
Proceedings of ISAS 2000 / SCI 2000 Conference 1

A Security Oriented Architectural Approach for Mobile Agent Systems

Stamatis Karnouskos
German National Research Center for Information Technology

Research Institute for Open Communication Systems (GMD-FOKUS)
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

Email: karnouskos@fokus.gmd.de

ABSTRACT
Security is a critical parameter for the expansion and wide usage
of agent technology. A threat model is constructed and
subsequently the basic techniques to deal effectively with these
threats are analyzed. Then this paper presents a dynamic,
extensible, configurable and interoperable security architecture for
mobile agent systems. It is explained how this architecture can be
used to tackle a big par of security threats. All the components of
the security architecture are analyzed while we also argue for the
benefits they offer.

Keywords: Mobile Agents, Security Architecture, Security
Threats

1. INTRODUCTION
Security means think negative! People dealing with security

have a hands-on experience with such issues. We can't really
expect that the systems designed and developed will be used
according to the predicted/desired usage. On the contrary, you
have to think of all cases (if that is possible) that something might
go wrong. If there exists even the slightest possibility for a
security breakout, then you can be sure that someone sometime
will find and take advantage of it.

A secure system is a system that provides a number of services
to a selected group of users and restricts the ways those services
can be used. A security service is a software or hardware layer that
exports a safe interface out of an unprotected and possibly
dangerous primitive service. In order to build a security service
we need a security architecture. Having analyzed the security
needs of the Mobile Agent (MA) technology we propose in this
paper a dynamic, extensible, configurable and interoperable
security architecture for mobile agent systems.

Software agents [1] are a rapidly multi-directional developing
area of research since the early 90s. Yet research community has
not been able to find a clear answer to the most popular question
"What exactly is an agent?" and the debate still goes on. A general
answer could be: Agents are software components that act alone
or in communities on behalf of an entity and are delegated to
perform tasks under some constraints or action plans. Mobile
Agents shatter the notion of client/server model and eliminate its
limitations. Standardization efforts and guidelines that boost the
usage of agent technology exist in organizations such as the
Object Management Group [11] and the Foundation for
Intelligent Physical Agents [12]. Agents are computer and
transport independent (they depend only on the execution
environment) and therefore promote interoperability among
systems and software.

2. THREATS IN A DISTRIBUTED AGENT

ENVIRONMENT
Mobile code programming is by its nature a security-critical

activity. In an agent based infrastructure the security implications
are far more complex than in current static environments. In such

an environment author of the MA code, the user, the owner of the
hardware, the owner of the execution platform (even the execution
place) can be different entities governed by different security
policies and possibly competitive interests. In such a
heterogeneous environment security becomes an extremely
sensitive issue.
We identify the threats that exist in an agent-based infrastructure.
Later we will demonstrate how our design attempts to handle
these threats. We can have : misuse of execution environment by
mobile agents, misuse of agents by other agents, misuse of agents
by the execution environment, misuse by the underlying network
infrastructure.

Mainly all security efforts target the first category and a big
part of the second one. But misuse of agents by the host isn't
touched almost at all. Ongoing work on the subject [2][9] may
provide help in effectively targeting this area also. Our approach
also provides protection for the two first categories and tries to
provide some guarantees to the agent concerning the host code
and execution environments. Though this can't be an integrated
solution as it tackles only a small part of the problem widely
known as the "malicious host" problem.

2.1 Misuse of Hosts by Mobile Agents
Malicious agents while visiting a host can :

• Destroy/reconfigure/change or even erase resources of the
host. This affects all agents visiting the host that time. With
various tricks or false language implementations [17] an
agent can bypass authorization and authentication stages and
obtain access to private data.

• Cause denial of service attack. The agent overloads the host
e.g. by consuming all network resources and then the host
can't provide the expected services to the other agents.

• Eavesdrop. The agent can access sensitive information on the
host e.g. the private key of the host, modify the security
policy in order to obtain more access rights etc.

• Masquerade. The agent can pretend being someone else and
therefore be objected to the wrong policy schemes.

• Violate non-repudiation. An agent can deny performing
several actions to the node.

• Perform complex attacks. Here more than one agents co-
operate in order to attack a host. These are the most difficult
attacks as they are strategically planned and can be event
triggered. This collaborative kind of attacks are very difficult
to identify no to mention to deal with them.

