devices
via web services also allows for a more efficient interac-
tion in scenarios where a communication flow via middle-
ware layers is not required. Examples are the alteration
of embedded software services during a feature up-selling
business process or remote maintenance activities.

Assuming that networked embedded devices can be
SOA-ready (i.e. offer their functionality via a web-
service), has imminent influence on the way of designing
and integrating future components and services. In the
next sections, we discuss the requirements of a device-to-
business integration infrastructure and focus on an archi-
tecture that can realise the integration of manufacturing
systems and smart embedded devices with enterprise sys-
tems based on web services.

2 Requirements of a Device-to-Business In-
tegration Infrastructure

In order to effectively integrate networked smart em-
bedded devices with enterprise systems in a service-
oriented way, several key requirements need to be ful-
filled.

2.1 Web Service Support
Web Services have emerged as the de facto standard

for enterprise application integration (EAI) [14] and are
the common denominator that needs to be supported by
all components participating in a service-oriented infras-
tructure as the one envisioned in this paper. Coupling web
services with shop floor devices has the potential to in-
crease the efficiency of business processes and allows for
an overview of the network and interaction with its com-
ponents. In this context, to improve the transparency of
the connection between back-end systems and shop floor
machinery, these machines should be able to expose their
functionality as web services.

2.2 Event Driven Architecture (EDA)
Thousands of events are generated on the shop floor

during normal operation. Some of these events can pro-
vide an overview of the current status of the network
while others can indicate unexpected problems. There-
fore, eventing support is a requirement for business ap-
plications to become deeply connected to the shop floor.
Filtering (to select the messages that are of real interest to

the back-end), local processing, and evaluation, are addi-
tional mechanisms that can enhance the performance and
scalability of the eventing support.

2.3 Service Lifecycle Management
Service Lifecycle Management deals with the admin-

istration of services during their entire lifecycle. It man-
ages the deployment of new services, the update of exist-
ing services, the starting and stopping of services, and the
configuration and parameterization of running services. A
sophisticated service lifecycle management has the poten-
tial to increase the availability of enterprise systems as it
extends the possibilities of changing business processes
without considerably influencing the efficiency of the en-
tire system.

2.4 Business Process Modelling
Business architects are counting heavily on business

process modelling tools to envision, design, and evalu-
ate future business processes. In a real-time enterprise,
device-level events can be actively integrated and evalu-
ated during the execution of a business process. There-
fore, devices, their data, and their operations need to be in-
tegrated in business process modelling tools that have the
capability to plan a business process in detail and specify
the interaction between the enterprise level and the device
level.

2.5 Intermittent Connected Assets
Often devices connect only occasionally to the back-

end system or suffer sudden disconnections, e.g. when a
mobile device enters an area that provides back-end con-
nectivity and updates its info in an ad-hoc manner or when
moving between locations with varying quality of wire-
less connectivity. An architecture for the integration of
smart embedded devices and enterprise systems has to en-
sure that the envisioned scenarios and its components also
work while there is no permanent connection or a very
limited one with the back-end system. Therefore, scenar-
ios that require only local business intelligence and local
interaction should be possible as well. A device needs to
be able to find (and possibly cache) the data it requires lo-
cally and in a peer-to-peer way, without necessarily being
connected to the back-end system.

2.6 Business Process Monitoring
Business Process Monitoring deals with the proac-

tive and process-oriented monitoring of a company’s core
business processes. It includes the observation of all tech-
nical and application-related functions that are required
for a smooth and reliable flow of the core business pro-
cesses and comprises detailed procedures for error han-
dling and problem resolution. To detect problem situa-
tions as early as possible in order to solve them before
they become critical for the business, the monitoring of
business processes needs to be accomplished in close co-
operation with the affected devices themselves. It has to

2

294

be assured that monitoring from the business process level
is feasible directly for a specific device and events can be
actively sent to the responsible business process compo-
nent.

