Special Issue on Active Networks and Services, Computer Networks Journal, Elsevier, Volume 36, Issue 1, pp. 87-100, June 2001 (ISSN 1389-1286)

Computer Networks 36 (2001) 87-100

Security implications of implementing active network
infrastructures using agent technology

Stamatis Karnouskos *

German National Research Center for Information Technology, Research Institute for Open Communication Systems (GMD-FOKUS),
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

Abstract

Active networks (AN) are a rapid evolving area of research and in parallel an area of great industry interest.
However, for this technology to make the step out of the labs and penetrate the market, the security problems have to
be tackled effectively. This paper demonstrates why and how agent technology research, can and should be applied to
active networks, in order to fulfill the new security challenges this infrastructure poses. First, we identify the key ele-
ments of AN, analyze the nature of active code, specify the role of agents in active networks and present a multi-
execution environment active network architecture. Then, we target the security threats for active code and execution
environment, and state the basic as well as the extended security requirements. Subsequently, we try to see how we can
apply the security solutions and research done for agents to the context of active networks in order to satisfy their
requirements. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Active networks; Security; Active code; Agent technology

1. Introduction

Over the years, computer systems have evolved
from monolithic and centralized computing de-
vices to client-server environments that allow
complex forms of distributed computing. Active
networks (AN) [45] are an evolution of current
dumb passive network carriers, where the level of
abstraction is the protocol, to a more general
programmable network model where the level of
abstraction is raised to APIs for programming the
new network resources. The idea is to move service
code, which traditionally was placed outside the
transport network, directly in network’s nodes.
Those nodes allow applications to configure them

* Corresponding author.
E-mail address: karnouskos@fokus.gmd.de (S. Karnouskos).

optimally for their tasks via open interfaces (pro-
grammable networks). Furthermore, those nodes
will be able to compute on data they receive before
they pass them to the next node (active networks).
Network-aware software is expected to change the
way we design and deploy applications and ser-
vices. Dynamic Quality of Service, Quality of their
Information and optimal exploitation for task
specific computations will flourish within the AN
community. The challenge such an infrastructure
poses is to find the right balance among flexibility,
performance, robustness, usability and last but not
least security. Sophisticated security challenges
have to be tackled effectively if this technology is
ever to leave the research domain, penetrate the
commercial sector and become widespread. In this
direction, we are convinced that the agent tech-
nology can play a significant role.

1389-1286/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S1389-1286(01)00155-4

88 S. Karnouskos | Computer Networks 36 (2001) 87—100

Software agents [3] is a rapidly multi-devel-
oping area of research since the early 1990s.
Agents can be classified by their characteristics
such as mobility, intelligence, etc. For the active
network case, we are especially interested in mo-
bility but also partially in intelligence. Mobile
agent technology offers a new computing para-
digm in which a program in the form of a soft-
ware agent (intelligent or dumb) can suspend its
execution on a host computer, transport itself to
another agent-enabled host in the network and
resume its execution in that host. The agents can
act on behalf of a user and execute autonomously
according to their internal goals. Today the so-
phistication of mobile systems has increased tre-
mendously over time as well as their associated
security threats. Agent technology shares com-
mon ground with AN, especially, in the domain
of security as we will demonstrate later in this
paper. We are confident that a lot of security
problems existing in the AN domain can be
tackled with the use of research results accom-
plished within the agent domain.

Currently, research efforts to secure active net-
works such as Smart Packets [30], CONVER-
SANT [31], SANE [32], Ensemble [33] and ANTS
[46] depend mainly on the usage of cryptography
to provide security services. We will demonstrate
in this paper that cryptography is only one of
many options that can be used alone or in com-
bination with others in order to provide integrated
security solutions for the emerging infrastructure
of AN and cover its needs.

2. Active network infrastructure
2.1. Key elements in the AN Infrastructure

Generally, we can distinguish three key ele-
ments in the AN infrastructure:

Execution Environment (EE). This is the place
where the active code executes. The EE offers ac-
cess to the core node resources via a policy-con-
trolled scheme. This can be for instance a mobile
agent system that takes care of the execution of
an agent. Other EEs can coexist such as ANTS,
ALIEN etc.

Active Code (AC). This is the code that is ac-
tually executed in the EE of the node. The code
could be written in any general-purpose language
e.g., Java, C, etc, as long as the EE supports it or
even contain references to code already installed in
the active node. By execution in the EE, the code
programs the node according to user preferences.

Active Code Carrier (ACC). The active code is
carried from the source host to the destination
host. There are two ways of actually moving the
code to the target node known as the in-band and
out-band programming methods.

In the in-band programming method the active
code is integrated into every packet of data sent to
the AN node (also known as the capsule approach
[49]). The EE on the node executes the program
and adopts the functionality of the node for the
specific packet or the specific flow. This approach
is the most flexible one but these programs are very
small due to the size limitation of the packets.
That, in addition to the transport overhead, makes
the programmability based on capsules limited,
especially in connection-oriented communication
environments like ATM where re-configuration/
programming of the AN nodes is needed much less
frequently than processing a packet payload.

On the contrary, in the out-band programming
method the active code is injected in the AN
node in a different session from the actual data
packets that it affects. The user could install the
desired code any time on the node. This code
would then execute based on internal (e.g., ac-
cording to node’s EE schedule) or external (e.g.,
user activation command) events and program
the node to process the desired data selectively.
The data is recognized by specific tags or even by
categorization, e.g., all data coming from a spe-
cific node. The agent approach which is discussed
in this paper falls within the out-band program-
ming category.

2.2. The nature of active code

Active code can have different characteristics.
It can be:

Stateless. AC is a dumb program that is simply
transferred from node to node where it is executed
every time from the beginning.

S. Karnouskos | Computer Networks 36 (2001) 87-100 89

Statefull. Here the AC maintains its state while
it traverses the network and can make decisions
based on that state. This gives a dynamic nature to
the AC as it can stop its execution in one node and
continue it in another with respect to environ-
mental conditions.

Stationary. The AC permanently resides within
one node, takes requests via specified interfaces
and then programs the active node.

Mobile. The AC can freely move around from
node to node at its own will and according to its
internal goals.