2.2 Misuse of Agents by Other Agents
An agent can attack an other agent by changing agent's

internal state, accessing/changing data of an agent (e.g. access the
memory where agent keeps its own data), trapping an agent and
changing its mission, stealing info, claim a false identity and in
purpose damage agent's reputation, delay an agent in order to
distract it from its goals etc

Proceedings of ISAS 2000 / SCI 2000 Conference 2

2.3 Misuse of Agents by Hosts
A host can have complete control over an agent. There for it

can change his objectives, provide wrong execution and return
wrong results, steal/change internal data e.g. electronic money or
offers (if it is an auction agent), delete an agent or suspend it for
enough time so that the operations the agent wanted to perform
are not valid any more or have no meaning. E.g. an auction agent
that has missed an auction can't really fulfill its goal

We mentioned above the main threats that exist in an agent-
based infrastructure. Of course a combination of them makes it
even more difficult to prevent or deal successfully with it. Also all
above mentioned security breakouts are performed when an agent
is visiting a host. Contrary to popular belief agents don't transport
themselves to the next host. So in any case the agent relies on the
agency to transport its code safe and secure to the desired host!

2.4 Misuse by the Underlying Network
Infrastructure

Threats exist also while the agent traverses the network from
host to host. One external attacker could perform all kind of
attacks such as agent deletion/alteration/copy & replay/stealing
etc. A not so superficial scenario is the following: Agencies are
run by a user e.g. in a Unix host. By misconfiguration the user
that runs the agency allows others to access and modify the files
that are stored on disk e.g. the policy files. Then another user
could easily change the policy file and allow his agents to execute.
The difficulty with this kind of attacks is that can't all be dealt
because they use other resources than the specific product does. A
product that runs in a Unix environment is vulnerable to all kind
of attacks via the security holes of the Unix system. Such kind of
attacks can't be predicted by the designer of the agent platform
and are also out of the scope of this paper.

3. DEALING WITH THE SECURITY RISKS

Having presented the threat model we will try here to see how
we can deal with these problems. There are four main security
requirements to be satisfied:

Confidentiality. Private data carried by the agent or used by
the platform (such as audit logs) should remain private. Intra- and
inter- platform communication should by no mean be revealed to
3rd parties by monitoring or other techniques.

Integrity. Agent code should be protected from unauthorized
or accidental modification of code, state and data. If that is not
possible it should be at least pragmatic to detect agent tampering.
The platform should take the same countermeasures.

Accountability. Agents and platforms should audit their
activities and be able to provide detailed info for debugging or
security purposes. Every action should be uniquely identified,
authenticated and audited.

Availability. Resource management, controlled concurrency,
deadlock management, multi-access, detection and recovery from
faulty states such as software and hardware failures apply to
mostly to platforms. Agent should also be able to monitor their
services and actions in order not to be driven to endless loops.

Several approaches have been developed in order to minimize
security risks. We will not examine those approaches, instead we
will focus on cryptography, signing and policy.

3.1 Cryptography
The basic purpose of cryptography and specifically encryption

is to guard sensitive data against unauthorized access from non-
intended recipients. Encryption techniques are used to acquire
features such as :
• Data confidentiality and secrecy since all messages have to

be decrypted in order to process the enclosed info.

• Data integrity, because if the cipher text has been tampered it
won't be possible to decrypt correctly the original message

• Authentication. Taking for granted that the secret key of the
signer remains secret, we can be sure that the one who signed
the data is who he claims to be.

• Non-repudiation. Public key technology can provide non
repudiation of the recipient and its actions.

One-way hash functions, symmetric and public key
cryptography belong to encryption techniques. Encryption is used
in order to strengthen security. The user should be able to chose
from a wide variation of encryption algorithms and have the
ability to implement his own and make it available to other users.
The Component database that exists in our architecture ensures
exactly that. Encryption guarantees authenticity, integrity, and
secrecy of data and communication.

3.2 Credentials and Authentication
Because agents are programs, they are intangible and live in a

virtual world, we connect the trust model of such an infrastructure
with the trust model of real world in order to make security
critical decisions. That basically means that since every agent acts
on behalf of a user or generally an entity we check to see if we
trust that entity and indirectly trust the agent. The connection
between those two worlds, the virtual one of agents and the real
one is done via the digital certificates. A digital certificate is an
object (file or message) signed by a certification authority that
certifies the value of a person's public key. X509 [3] certificates
of the International Standard Organization are the most popular,
so we also adopt them in our design.

An agent is signed by one or more entities. Those entities can
be either the creator of the code, the user that dispatched the agent
(usually this is also the creator), a place of a host and generally
any entity that holds a valid certificate.

Signing an agent guarantees that i) the creator is the one
claimed by the agent, ii) agent's code (at least the signed part) has
not been tampered by a 3rd party during transportation. Signing
doesn’t guarantee that the agent will execute correctly (safety).
Furthermore one place can encrypt the agent with the public key
of the destination place (only the destination place has the private
key to decrypt the agent), protecting in this way the agent while it
traverses the net until it reaches the final destination.