2.7 Alerting
Alerting has to be supported especially for mission-

critical devices. In a critical situation, messages have to be
treated with high priority, and might be inefficient to defer
this to a higher level. Furthermore, the business appli-
cation should get only the necessary decision-critical in-
formation and not get overwhelmed with all alerting data
from the shop floor. Therefore, support for the exchange
of emergency data and a common alerting protocol have to
be in place, which will regulate the communication flow
between the different architecture layers.

2.8 Multi-faceted Enterprise Services
The proposed infrastructure must provide support for

integrating back-end services that use online information
of the shop floor. Examples of these services are risk man-
agement and maintenance control.

A sophisticated risk management makes the required
decision-critical information available significantly earlier
and leads to reduced threats. Based on this, strategies can
be changed proactively while minimizing overall costs.
Since the device itself knows how a failure of one of its
components affects it in total, this info must be accessible
so that business processes can take advantage of it.

Maintenance, Repair and Overhaul (MRO) ensures the
availability of a device or restores it to a state in which
it can provide its functionality. Any deviation from the
expected business behaviour (e.g. based on sensor read-
ing), should be reported, ideally by the device itself. An
improvement to maintenance control is to predict when
maintenance will be required. This can be achieved by
performing equipment monitoring with the goal of con-
ducting maintenance “just in time”, that is before the
equipment fails.

2.9 Standardised Communication and Information
Exchange

For an efficient implementation of a plant-to-business
integration, existing protocols for communication and in-
formation exchange should be used or extended. This
mostly refers to the communication of back-end systems
with devices, as well as device-to-device communication.
Such support has implications regarding interoperability
as it will ease the device integration and cooperation in a
highly heterogeneous infrastructure. In that context for
example OASIS [11] standards, the DPWS specifica-
tion [9], OPC-UA [2], or the Business-to-Manufacturing
Markup Language (B2MML) [16], which is an imple-
mentation of the ISA-95 standard, can be applied where
appropriate.

2.10 Access to Device Status
For the management of smart embedded devices, a rich

interface to the device status is necessary and options that
can configure it or even allow code to be downloaded to
the device are required. All devices should provide a stan-
dardized view of their capabilities according to a common
ontology and scenario needs. Furthermore, the devices
need to send events to a number of business layer services
as well as to expert and planning systems. Generally, de-
vices should provide full real-time access to their status to
any authorized entity. In case of gateways that control a
couple of devices, several status reports can be aggregated
to hide complexity and provide a comprehensive view.

3 Architecture

The fundamental goal of the proposed architecture is
to integrate device-level services with enterprise software
systems running on the application level using web ser-
vices technology as depicted in Figure 1. It is shown that
there are at least two different ways to couple networked
embedded devices with enterprise services. One way is a
direct integration of device-level services in business pro-
cesses, while another way exposes device functionality to
the application layer via a middleware layer. Depending
on the underlying use case, one or the other data flow is
chosen leading to a hybrid architecture.

Figure 1. Coupling of Enterprise Services
with Networked Embedded Devices.

In the context of this paper, a service is defined as
a reusable software component that encapsulates device-
specific functionality and makes it available in an interop-
erable and self-descriptive way over a network. It adver-
tises this functionality to other networked embedded de-
vices or further entities and enables them to locate and in-
voke the service. Thereby the invoking party is not aware

3

295

of how the service functionality is implemented. The ser-
vice offers a given functionality to the service user, pro-
vides a well-defined interface that the service can be in-
voked through, runs transparently from the user’s point
of view (encapsulation), and can be composed of several
other services (compound service).

The service-oriented architecture (SOA) approach al-
lows for an increased flexibility and reusability when it
comes to the provisioning of data and functionality com-
ing from smart embedded devices. One key advantage of
using services is that functionality provided by different
smart devices can be composed to allow for more sophis-
ticated application behaviour. The use of services is also
desirable because today’s business software is built more
and more in a service-oriented way based on web services.
Therefore, the SOA approach allows for an easy integra-
tion of smart embedded devices with business applications
leading to a cross-layer composition of services. The in-
tegration architecture depicted in Figure 2 shows compo-
nents that realize a device-to-business integration derived
from the aforementioned requirements.