By combining the statefull and the mobile at-
tributes, our AC obtains the characteristics of a
mobile agent. Mobile agents can move around and
execute tasks autonomously and according to their
goals which can be dynamically changed. Fur-
thermore, mobile agents can also be intelligent,
and that makes them even more interesting for
AN. An intelligent piece of code that moves
around as AC can be considered as the most ad-
vanced form of AC. All other forms derive from
this one by combining some but not all charac-
teristics mentioned within the intelligent and mo-
bile agent research domain [26].

2.3. The role of agents in active networks

It is important to clarify that an agent can be an
AC or not. Agents can slip easily in the role of AC,
but also serve as middleware technology. No
matter which one of the approaches described
below we take, almost the same security require-
ments have to be fulfilled. Agents can be used in
two ways in AN:

As active code carriers. Agents could be the
vehicle that transports the code to be executed in
the active node and modify its behavior. One could
wonder, why on earth do so? The answer lies on
the nature of agents. They have several charac-
teristics such as fault tolerance, intelligence, etc,
which could be utilized in order to achieve an aim.
It is not very difficult to imagine the following
scenario: an agent is dispatched with mission to
carry code to be placed into a list of active nodes
so that a network-wide service can be realized.
Furthermore the agent should set the security
context within which this active code can be

modified/used/accessed in this node and return
back to its owner with a result report. Doing this
operation with the RPC-paradigm would require
network availability as well as node availability.
On the contrary, with agent technology network,
availability is not a requirement anymore since the
agent can execute autonomously, control its envi-
ronment and act in the right time according to its
goals. Furthermore, if data changes while the
agent is in transition (e.g., a node on agent’s list
requests that another node which is not on the list
should also have the specified code), it is easier for
the agent to adapt its behavior without human
intervention. Agents as carriers is a solution for
heterogeneous environments where agents and
code to be executed on active nodes are written in
different languages.

As active code. Here agents are not the quasi-
dump carriers, but they are the actual actors. They
control directly node operation and configuration.
The agent itself is the active code that executes in
the EE and programs the active node.

2.4. A multi-EE active network architecture

The architecture of a multi-EE active node is
presented in Fig. 1. Please note that one of the EEs
is the agent EE in which AC is realized as an agent.
The main components of such an architecture
constitute of:

[Application #1} [Application #2} .oo Application #n

=
AN Node API

Active Network Node

Execution Environments

EE #1 ﬁ ‘ EE #2

EE #3
e.g. ANTS e.g. ALIEN Mobile Agent Platform

[

‘ Programmable Router ‘

Node OS

Open Router Interface

(Hardware Transmission Facilities)

Fig. 1. Multi-EE active node architecture.

90 S. Karnouskos | Computer Networks 36 (2001) 87—100

A programmable router. The router is accessed
via an API for dynamic programming of it re-
sources. The open node interface represents the
abstraction of the router resources ranging from
computational resources (CPU, memory, etc.) to
packet forwarding resources (bandwidth, buffer,
etc).

The NodeOS. This is the operating system
running on each node (router) in an AN. The
NodeOS provides the basic functionality from
which the EEs built the abstractions presented to
the active applications. The architecture of the
NodeOS and its functionality is outlined in detail
by the AN Node Operating System (Node OS)
Working Group [34]. Let us mention that the
NodeOS could also be a non AN specific OS like
Unix or Windows NT, etc.

Execution environments are on top of the No-
deOS, making use of its services. As noted [35] the
functionality of the active network node is divided
among the Node OS, the EEs and the active ap-
plications. The architecture allows multiple EEs of
various providers to co-exist and be present on a
single active node. Each EE (e.g., ANTS [46],
ALIEN [47], Agent EE) exports a programming
interface or virtual machine that can be pro-
grammed or controlled by third party code. The
NodeOS manages the resources of the node. One
of the EEs is the mobile agent EE where agents
execute when they visit the node. The applications
are able to access all the services offered by the
EEs. Usually an application is bounded to one EE
but we can foresee applications that will take ad-
vantage of the various characteristics of more than
one EE and possibly combine their services.

Active code. Modules that execute in the EEs
(agents in the case of agent EE) and via the facil-
ities offered to them program the active node.

3. Threats in an active network infrastructure

Active networking supplies the users with the
ability to download and execute code within a
node. That is, by its nature, a security-critical ac-
tivity. In such an infrastructure, the security im-
plications are far more complex than in current
static environments. In AN, the author of the ac-

tive code, the user who deploys it, the owner of the
node hardware, the owner of the execution plat-
form (or even the execution place) can be different
entities governed by different security policies and
possibly competitive interests. In such a heteroge-
neous environment security becomes an extremely
sensitive issue.

AC is transferred in some way to the node or is
itself mobile, e.g., in the form of a mobile agent.
Therefore, the attacks that AC and also the EE are
susceptible to are more than those in current pas-
sive networks.

In general we can have:

e Misuse of execution environment by the active
code,

e Misuse of active code by other active code,

e Misuse of active code by the execution environ-
ment,

e Misuse of active code and/or execution environ-
ment by the underlying network infrastructure.
Finally, a combination of the above categories

is possible. This kind of attack (the complex and
collaborative ones) is very difficult to detect, not to
mention prevent or effectively tackle. Classical
examples include the co-operation of various hosts
and ACs against another EE or AC.

3.1. Misuse of execution environment by the active
code

Malicious AC while executing in an EE can
exploit security weaknesses in the host. It can
perform attacks such as:

Masquerading. An AC may claim the identity of
a trusted AC and therefore, be granted access to
resources that is not entitled to. Such AC besides
being objected to false security schemes can also
badly damage the reputation of a legitimate AC in
the community.

Denial of service. Malicious ACs may overuse
intentionally all resources and services provided by
the EE and degrade system performance. As a
result, the platform cannot satisfy legitimate re-
quests from other ACs. Furthermore, if e.g., the
security service is blocked, further security break-
outs could be introduced.

Unauthorized access. An AC that manages to
bypass the authentication stage can harm the EE.