In order to ensure secure external communication we don’t
use any homegrown solutions but instead we use the SSL (Secure
Socket Layer) protocol [4]. TLS standard (Transport Layer
Security) [5] is also another option.

Credentials also touch indirectly the "malicious host"
problem. Since each place (or at least each agency) has its own
certificate there is proof that this agent is mapped to a legal user
who bears responsibility of the behavior of the agency. An agent
(based on a trusted host) prior to transportation can get next
host's credential and decide whether to migrate and what to
compute on the specific host. Furthermore it can ask the place to
sign the results with its private key, so it can prove that those
results were obtained during the execution on that specific place
(repudiation problem). Non-changing parts of the agent should be
signed for maximum protection.

So we see that by depending on the certificates we can extend
our dependency in the real world where each entity exists or at
least has a person that is responsible for the actions. The
disadvantage of using certificates is that it assumes an advanced
stage of existence of public key infrastructure which has its own
pros and cons [16].

3.3 Access Control Checks
Having successfully identified the agent is only the first step.

Trust in the agent's credentials doesn't guarantee that it will

Proceedings of ISAS 2000 / SCI 2000 Conference 3

behave legitimate nor execute correctly. Thus we monitor and
authorize every call it makes to platform's resources. Any access
to any resource e.g. network, file, system configuration etc is
subject to a access control check. Therefore we need a policy and
an enforcement manager to make sure that our policy is enforced.
With this second level of check we provide fine-grained control
customized per user or group. As users perform various activities
not all of them have the same rights. The security is based in
protection domains of Java. Those protection domains are defined
by the internal agent id (not immutable) and/or by the signer(s) of
the agent code (immutable). We can even require a combination
of user identities in order to allow an agent to perform a task. A
flexible policy scheme guarantees exactly that. Although this
second level provides some extra and selective security we
understand its limits. Even though we restrict what the agent can
do, we can't be sure that no harm will be caused on purpose (e.g.
buffer overflow) or by mistake or wrong execution e.g. via
random side-effects.

3.4 Code Verification and Java
We try to verify that the code of the agent arriving to our

agency is valid. That means that the bytecodes refer to valid
instructions. This is one of the reasons why we use Java. Java is a
very popular language for implementing agents. The motto "write
once and run anywhere" gains momentum. Generally we chose
Java as the implementation language because of its features such
as: language design with security in mind, byte code verifier,
dynamic loading, strictly typed language, lack of pointer
arithmetic, automatic memory management including garbage
collection to avoid memory leaks and dangling pointers, check of
array references to ensure that they are within the bounds of the
array, strong typing etc. Furthermore Java is widely used and
evolvable. That's a non-technical characteristic of the language we
need. This is not for commercial/political reasons but for practical
ones. A language used by a small group of people might be task-
specific but it would be difficult to advance and keep up to date.
Also bugs, errors, misbehavior would be seldom if at all reported.
Thus we need a language that is widely used so that it evolves fast
and day by day new features are added constantly depending on
the needs. Also platform independence is not mandatory but
would be of great help since our efforts could be ported/deployed
easily and quickly to a heterogeneous environment.

Java features also a byte-code verifier in order to ensure that
Java-written agents won't perform illegal instructions e.g. writing
out of the memory space. On the other hand bytecodes are more
expressive than Java. That means that there is valid bytecode
representation for which Java code is not valid. With JASMIN
[6], or similar tools freely available in internet, one can write
illegal bytecodes that illegally mess up with Java’s semantics. As
we see Java isn't the panacea and there are security problems but
as long as they are discovered and corrected in the next versions
we will be sure that our system's security is also strengthened. We
understand also that this language has its limitations and
weaknesses. It is not the perfect language specifically designed for
mobile agents but is good enough. Problems like the greater
expressiveness of the bytecode verifier, implementation errors of
the Java's native code, or even other bugs that pop up every day
put the language in a continuous test via which errors are
corrected and we can hope for a strengthened security as well as
increasing performance in the future.

4. THE SECURITY ARCHITECTURE
Security can’t be an afterthought! It has to be integrated with

the Agency's core functions and not implemented at the end as an
extra, optional, explicitly called service. Approaches that try to
incorporate security after the design phase have been proven to

fail. The security architecture (Figure 2) for mobile agent systems
tries to incorporate all above solutions to the threat model
presented before and also to be as open as possible in order to
integrate easily future solutions. Furthermore we follow in this
approach the MASIF standard for interoperability reasons.