3.1 Device Layer
Devices of the manufacturing and process automa-

tion shop floor are represented in the device layer. The
smart networked devices expose their functionality di-
rectly as web services using DPWS, via DPWS-enabled
controllers, or by means of legacy system connectors (see
requirement 2.1). In addition, they exchange messages
via a peer-to-peer network. The landscape of devices is
highly heterogeneous in terms of complexity and commu-
nication capabilities.

3.2 Composition Layer
The composition layer contains intermediate systems

that provide compound services by combining the capabil-
ities of smart devices (DPWS devices or devices accessed
through DPWS-enabled gateways). Due to the distribu-
tion of functionality across smart devices, these composite
systems are much more flexible and agile than the mono-
lithic systems they replace. They perform complex con-
trol and management functions a single device could not
offer by combining heterogeneous device-level services.
For the connection of legacy devices that have insufficient
resources to offer web services to the middleware layer,
the composition layer provides dedicated controller com-
ponents.

3.3 Middleware Layer
The middleware layer connects the device layer and

composite layer with the application layer. It contains a
device abstraction sub-layer, which primarily deals with
eventing, service invocation, and device access. Interfac-
ing with the application layer, the middleware contains a
system management sub-layer that provides service life-
cycle management and device administration. In the fol-
lowing sections, the sub-components and their contribu-

tion to the integration of web service enabled devices with
enterprise services is discussed in more detail.

3.3.1 Device Abstraction

To connect all the devices present in the shop floor with
enterprise applications in a transparent way, the middle-
ware has a device abstraction sub-layer. This layer pro-
vides the required components for invoking device-level
services in a synchronous or asynchronous way, propagat-
ing events and connecting to different device protocols.

Synchronous invocations (via the Synchronous Request
Processor component) mean that applications expect an
immediate response from the device, and in case that the
device cannot respond, the invocation fails returning an er-
ror. This is mostly applicable for permanently connected
devices. Asynchronous invocations (via the Asynchronous
Buffer) give support to occasionally connected devices.
An application would submit a request to the middleware
and poll for the response periodically until (or get notified
when) the device reconnects and delivers its response to
the middleware (see requirement 2.5).

To support legacy devices, the abstraction from the
used protocol is achieved by implementing a Legacy Sys-
tem Connector for every legacy platform. A connector is
a component that translates back-end requests (web ser-
vices) into the device-specific protocol. The same is true
for transforming the events coming from the devices into
standardized events that enterprise applications can pro-
cess. Legacy System Connectors are only necessary for
legacy systems, given that DPWS devices already support
web services.

To provide a complete web service support for legacy
systems, the middleware contains a Proxy Pool where a
set of Service Proxies implements the service interfaces
provided by legacy systems. The function of a Service
Proxy is to allow back-end applications to access the func-
tionalities present in legacy systems via web services. It
forwards received requests to an Invoker component using
either synchronous or asynchronous invocations. Finally,
the Invoker forwards the requests to the Connector Dis-
patcher component, which selects the appropriate Legacy
System Connector to perform the invocation.

It is simple to realize the improvements that an adop-
tion of DPWS by all devices would provide. Using
DPWS, there would be no need to have components to
support legacy systems given that all devices are web
service enabled by default (see requirement 2.9). This
means the Proxy Pool as well as Legacy System Connec-
tors would become obsolete.

In the Device Abstraction sub-layer, two components,
which are inspired by the WS-Brokered Notification con-
cept [15], are responsible for handling events propagated
from the shop floor. The Notification Broker manages
subscriptions and propagates events directly to the con-
sumers and the Pull Point component provides the alter-
native for applications that do not support web services to

4

296

Figure 2. Integration Architecture.

retrieve their events periodically from a component (see
requirement 2.2).