S. Karnouskos | Computer Networks 36 (2001) 87-100 91

With various tricks or false language implemen-
tations [36], an AC can bypass authorization and
authentication stages and obtain access to private
data.

Complex attacks. Here, more than one AC co-
operate in order to attack a host. These are the
most difficult attacks as they are strategically
planned and can be event triggered. These collab-
orative kinds of attacks are very difficult to iden-
tify not to mention to deal with.

3.2. Misuse of AC by other AC

These sets of threats are also very critical be-
cause of the variety of victims. An AC can perform
various attacks against another AC including:

Repudiation. An AC can deny participation in a
transaction or a communication, although this has
actually taken place. An EE cannot prevent such
an action but can provide sufficient evidence to
assist with the resolution of such cases.

Masquerading. In the case of an AC to AC
communication, one of the parties may try to
disguise its identity and deceive the other one.
Masquerading harms both the victim AC and the
AC whose identity is being assumed.

Denial of service. An AC can send spamming
messages to another AC or false requests to keep it
busy and degrade the CPU power, disk space or
AC’s response time.

Unauthorized access. An AC not properly au-
thenticated and authorized can directly interfere
with another AC and perform various attacks,
e.g., change AC’s internal state, access/change its
data, trap an AC and modify its configuration
parameters or internal goals, steal info, etc.

3.3. Misuse of active code by the execution
environment

An EE or node has complete control over the
execution of an AC. Therefore, it can perform
attacks such as:

Masquerading. An EE can masquerade as an-
other EE in order to deceive an AC and obtain its
sensitive information. If the AC cannot reliably
verify the EE and it trusts the false environment it
is given, it will surely be an easy target.

Denial of service. A malicious EE may ignore
AC requests or introduce unacceptable delays to
services. Deleting an AC or suspending it for en-
ough time so that the operations the AC wanted to
perform are not valid any more or have no
meaning is an example.

Eavesdropping. The EE can monitor external/
internal communications of the AC including ev-
ery instruction executed by the AC. Therefore, it
has access to all unencrypted or public data the
AC carries. So, it can for instance, invade its pri-
vacy by fully accessing AC’s memory space and
acquiring info like electronic money, secret keys,
etc.

Data and state manipulation. A malicious EE
can manipulate data and/or state of the AC and
therefore, interfere with AC’s normal execution or
even worse control and guide AC’s execution
based on falsely given perspective of environment.
Furthermore, the EE can interfere with AC’s
communications and alter them.

Cloning. Cloning an AC and then using the
clone to analyze the original AC and its objectives
is another type of attack.

We mentioned above the main threats that exist
in an AN infrastructure. Of course, a combination
of them makes it even more difficult to prevent or
deal successfully with it. All above mentioned se-
curity breakouts are performed when an AC is
interacting with an EE. The AC relies on the EE to
transport its code safely and securely to the desired
host or execute it correctly, and that places an
amount of trust to the EE anyway.

3.4. Misuse of AC andlor EE by the underlying
network infrastructure (external misuse)

Threats exist also while the AC traverses the
network from host to host. One external attacker
could perform all kind of attacks such as masqu-
erade, denial of service, unauthorized access, copy
and replay, alteration, etc. A not so superficial
scenario is the following: EEs are run by a user,
e.g., in a Unix host. By misconfiguration, the user
that runs the EE allows other users to access and
modify the files that are stored on disk, e.g., the
policy files. Then, another user (local or even re-
mote via compromised WWW scripts) could easily

92 S. Karnouskos | Computer Networks 36 (2001) 87—100

change the policy file and allow his AC to execute
with full access rights. The difficulty with these
kinds of attacks is that they cannot be dealt with at
all, as they use resources not controlled directly by
the specific product (in this case the EE). A
product that runs in a Unix environment is vul-
nerable to all kind of attacks via the security holes
of the Unix system. Such kinds of attacks cannot
be predicted by the designer of the EE or the AC
and are also out of the scope of this paper.

4. Security requirements of the active network
infrastructure

AN aim at allowing third party entities such as
users or applications to insert code to the network
and customize its behavior for their specific needs.
Opening up the networks is a straightforward ap-
proach to the evolution of current static nets.
However, there is a drawback and that is called
security. Security problems have to be dealt with
successfully if the AN are ever to leave the research
area and be successfully applied to the real world.

Unfortunately, security is not a simple testable
property like a Boolean variable’s true or false
value. There are variable levels of security as it also
obeys the golden rule “one size does not fit all”.
Security has many parameters to be considered
and each one of them has the power to jeopardize
the whole system if it is not correctly handled.
Therefore, a variety of security requirements has
to be addressed.

4.1. General security requirements of active net-
works

The AN infrastructures come with a double
status; that of a legacy networks (e.g., data trans-
portation) and that of a highly programmable
network model adjustable on the fly to application-
specific requirements. Thus, the spectrum of threats
for such a new network model is extended. It in-
cludes not only the threat models of the legacy node
and network systems, but also those of general
purpose computing engines (e.g., safeness). We try
here to recognize most of these problems in both.
The basic requirements for a secure network are:

Privacylconfidentiality. Private data of the ac-
tive code should remain private. Information is
only disclosed to users authorized to access it. No
third party should be able to acquire info, by
monitoring or other kind of sniffing/hacking
techniques, about this data without permission
from the active code and via purpose-specific in-
terfaces. This covers the cases when the code exe-
cutes in an AN node and when it is transferred
from node to node. Both communication and ex-
ecution environment should satisfy these needs.

Integrity. The active code as well its transport
within the network should be protected from un-
authorized or accidental modifications. Informa-
tion (data and code) should be modified only by
users who have the right to do so and only in
authorized ways. If such a goal is not feasible in all
situations it should at least be possible to detect
tampering after it has occurred and before the AC
can cause any harm by executing maliciously.

Accountability and non-repudiation. Users are
accountable for their security relevant actions. A
particular case of accountability is non-repudia-
tion where responsibility for an action cannot be
de-coupled from the action itself, e.g., be denied or
be modified. Every interaction with the system and
its entities should be uniquely identified, authen-
ticated and audited.