4.1 Places
The agent system (Figure 1) consists of places. A place is a

context within an agent system in which an agent is executed.
This context can provide services/functions such as access to local
resources etc. A place is associated with a location which consists
of a place name and the address of the agent system within which
the place resides. Places can contain other places. All places
follow the parent-child paradigm of Unix processes in the way
that each child is assigned/makes use of its parents resources. Also
its policy is an extension/customization of its parent's policy.

A place can be used in different ways. Places are i)
dynamically assigned to agents as they enter the agency based on
some criteria e.g. all agents coming from a specific user or
location or agents belonging to a specific policy scheme etc. or ii)
statically (permanently) assigned per entity (e.g. user, enterprise
etc). In the latter static resources are given to the place (after
agreement with the node provider) and the local resource manager
manages them. With this way it is possible for an enterprise to
setup a network of places in various nodes, creating a Place-
Oriented Virtual Private Network [13]. This offers several
advantages e.g. secure communication or paths between company-
trusted agents etc.

A policy scheme and a resource access scheme are assigned to
each place and the respective policy and resource manager are
given the general security guidelines, which can never be
bypassed. If an agent has sufficient credentials, then it can fully
interact with the components e.g. change the place's policy, ask
for more resources, insert elements in the component database etc.

The existence of different Execution Environments (EEs) for
agents that have the same owner/characteristics serves the need to
avoid unwanted interactions. Isolation done by EEs is similar to
the sandbox idea that exists in Java. Since in each place agents
with common characteristics (e.g. of the same owner) are gathered
the possibility of attacking each other is lower than usual. Of
course advanced security facilities offered by the place can be
used to minimize these risks (e.g. a secure communication service
via the platform). Furthermore if one wants can use a place as a
TestPlace (a firewall like approach) and allow suspicious agents
to execute there, monitor the results and then determine if it will
allow them to execute in the real place. Certainly if you see for
instance that an agent changes inappropriately the policy file of
the TestPlace you forbid it to execute into the desired place

Figure 1 - The distributed agent environment

Place #n

Place1

Region

Agency1 Agency #n

Communication and Transport Channel

Non-agent based service Agent based service
User

Application
Agent

Place1.1

Place1.2

Place1.1.1

Place
Resources

Place1.1.2

Place1.3

Place
Resources

Place
Resources

Place
Resources

Place
Resources

Place

Place
Resources

Place

Place
Resources

Place

Place
Resources

Place

Place
Resources

Proceedings of ISAS 2000 / SCI 2000 Conference 4

(which otherwise would be catastrophic). Also agents are
somehow isolated since each one has its own classloader.

Places beyond having unique IDs, also hold their own
public/private keys. An agent can ask to be signed in order to have
a proof that it passed via this place. This also helps with the so-
called "multi-hop" security problem. If every place signs a specific
part of the agent then we can trace back the exact route the agent
followed. Based on that info we can take further security
decisions. Let us mention that if there is one malicious host who
tries to break the chain of valid signatures (not sign the part of the
agent because he performed something maliciously and doesn’t
want to leave any traces) it will be detected by the next non-
malicious place.

4.2 Policy Manager
The Policy Manager is responsible for managing the policy

schemes stored in the policy database. By separating the policy
DB from the enforcement engine we insert a dynamic way of
policy modification. As our system's in progress implementation
is based on Java, we use the policy language supplied by JAVA2
for interoperability reasons and extent it whenever we see need to
do so (e.g. new type of access rights to use the credential DB etc).
The security policy defines the access each piece of code has to
resources. Signed code can run with different privileges based on
the identity of the person or place who signed it. Thus users can
tune their trade-off between security and functionality (of course
within limits given by administrator).

When an agent comes to an agency then he is subjected first to
the general agency's policy which is set by the user that initiated
the agency (Figure 3) and is considered to be the super-user.
Subsequently after passing successfully that control the agent is
subjected to the place's specific policy. It is clear that with this
sequential check of policies we avoid the problem of granting
contradictory access rights for the same action by different
policies. The policy of the father place is always first checked and
therefore it has precedence over child's place policy. This
architecture makes it easy for an enterprise to set-up an agency
and then provide advanced services to its customers. One of those
services is to provide places which are managed by the customer
and don’t violate the general rules of usage set by the enterprise.
Having this way of thinking in mind, one can easily understand
the hierarchical policy structure and its implications presented
here .