3.3.2 System Management

On top of the Device Abstraction sub-layer is the Sys-
tem Management sub-layer. This layer provides additional
services that enable the management of the shop floor.
Service Lifecycle Management is one of the additional
functionalities that this layer brings. By storing a descrip-
tion of services into the Service Repository, a component
called Service Mapper can identify the requirements of
a given service and the available implementations. With
this information, it is possible to identify the devices au-
tomatically that should run a given service or automati-
cally update existing services as soon as a newer version
is available. Removing, stopping, and resuming services
are also functionalities that the Service Lifecycle Manage-
ment component provides (see requirement 2.3).

Another important functionality of this layer is the abil-
ity of identifying the current status of the network, the de-
vices that are available and their capabilities and all the

events, errors and warnings that were triggered by the sys-
tem. These functionalities are provided by several compo-
nents that together offer a broad possibility to analyze the
current situation of the shop floor. The components that
support these functionalities are: Device Manager, Device
Monitor, and Logging & Tracing (see requirement 2.10).

Given the amount of services, an efficient way of
discovering available services is necessary. DPWS of-
fers mechanisms that deal with this challenge like WS-
Discovery. Nevertheless, given that legacy systems might
also be present, additional mechanisms to discover ser-
vices and make the accessible are provided by the Service
Discovery and Integration component.

3.4 Application Layer
The application layer contains both applications that

are traditionally strongly connected to the lower layers,
such as supervision, as well as applications that do not
have until now direct access to those layers, such as busi-
ness applications (ERP level) or operational management
(MES level) like maintenance. The exposure of device
functionalities as services and the use of standard commu-

5

297

nication protocols allow such applications to access any
device on the network seamlessly. Based on device-level
web services, business applications are able to invoke ser-
vices or access device resources directly or through en-
abling gateways.

3.4.1 Enterprise Services

On top of the middleware layer, several Enterprise Ser-
vices are available to give support to enterprise applica-
tions. An example of an Enterprise Service is the Main-
tenance Control service, which contains a history of all
activities performed on a machine for either maintenance
or production. Based on this information and a set of
rules, the service can determine when the next mainte-
nance will take place. Additional techniques can be ap-
plied to improve the control of maintenance work. For
instance, based on sensor readings, a Maintenance Con-
trol service can predict machine breakdowns and trigger
counter-measures (see requirement 2.8).

3.4.2 Business Process Engine

In this sub-layer, business processes are executed and
monitored. In addition, the layer deals with the orches-
tration of utilized services, which can run either in the
back-end or on the shop floor devices. Given that the mid-
dleware together with the DPWS stack provide a trans-
parent integration of devices and back-end systems, the
monitoring and execution of processes using web services
becomes possible.

During the modelling of business processes, milestones
are defined that indicate stages and rules that the system
must achieve to be considered correct. The Business Pro-
cess Monitoring is responsible for analyzing these mile-
stones and generating alerts if an irregular situation occurs
(see requirement 2.6). These alerts can be distributed to
several management applications including the Alert Res-
olution Dashboard.

3.4.3 Management Interfaces

The supervision of the shop floor is realized through man-
agement applications that are placed at the top layer of
the architecture. These applications include for example
the Process Efficiency and Risk Analysis Dashboard, the
Alert Resolution Dashboard, and further Business Process
Modelling tools.

The Process Efficiency and Risk Analysis Dashboard
analyzes the current situation of a process indicating per-
formance issues and providing input regarding risk eval-
uation. The Alert Resolution Dashboard receives events
generated in the lower layers of the system and presents it
to the process supervisor guiding him through the process
of solving the situation. In a machine breakdown situa-
tion, this dashboard gives detailed information about the
machine, guides the user through the process of request-
ing appropriate maintenance and also supports requesting

a review of the ERP to consider the amount of hours the
machine will be unavailable (see requirement 2.7). For
cross-layer interoperability, the usage of standards such
as the Common Alerting Protocol (CAP) [13] and Emer-
gency Data Exchange Language (EDXL) [5] is implied.

Finally, with Business Process Modelling tools, pro-
cess engineers indicate how their processes interact in or-
der to produce the desired output. They also indicate ad-
ditional analysis that must be performed during the pro-
cess to ensure that the output is in accordance with the
specifications. Once the process is defined, it is partially
deployed to the shop floor and partially deployed into the
Business Process Engine (see requirement 2.4).