Availability. The use of the AN node and of
its services should not be maliciously denied to
authorized users. Furthermore, resource manage-
ment, controlled concurrency, deadlock manage-
ment, multi-access, detection and recovery
from faulty states or endless loops should be
tackled.

Authentication. In a heterogeneous networking
environment such as that of the AN, we have to
distinguish and securely authenticate the entities
that want to inject code into our AN nodes. Suc-
cessful authentication is the first basic step that we
can use to make critical decisions. Authentication
guarantees that the system entities are the ones
they claim to be.

Access control and authorization. We have to
specify what are the access rights of the code in our
system. That means, we have to explicitly state
what the code can do or what the code cannot do.
Via authorization, we control every action that the

S. Karnouskos | Computer Networks 36 (2001) 87-100 93

active code tries to execute and based on the policy
we allow or deny it. The authorization mechanism
relies on successful authentication as the basis to
perform its goal.

Secure communication. Intra- and inter-EE and
AC communication has to be secured. This covers
both the transportation of AC from EE to EE as
well as the exchange of messages in order to ac-
complish its goals.

Quality of service. This is not straightforward
because it does not apply in general and is partially
fulfilled by the “availability” requirement men-
tioned before. However, we consider it significant.
Some applications require a certain amount of
bandwidth or a certain amount of memory in or-
der to function properly. Therefore, they have
some minimal requirements from the underlying
infrastructure, which should be met in order to
function as designed. By compromising those
minimal requirements, the application might be-
have in an unpredictable way and this will lead to
further security violations. Guaranteeing some
notion of QoS would limit the number and nature
of many security violations and would add flexi-
bility to easier handle the remaining ones.

4.2. Active network extended security requirements

AN provide new challenges in the security ex-
perts. Their extended security requirements are
presented below:

Trusted identification of active node neighbors. It
is necessary to be able to securely identify dy-
namically the neighbor nodes. This will help to not
only prevent spoofing attacks but also provide
proof and accountability in cases of malicious ac-
tions. This calls for digital certificates, which the
nodes can present in order to authenticate them-
selves.

Verification of the EE. The AC should have the
ability to verify the environment where it executes.
EEs should also be able to perform such a verifi-
cation in case we want to set-up a virtual private
network of EEs [37]. The verification process could
take place before the AC is installed in the node
(using trusted services in another node) or even
during runtime. The AC may contain private data
or may even be environment sensitive and release

info based on its internal list of goals. Therefore,
the verification of the EE is necessary for building
secure infrastructures.

Secure transitionldistribution of code from node
to node. We have to make sure that the active code
is transmitted securely from one node to the other.
Also facts like integrity, alterations, etc. have to be
taken in account. Today industry’s de facto stan-
dard protocols like SSL [41] or TLS [42] can be
used for this kind of operations.

Policy-based active code installation/de-installa-
tion. After the arrival of the active code carrier in
the node, it should be checked whether it has ac-
cess to install the AC to the node. The active code
could be run immediately or installed in a local
database for future usage. It should be guaranteed
that only trusted users install or remove software
on the node.

Policy-based active code invocation. Once the
AC is installed in the node database, we need a
policy scheme to say who can access this piece of
code and under which policy conditions. Pre-
installed pieces of code in the node could also be
seen as extended libraries or services. Other ACs
may require results from these components in or-
der to achieve the goals. In that case, we have to
specify which code has the rights to execute pre-
installed node components and make use of their
feedback. The policy could be set by the node or
EE administrator, or even by the user who origi-
nally installed the code there. By being able to
invoke other components we have more light-
weight active code (since parts of services can be
found dynamically at runtime and not be imple-
mented in one big program) and we promote se-
curity (the pre-installed code could be set there by
the node administrator who has tested it thor-
oughly).

Active code revocation. We should be able to
maintain locally and network wide a list with re-
voked ACs. If a piece of AC behaves maliciously
then the node administrator would forbid it to ex-
ecute although its credentials (the user that signed
it) may be valid. This could be done for various
other reasons, e.g., we forbid execution of ACs
coming from competing companies. These black
lists could be pulled from/pushed in a central
point within the network for network-wide usage.

94 S. Karnouskos | Computer Networks 36 (2001) 87—100

Policy-based access to the node’s resources. The
managed resources in an AN node include: pro-
cessor cycles, OS resources, memory, disk storage,
input and output bandwidth, cryptographic hard-
ware, other services and APIs which could be used
via a dynamic policy based scheme. By controlling
resource usage, we might be able to tackle partially
problems like denial of service attacks.

Runtime access control for active code execution.
When an AC executes we have to authorize every
call it makes to system resources and services. That
gives us the ability to provide flexible policies and
different levels of access based on the author or the
user of the code. Anonymous code will run in a
sandbox with limited privileges, contrary to veri-
fied code, which can have special access to re-
sources. Furthermore, the whole procedure should
be dynamic in order to provide better response of
the network to environmental conditions.

Prevent unauthorized interactions between EEs.
Multiple EEs of the same or different type can
coexist within the same node. We should make
sure that these EEs do not affect each other and
that the code executed in each of them does not
result in unauthorized interactions with the code
executed in another EE. This is the sandbox idea
but this time between EEs. Each EE should have
its own resources and manage them according to
its needs. Preventing unauthorized interactions
between various ACs that execute within an EE is
EE’s responsibility.

Network-wide management of security. There
should be a way to enforce a policy or apply on the
fly policy changes on the whole network auto-
matically and with minimal human interference.
This calls for mechanisms that support a distrib-
uted way of propagating policy or even support
for a centralized policy. We have here two ex-
tremes. In the distributed scheme, each node has
its own policy while in the centralized scheme each
node pulls the policy from a central server. Of
course there are other possible schemes that take
advantage of both ways, e.g., co-existence of pol-
icies that could be pulled from or pushed to a third
trusted node (not the central server). In that
scheme, one could have policy references from
node to node (a WWW connection style of poli-
cies). This eases the segmentation of the network

to policy domains and simplifies the creation of
virtual private networks with common policy
schemes. In any case, this should be transparent to
the network administrator.

Secure auditing. We should audit events occur-
ring in the base of active node services as well as
the events occurring because of actions taken by
the AC. Decomposing auditing activity in this
way, allows the active node base code to be simpler
as it does not have to implement complex handling
of audit messages. Audit logs should be securely
stored possibly in a distributed scheme [38] (better
survivability to attacks) and access to them should
be policy based. Apart from the node audit, the
active code may perform its own auditing and
possibly report it via an interface to the node’s
audit facilities.

Safe code execution. This is a difficult goal to
achieve. We have to make sure that the code that
executes in a node executes correctly. There could
be code that comes from trusted users, but that
does not execute safely and compromises inten-
tionally or unintentionally node security. Mecha-
nisms that guarantee safe AC execution have to be
used.

Dynamic policy schemes. It is desirable to have a
dynamic way of managing access to the node and
the network resources. The access policy should
not be only a static Boolean result (access denied
or accepted) but should be able to vary, in time or
in a network-specific way. For instance, use of
bandwidth resources should be more expensive (or
require a higher privilege) to invoke during heavy
load of the node. The economy based approach in
which the AC has to pay for the resources it
consumes might be just the right approach for the
AN community.

Persistence. This service should exist within the
node. During node shutdown the node should
suspend all ACs and then, after rebooting, reacti-
vate them and continue its normal operation.
Otherwise, due to an accidental node reboot the
AC could be lost forever. Persistence service pro-
vides a more reliable and fault tolerant active
network infrastructure.

Predefined node manipulation. Many network
operators are very much concerned with the idea
of executing code within a node, mainly because of

S. Karnouskos | Computer Networks 36 (2001) 87-100 95

the obvious or hidden drawbacks such an action
carries. Thus, there is a need that specific interfaces
are provided to the users via which they can in-
teract with the node in predefined ways. The net-
work operator itself installs the necessary code and
services in the node and allows the user to call this
code with predefined (and well tested) parameters.
Although again we have code executing, we can
predict the result of this execution since the node’s
status will change to one of the predefined ones. In
order to make this idea more clear we can think of
the following scenario: a user wants to install a
compression filter for video transmission. Instead
of providing his own implementation, the user
calls the code already installed by the administra-
tor with parameters that satisfy his goal, e.g.,
VideoCompression (algorithm) (final_format)
(time).

Now the node administrator knows that the
user has programmed the node in a specific and
already known way. This can be seen as a hybrid
approach since active code is executed (active
network) but actually the node is manipulated via
predefined interfaces (programmable network).

Hierarchically structured security services. Node
security services should be designed and imple-
mented in a hierarchical way so that they serve as
basis for the development of more sophisticated
services provided either by the node or by the
applications. Such services include cryptographic
services, resource access control, secure multi-
plexing services, etc., all in their simple form.
Based on these services, an AN developer could
use and combine them in a Lego-like way in order
to offer new, optimized or customized APIs and
services.

Support for anonymous principals. The existence
of security should not be a drawback in the sup-
port of anonymity. We cannot expect everyone to
sign the code he wants to execute in an AN node as
the public key infrastructure (PKI) has not yet
expanded as expected. Of course, since via policy
we set access rights and this policy is mostly
identity-based, an anonymous identity will have
much less access rights than a normal user.
Anonymous code will generally be considered as
non-trusted code and be run within a sandbox
with minimal access rights. Therefore, we position

ourselves positively to the anonymous support and
to selective control of its capabilities via policy.

Target specific code distribution. The code is
encrypted and will be used only by the intended
node or even better by the intended EE. A mech-
anism should exist that will allow the active code
to select the EEs or nodes it executes in. If the AC
falls into the hands of a non-intended party then,
the code should be useless and not reveal private
info.

5. Applying agent security to AN

Having presented the threat model, we will try
here to see how we can deal with these problems.
We will now present solutions that can be used in
order to tackle the AC to EE, EE to AC and AC to
AC attacks. Specifically, we will demonstrate ex-
isting methods of protecting (a) the EE and (b) the
AC from the majority of all possible attacks. We
will also try shortly to comment on these methods
and their pros and cons.

5.1. Protecting the execution environment

By applying the agent technology to AN we
now have an EE which is a place or an agency as
defined in the MASIF [22] standard. The basic
point is that ACs should not interfere with each
other or with the EE. Therefore, both should be
isolated or communicate only via well-known and
defined interfaces. For this reason, the standard
solution is a security manager. Via a security
manager implementation, a number of conven-
tional techniques can be realized. Such techniques
include cryptographic methods to encrypt/decrypt
info or to authenticate EE and AC, audit mecha-
nisms to log security-relevant events and intelligent
filters that can analyze that info and take deci-
sions, mechanisms to control access to system re-
sources and mechanisms that isolate processes
from one another. Since AC can be a stationary or
mobile agent, we can now apply new techniques
that have appeared in last years.

Signed code. AC 1is signed at least with one
digital signature. The authority that signs the code
can be the author of the code, the user who

96 S. Karnouskos | Computer Networks 36 (2001) 87—100

deployed it or even node administrators. With a
digital signature, we can then verify that the code
is from the person that it claims (authenticity) and
that it has not been tampered with (integrity). A
security manager uses, after successful authenti-
cation, the authority of the AC in order to make
authorization decisions before runtime or, most
usually dynamically at runtime. Access rights are
granted usually based on per-identity basis or per
group/role basis [28] (in that case the identity is
member of that group). The security manager may
require that more than one entities have signed the
AC in order to grant access to resources. Of
course, digital signatures require the existence of a
PKI, since certificates containing the identity of an
entity and its public key have to be issued, dis-
tributed, verified and revoked.

It is important to state that a signed AC only
guarantees that it comes from the authority it
claims, but this method cannot guarantee that the
AC will execute without fault or errors. Unfortu-
nately, for many users the signed code has gone
beyond the stage of authenticity and is a form of
trust in the software itself, which is rather dan-
gerous.

Furthermore, only the static parts of the AC
can be signed. The code can be assumed to be
static, however, state and variables are dynamic
and change during execution or per hop of AC.