4 Discussion

Most commercially available solutions that have inte-
gration between an ERP system and the shop floor as-
sume the existence of an MES system. MESs that ex-
plicitly offer extended integration capabilities include the
SIMATIC [3] solution from Siemens, and the Integrated
Architecture from Rockwell [12]. Our goal is to integrate
the production process with the ERP system, but rather
have a distributed approach instead of establishing a cen-
tral MES system. The aggregation of fine-grained device
services should be achieved via service orchestration, cre-
ating composed, higher-level services that offer function-
ality at the high granularity ERP systems require. There-
fore, all research (business and technical) that describes
requirements, economics, and technical aspects of ERP
to MES integration, will also be applicable to the “dis-
tributed MES”, consisting of a set of composed services.

Currently, the widely used industry standard describ-
ing an interface for the coupling of ERP systems and
MES systems is ISA-95 (also IEC/ISO 62264) defined
by the Instrumentation, Systems, and Automation Society
(ISA) [1]. It was elaborated by the SP95 working group,
which has members of major automation manufactures
(like ABB, GE, Rockwell, and Siemens) and major busi-
ness software vendors (like Microsoft and SAP). It sep-
arates business processes from manufacturing processes
and focuses on the interaction patterns between them. It
lays out a common terminology and an object model of
the parties involved in the production process.

The ISA-95 standard offers a high-level view of pro-
duction integration that leaves many degrees of freedom
for the actual implementation. This ambiguity discour-
ages the adoption of the standard and could lead to several
incompatible implementations. The standard B2MML
(Business to Machine Mark-up Language) [16] defined
by the non-profit organization WBF [4] eliminates this
disadvantage by describing XML document formats im-
plementing the ANSI/ISA standard ISA-95. It provides
a direct serialization of the objects and object attributes
described in the standard, which is needed for message
exchange.

Both on the lower tiers of the SOA (where device ser-

6

298

vices will be composed into machine services) and the
middle tiers (where machine services will be composed to
MES-like services) the composition should be supported
and automated as much as possible. Semantic annota-
tion of the services as described in [8] could both reduce
the risk of errors in manual service composition and, if
annotation is detailed enough, could also allow for au-
tomatic composition of the system at initial setup or re-
composition when the system setup is changed (e.g. one
device is exchanged by another device from a different
vendor).

The OPC-UA [2] is based on widespread web stan-
dards, including XML, WSDL, SOAP and some WS-*
specifications and provides a homogeneous and generic
information model and a set of Web Services to repre-
sent and access both structure information and state in-
formation in a wide range of devices. Although we have
not fully investigated its impact on the proposed integra-
tion architecture, it could act as a possible extension of
the existing DPWS stack, i.e. as an alternative to WS-
Management, as both approaches try to provide a generic
protocol to access device resources.

Finally yet importantly, the work on device SOA done
in the EU Project SIRENA [5], showed the feasibility
and benefit of enabling production devices with web ser-
vices [7]. DPWS is a standard that enables the devices
to express their functionality in a web service-oriented
way while taking into account the limited capabilities they
have. Initial efforts [6] have shown the feasibility and
some slight changes [17] would enhance its function-
ality even more. The EU-funded project SOCRADES
(www.socrades.eu) will further investigate the applicabil-
ity of DPWS for a wide range of devices and their inte-
gration in a service- oriented infrastructure that strongly
couples shop-floor and business layer activities.

5 Conclusions and future work

As we move towards the real-time enterprise, the
strong coupling of all layers between shop floor and top-
floor can lead to increased efficiency. In order to achieve
this, the shop-floor devices have to be easily integrated in a
service-oriented way with modern enterprise services. We
have examined the requirements of a device-to-business
integration infrastructure and based on these findings pro-
posed a service-oriented architecture for the coupling of
enterprise services with networked embedded devices.
The proposed architecture tries to overcome shortcom-
ings of existing frameworks, and allows the holistic inte-
gration of legacy and web-service enabled devices, effec-
tively closing the existing integration gap between shop-
floor activities and enterprise systems. The application of
a service-oriented paradigm allows for an increased flexi-
bility and reusability of device-level functionality, and the
utilisation of DPWS simplifies the integration of device-
level data into business processes.