State appraisal. If the AC is an agent, then, it
carries its state also while traversing from node to
node. The state appraisal [4] is a mechanism that
allows the AC to decide what privileges it will need
at a particular EE. The approach allows automatic
detection of those manipulations that put an AC
into unacceptable state. It relies on the fact that
the state appraisal functions belong to the immu-
table part of an AC, whose integrity is protected.
The EE uses these functions to verify the correct
state of the incoming AC and to grant the neces-
sary privileges.

Safe code interpretation. The idea here is, that
dangerous commands can be made safe or denied
for visiting AC. The EE interprets the AC and in
this way, it has fine-grained control and can ex-
amine each instruction or statement and decide
whether to execute it or not. Note that safety of-
fered by this approach depends on the security

policy implemented by the interpreter. JAVA is a
type-safe language by design. However, various
implementations of it have failed to enforce it
properly [21]. Other safe interpreter systems in-
clude SafeTcl [18], AgentTcl [17], OCaml [19],
PLAN [20] and SafetyNet [48]. The drawback of
this approach is the performance overhead when
contrasted with compiled machine code.

Fault isolation. This technique, also known as
sandboxing [15], isolates the memory domains
where the program executes. Access is allowed
only to the specific memory addresses and to data
and code segments within their distinct fault do-
main. In that way, even programs in non-trusted
languages such as C can be executed safely. The
earlier versions of JAVA followed this approach.
It provides AC safety with higher performance
than the interpretation technique discussed previ-
ously.

Proof carrying code (PCC). The PCC [27] is a
very promising approach that obliges the AC au-
thor to prove that the program possesses safety
properties stipulated by the code consumer. In-
struction overhead of sandboxing and policy
checking can now be avoided. However, the plat-
form independence is sacrificed in order to gain
performance, but the benefits seem to outweigh
this disadvantage.

Path histories. This approach [16] uses an au-
thenticatable log of the previously visited EE in
order to help the newly visited EE in decisions
such as, whether to execute the AC and what re-
source constraints to apply. Once more, this
technique can detect tampering but the final deci-
sions rely on the EE and whether it trusts the other
EEs already visited by the AC.

Resource management. We want to protect the
resources of the EE from unauthorized usage or
even set some quality of service constraints. There
are methods [29] that provide such selective and
policy-based usage of resources. Another popular
approach is the economy-oriented one where the
AC has some electronic cash and it pays for the
resources it uses. This approach guarantees that at
some point the AC will stop executing (due to lack
of cash) or use the resources wisely (since it has to
pay per use). Other approaches [1,2] make direct
modifications to the JAVA virtual machine (JVM)

S. Karnouskos | Computer Networks 36 (2001) 87-100 97

in order to add customized resource management.
In this way, we can avoid or limit denial of service
attacks.

5.2. Protecting the active code

Protecting the AC in its agent form is a difficult
task to achieve. Here, we cannot apply the tradi-
tional security mechanisms because it is simply not
normal that the execution environment attacks the
application (AC is the application within the AN
domain). Within the agent research domain this
kind of threat is more or less tackled and the re-
sults can be used also in the AN area. With respect
to the autonomy and free roaming of the AC we
have the following general purpose techniques:

Partial result encapsulation. Here, the results of
the actions of the AC are encapsulated. By en-
capsulating the results, we cannot prevent the EE
from misbehaving but at least we are able to detect
tampering afterwards and take the appropriate
actions. In order to minimize the amount of data
to be encrypted sliding encryption [5] can be used.
Another method is to use partial result authenti-
cation codes (PRAC [6]). In addition, the EE could
be asked to encapsulate [7] the results while AC
traverses the node. Furthermore, a platform-ori-
ented technique based on improved PRAC has
been developed [8].

Shared secrets and cooperation. Here, the idea is
that the AC’s itinerary is recorded and tracked by
another cooperating AC and vice-versa [9] in order
to support each other. An AC does not possess all
the elements needed to fulfill the task alone. By
dividing a task between two ACs there is better
chance to detect malicious behavior of EE. One of
the ACs has to execute in a trusted EE and se-
curely communicate with the other one. The
scheme can be easily generalized to more than two
cooperating ACs. In another approach [10], in
order to perform a task we use multiple replicas of
that AC. Although many replicas might be de-
stroyed by malicious EEs, enough replicas will
remain to bring the desired task to its end. This
technique ensures that at least one AC will reach
its destination and possibly fulfill its goals. This
approach shares similarities with the path histories
method mentioned before, but extended with fault

tolerant capabilities. Furthermore, it applies only
to scenarios where AC can be duplicated without
problems. Here, survivability of AC is the main
aim (suitable military applications), even with the
obvious drawbacks of resource over-consumption
and task repetitiveness.

Execution tracing. The EE has a non-repudiat-
able log where operations of the AC are logged
and signed by the EE. With this technique [11] we
are able to detect unauthorized modifications of
code and state. The traces are used in order to
identify the malicious EE if suspicious results oc-
cur. This method, although designed for the AC,
provides also some sort of protection to the EE if
traces of the involved EEs can be obtained and
analyzed.

Environmental key generation — clueless AC.
This technique [12] concentrates in designing AC
in such a way that upon detecting an environ-
mental variable, a key is generated and is used to
unlock some cryptographically protected execut-
able code. A third party that reads the AC’s code
cannot uncover the triggering mechanism. One
problem with this approach is that you can actu-
ally modify the EE (if you have access to the
source code) and instead of executing the code
after removing protection, you just print it or save
it in a file. As said before, this assumes access to
the source of the EE which is not the general case
for commercial programs. Furthermore, this ap-
proach does not provide privacy nor guarantees
the integrity of the code during execution, but is
well suited for event-triggered actions based on
environmental sensing.

Computing with encrypted functions/data. Here
[13] the idea is that AC passes to the EE an enci-
phered function to execute. The EE cannot deci-
pher the original function that AC wants to
compute. This approach differentiates between the
function and the program that implements that
function. The goal is to encrypt functions in such a
way that their transformation can again be im-
plemented as programs. Similar is the approach of
computing with encrypted data.

Obfuscated code. The idea behind this approach
[14] relies on obfuscation which is a mechanism
that transforms an application into one that is
functionally identical but much more difficult to

98 S. Karnouskos | Computer Networks 36 (2001) 87—100

understand and therefore to attack. After an AC
protection interval, the AC sensitive info becomes
invalid and is useless. The drawbacks of the ap-
proach is that (a) it can be used only for temporary
data that can be invalidated, (b) it cannot use any
external libraries (this would contradict obfusca-
tion) and (¢) a meaningful optimal interval has to
be found (this is task specific).

AC self encryption. This approach is based on
the idea of creating secure channels between EEs
via traditional cryptograhic means. An AC can
encrypt itself or critical parts of itself using des-
tination EE’s public key. Then the ciphertext is
put in a clearcode wrapper that transports the
AC to the destination EE. On arrival there, the
AC decrypts and executes. This approach guar-
antees the secure transition to selected EEs (as
only there the code can be decrypted) but re-
quires that each EE (or node) has a pair of
public/private keys.

Privacy sought via this approach can be ac-
complished also without encryption although all
code bits are sent in clearform over normal net-
works. The idea in this approach [43] is that by
“chaffing and winnowing” data streams the at-
tacker cannot find out which bits belong to which
stream and only the intended receiver is able to
filter out the meaningful bits.

Dedicated hardwarelsmartcards. With the use of
tamper-resistant and verifiable hardware [25] it is
possible to protect the AC. For instance, a tamper
resistant smartcard with a cryptographic co-pro-
cessor can be attached to the node. Smartcards
provide a trusted EE where security functions can
be outsourced. AC can send security sensitive code
fragments to the smartcard and execute there. It is
obvious that smartcard manufacturers should be
an independent entity in the whole process. Usage
of smartcards is not panacea as they face their own
security problems [23].

Anonymousluntraceable AC support. The AC
can itself implement encryption functions and
services. AC can implement Chaum’s MIX [24]
nodes that hide the correlation between incoming
and outgoing AC. In this way, it is possible to
deploy anonymous ACs that traverse the network
and report back to their origin, without revealing
their identity to the recipient. Anonymous ACs, of

course, will probably be given minimal (if any)
access rights from EE administrators.

6. Summary and conclusions

We have presented here an approach that tries
to combine two domains, that of AN and that of
agent technology. Both domains share common
ground, especially, when it comes to the security
issues. The AC that executes within the AN nodes
can be seen in its most advanced form as an in-
telligent mobile agent. Therefore, we can apply
most of the security techniques developed from the
agent community and tackle successfully similar
issues in ANs. As agents penetrate the AN infra-
structure with a double status (as active code and
as active code carriers) it is evident how comple-
mentary both approaches are.

We have analyzed the nature of AC and pre-
sented the key elements within a multi-EE AN
node architecture. Then we tried to focus on the
security threats that exist in such a heterogeneous
environment in AC to AC, AC to EE and EE to
AC relations. In all cases, most of common secu-
rity attacks can be accomplished. Subsequently, we
set the most obvious requirements of AN and tried
to explore the agent-based solutions that effec-
tively deal with the threats identified above.

We are convinced that by applying the agent
technology to ANs many more advantages [39] can
be obtained than just those presented here, rele-
vant to the security sector. It is very likely that
agent technology will play an important role in the
development and expansion of active networks.
The basic characteristics of agents such as mobil-
ity, autonomy and intelligence can push networks
to become “open”, active and more powerful.
Because agent technology advances continuously
and has made significant contributions in the area
of code mobility and security, it would not be wise
to ignore this fact and try to reinvent the wheel
every time in every new approach we take. Sera-
phim [44] and BANG [40] partially integrate the
agent approaches proposed here and aim at
proving the advantages agents can bring to ANs.
By integrating solutions already tested in other
domains, we can build on top of these and provide

S. Karnouskos | Computer Networks 36 (2001) 87-100 99

more sophisticated approaches, that tackle the
ever increasing complex security attacks.

References

[1] P. Bernadat, L. Feeney, D. Lambright, F. Travostino, Java
sandboxes meet service guarantees: secure partitioning of
CPU and memory, Technical Report 980, The Open Group
Research Institute 1998, http://www.opengroup.org/.

[2] D. Milojic, G. Agha, P. Bernadat, D. Chauhan, S. Guday,
N. Jamali, D. Lambright, Case studies in security and
resource management for mobile objects, The Open Group
Research Institute, University of Illinois at Urbana-
Champaign.

[3] Cetus links on mobile agents: http://www.cetus-links.org/
oo_mobile_agents.html.

[4] W. Farmer, J. Guttman, V. Swarup, Security for mobile
agents: authentication and state appraisal, in: Proceedings
of the Fourth European Symposium on Research in
Computer Security (ESORICS °96), September 1996,
pp. 118-130.

[5] A. Young, M.Yung, Sliding encryption: a cryptographic
tool for mobile agents, in: Proceedings of the Fourth
International Workshop on Fast Software Encryption
(FSE ’97), January 1997.

[6] B.S. Yee, A sanctuary for mobile agents, Technical Report
CS97-537, University of California in San Diego, April
1997.

[7] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G.
Tsudik, Itinerant agents for mobile computing, IEEE
Personal Communications 2 (5) (1995) 34-49.

[8] G. Karjoth, N. Asokan, C. Giilcli, Protecting the compu-
tation results of free-roaming agents, in: Proceedings of the
Second International Workshop on Mobile Agents, Stutt-
gart, Germany, September 1998.

[9] V. Roth, Secure recording of itineraries through cooper-
ating agents, in: Proceedings of the ECOOP Workshop on
Distributed Object Security and Fouth Workshop on
Mobile Object Systems: Secure Internet Mobile Computa-
tions, INRIA, France, 1998, pp. 147-154.

[10] F.B. Schneider, Towards fault-tolerant and secure agentry,
in: Proceedings of the 11th International Workshop on
Distributed Algorithms, Saarbriicken, Germany, Septem-
ber 1997.

[11] G. Vigna, Protecting mobile agents through tracing, in:
Proceedings of the Third ECOOP Workshop on Mobile
Object Systems, Jyvalskyld, Finland, June 1997.

[12] J. Riordan, B. Schneier, Environmental key generation
towards clueless agents, in: G. Vinga (Ed.), Mobile Agents
and Security, Lecture Notes in Computer Science, vol.
1419, Springer, Berlin, 1998.