Although parts of the proposed architecture have been

implemented separately, a challenging task will be to actu-
ally implement, evaluate, and refine the proposed integra-
tion architecture as a whole in real-world environments,
i.e. in the domains of manufacturing and process automa-
tion. Non-functional issues such as performance, scala-
bility, communication overhead, and security will need to
be closely monitored and evaluated. We plan also to fo-
cus more on the integration of non-web service enabled
devices in order to enable an easy migration from legacy
infrastructures. The role of OPC-UA and its relation to
DPWS will be also further investigated. Finally, the infor-
mation model of the approach needs to be extended and
standards have to be used wherever applicable.

6 Acknowledgements

The author would like to thank the European Com-
mission and the partners of the European IST FP6
project ”Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices” (SOCRADES;
http://www.socrades.eu), for their support.

References

[1] Instrumentation, systems, and automation society.
http://www.isa.org.

[2] Opc unified architecture (opc-ua) specifications.
http://www.opcfoundation.org.

[3] Simatic it for interoperability.
http://www.automation.siemens.com/mes/simatic-
it/.

[4] World batch forum. http://www.wbf.org.

[5] H. Bohn, A. Bobek, and F. Golatowski. Sirena -
service infrastructure for real-time embedded net-
worked devices: A service oriented framework for
different domains. In International Conference on
Mobile Communications and Learning Technolo-
gies, April 2006.

[6] François Jammes, Antoine Mensch, and Harm Smit.
Service-oriented device communications using the
devices profile for web services. In nternational
Workshop on Middleware for Pervasive and Ad-Hoc
Computing, November 2005.

[7] François Jammes and Harm Smit. Service-oriented
paradigms in industrial automation. Parallel and
Distributed Computing and Networks, pages 716–
723, 2005.

[8] Ivan M. Delamer and Jose L. Martinez Las-
tra. Self-orchestration and choreography: Towards
architecture-agnostic manufacturing systems. In
IEEE 20th International Conference on Advanced
Information Networking and Applications, pages
573–582, 2006.

7

299

[9] Shannon Chan et al. Devices profile for
web servicesdevices profile for web services.
http://schemas.xmlsoap.org/ws/2006/02/devprof/,
February 2006.

[10] E. Fleisch and F. Mattern. Das Internet der Dinge:
Ubiquitous Computing und RFID in der Praxis: Vi-
sionen, Technologien, Anwendungen, Handlungsan-
leitungen. Springer, Berlin, 2005.

[11] Organization for the Advancement of Struc-
tured Information Standards. Oasis standards
and other approved work. http://www.oasis-
open.org/specs/index.php.

[12] ARC Advisory Group. Rockwell automation pro-
cess industry strategies. ARC white paper, October
2006.

[13] Paulo Leitao, Armando W. Colombo, and Fran-
cisco J. Restivo. Adacor: A collaborative production
automation and control architecture. IEEE Intelli-
gent Systems, 20(1):58–66, January 2005.

[14] David S. Linthicum. Next Generation Application
Integration: From Simple Information to Web Ser-
vices. Addison-Wesley Professional, 2003.

[15] OASIS. Web services noti-
fication tc. http://www.oasis-
open.org/committees/wsn/charter.php.

[16] WBF. B2mml v03 xml schemas and documentation.
http://www.wbf.org/associations/2718/files/B2MML-
V03-ProductDefinition.do, August 2005.

[17] Elmar Zeeb, Andreas Bobek, Hendrik Bohn, and
Frank Golatowski. Service-oriented architectures
for embedded systems using devices profile for web
services. In 2nd International IEEE Workshop on
Service Oriented Architectures in Converging Net-
worked Environments, May 2007.

8

300

	Main
	Welcome Messages
	Committees
	Table of Contents
	Industry Day
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Technical Program
	Author Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