[13] T. Sander, C. Tschudin, Protecting mobile agents against
malicious hosts, in: G. Vinga (Ed.), Mobile Agents and
Security, Lecture Notes in Computer Science, vol. 1419,
Springer, Berlin, 1998.

[14] F. Hohl, Time limited blackbox security: protecting mobile
agents from malicious hosts, in: G. Vinga (Ed.), Mobile
Agents and Security, Lecture Notes in Computer Science,
vol. 1419, Springer, Berlin, 1998, pp. 92-113.

[15] R. Wahbe, S. Lucco, T. Anderson, Efficient software-
based fault isolation, in: Proceedings of the 14th ACM
Symposium on Operating Systems Principles, ACM
SIGOPS Operating Systems Review, December 1993,
pp- 203-216.

[16] J.J. Ordille, When agents roam, who can you trust? in:
Proceedings of the First Conference on Emerging Tech-
nologies and Applications in Communications, Portland,
OR, May 1996.

[17] R.S. Gray, Agent Tcl: a flexible and secure mobile agent
system, in: Proceedings of the 1996 Tcl/Tk Workshop, July
1996, pp. 9-23.

[18] J.K. Ousterhout, J.Y. Levy, B.B. Welch, The safe-Tcl
security model, Sun Microsystems, March 1997.

[19] The Caml language, http://pauillac.inria.fr/caml/index-
eng.html.

[20] PLAN a Programming Language for Active Networks,
http://www.cis.upenn.edu/~switchware/PLAN.

[21] V. Saraswat, Java is not type-safe, ATT Research, http:/
www.research.att.com/~vj/bug.html.

[22] MASIF — Mobile Agent System Interoperability Facility,
http://www.omg.org/docs/orbos/98-03-09.pdf.

[23] B. Schneier, A. Shostack, Breaking up is hard to do:
modeling security threats for smart cards, in: Proceedings
of the First USENIX Symposium on Smart Cards,
USENIX Press, http://www.counterpane.com/smart-card-
threats.pdf.

[24] D. Kesdogan, J. Egner, R. Biischkes, Stop and go MIXes
providing probabilistic anonymity in an open systems, in:
Proceedings of the Second Workshop on Information
Hiding (IHW °98).

[25] U.G. Wilhelm, A technical approach to privacy based on
mobile agents protected by tamper-resistant hardware,
Ph.D. Thesis No. 1961, Ecole Polytechnique Féderale de
Lausanne, 1999.

[26] H.S. Nwana, D.T. Ndumu, A brief introduction to
software agent technology, in: N. Jennings, M. Wooldridge
(Eds.), Agent Technology Foundations: Applications and
Markets, Springer, Berlin, 1998.

[27] G. Necula, P. Lee, Safe kernel extensions without run-time
checking, in: The Proceedings of the Second Symposium
on Operating System Design and Implementation (OSDI
’96), Seattle, WA, October 1996, pp. 229-243.

[28] E.A. Kendall, Role modeling for agent systems analysis,
design, and implementation, in: Proceedings of the First
International Symposium on Agent Systems and Applica-
tions and the Third International Symposium on Mobile
Agents, October 1999, pp. 204-218.

[29] A. Tripathi, N. Karnik, Protected resource access for
mobile agent-based distributed computing, ICPP Work-
shop 1998.

[30] BBN Smart Packets,
smtpkts/smtpkts-index.html.

http://www.net-tech.bbn.com/

[31] CONVERSANT Project, Open Group, http://www.open-
group.org/.

[32] D.S. Alexander, W.A. Arbaugh, A.D. Keromytis, J.M.
Smith, Secure active network environment architecture:
realization in switchware, IEEE Network Magazine (1998)
(special issue on Active and Programmable Networks).

[33] M. Hayden,The ENSEMBLE system, Ph.D. Thesis, Cor-
nell University, January 1998.

[34] L. Peterson (Ed.), Node OS Interface Specification, AN
Node OS Working Group, January 24, 2000.

[35] K.L. Calvert (Ed.), Architectural Framework for Active
Networks, Draft version 1.0, July 27, 1999.

[36] Java security flows, http://kimera.cs.washington.edu/flaws/.

[37] S. Karnouskos, 1. Busse, S. Covaci, Place-Oriented Virtual
Private Networks, HICSS-33, January 4-7, 2000, Maui, HI.

[38] B. Schneier, J. Kelsey, Cryptographic support for secure
logs on untrusted machines, in: Proceedings of the Seventh
USENIX Security Symposium, USENIX Press, 1998,
pp. 53-62.

[39] S. Karnouskos, Agent-populated active networks, in:
Proceedings of the Second International Conference on
Advanced Communication Technology, February 2000,
Muju, Korea.

[40] BANG - The Broadband Active Network Generation
project, http://www.fokus.gmd.de/research/cc/glone/pro-
jects/bang/.

[41] SSL v3 specifications: http://home.netscape.com/eng/ssl3/.

[42] RFC 2246, The TLS Protocol Version 1.0, January 1999,
http://www.ietf.org/rfc/rfc2246.txt.

[43] R.L. Rivest, Chaffing, winnowing: confidentiality without
encryption, April 1998, http://theory.lcs.mit.edu/~rivest/
chaffing.txt.

[44] Seraphim project: http://choices.cs.uiuc.edu/Security/sera-
phim/.

[45] Active networks at DARPA, http://www.darpa.mil/ito/
research/anets/.

[46] D.J. Wetherall, J. Guttag, D.L. Tennenhouse, ANTS: a
toolkit for building and dynamically deploying network
protocols, IEEE OPENARCH 98, San Francisco CA,
April 1998.

[47] D.S. Alexander, ALIEN: a generalized computing model
of active networks, Ph.D. Thesis, University of Pennsylva-
nia, Philadelphia, PA, December 1998.

[48] The SafetyNet project: http://www.cogs.susx.ac.uk/
projects/safetynet/.

[49] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.
Wetherall, G.J. Minden, A survey of active network
research, IEEE Communications Magazine 35 (1) (1997)
80-86.