Notification of malicious agents (that have attacked other
hosts) can be distributed in the network (like CERN security
notifications). When our agency receives such a notification it can
add a line to agency’s general policy (that is always checked first)
that will not allow agents that bear those malicious characteristics

to migrate to any of the hosted places. E.g. it will not migration to
all agents signed by a user considered as malicious. One can also
simply forbid agents from a specific user/domain for personal
reasons e.g. because they consume too many resources, or belong
to a competitor etc. This is a kind of local black list which in co-
operation with the local certificate revocation list provides a
higher level of flexibility and customization of the system.

Any attempts to describe the security policy in terms of each
individual principal's authority to access each individual object is
not scalable and not understandable for those instituting the
policy. Thus it has been proposed to group principals and objects
into sets with common attributes, where the attributes are used in
making security decisions rather than the individual identities. So
we have role-based policy, group policy, clearance labels,
domains etc. Furthermore by grouping policies we allow for faster
execution times while trying to enforce the policy. In our system
all security checks are identity-based in order for an agent to enter
a place. After an agent successfully enters a place future security
checks become role-based. Thus we don’t have each time to verify
agent's credentials. We check only to see in which place the agent
resides and what is the appropriate policy for that place. This
approach is once more followed in our effort to speed up security
checks and improve architecture's performance.

4.3 Credential Manager
Credentials are used to i) verify that the component was

created/distributed by the claiming principals, ii) verify that the
component hasn’t been altered after it has been signed, iii) fulfill
partially the non-repudiation need so that the originator of that
code can't deny it.

Credentials are stored in the credential database. All actions
concerning the credentials (including management of the
credential database) are handled by the credential manager (CM) .
The CM checks the validity of the certificates, updates them,
maintains the local revocation list etc. The local revocation list
acts as a second black list only that this time the user can locally
make invalid the agent’s certificates and therefore force the
system to treat the agent as an anonymous one. While the first list
forbids migration to the agency (via SSL authentication) here we
have only sandboxing of the agent (treated as possibly malicious).

X509v3 Certificates [3] are used as credentials in a
heterogeneous environment with a key used as the primary
identification of a principal. Other certification systems beyond
X.509 could be used e.g. PGP or SKIP but none of them could be
considered as superior to the others as their features as well as
design and usage logic vary greatly [8].

In our approach we assume that users have certificates and
that hosts also have certificates. Places can also have certificates
in order to sign results. As the nested-place approach we take is
service oriented (place n can belong to a different provider than
the sub-place n+x), we can ask from the nth place to sign a part of
an agent. If that place doesn’t have a certificate, it can use (if
permitted by policy) the certificate of place n-1 or if that place
also doesn’t have a certificate then that of n-2 etc. Finally if also
the host doesn’t have a certificate or somewhere between the
policy of place k (with 1<k<n) forbids the use of a certificate
from parent places then the action fails.

The certificates of course assume the existence of a public key
infrastructure with certification authorities (CAs) which issue
certificates that bind two principals in a speaks-for relationship.
When checking the validity of certificates the credential manager
looks up firstly his local database and his local revocation list. In
the local databases a copy of the previous certificates of user's
agents that have executed exist. This is done for performance
reasons. If the local lookup action returns with an error (meaning

Figure 2 - UML [15] representation of the security
architecture's basic components

Component
Manager

<<subsystem>>

Audit Manager
<<subsystem>>

Policy Manager
<<subsystem>>

Credential
Manager

<<subsystem>>

Cache Manager
<<subsystem>>

Resource
Manager

<<subsystem>>

Enforcement
Engine

<<subsystem>>

Proceedings of ISAS 2000 / SCI 2000 Conference 5

that certificate doesn’t exist locally) then via the use of a protocol
e.g. LDAP/LDAPS [14] its validity is checked in cooperation
with a CA server, and the results are stored in the local database
in a time-limited manner for future reference.

4.4 Component Manager
The Component manager mainly manages all requests

concerning components preinstalled by the administrator as well
as user installed components in the component database. The
component manager allows first the administrator to install code
and selectively via policy make it available to the users. This code
can be signed so that agents coming to the agency can verify the
originator of the code and decide whether to use it or not. This
helps partially with the "Malicious Host" problem. Agents can
decide if they trust the code they need in order to perform their
goals. Of course again here you trust that the code is the original
one and has not been modified but that doesn’t give any
guarantees that the platform will execute it correctly. Furthermore
the agents are able to verify a host before they migrate to it. So if
every host n can verify host n+1 then we can make sure that our
agent moves in a selected path of hosts. If the host is not trusted
then the agent may decide not to execute there. Of course the
agent can select where to execute but it doesn’t have any

guarantees after it arrives to that host, as its execution is
controlled by that host's EE. User agents that are given permission
can put their own code to this database and make it available to
third party agents permanently or for a limited time. This
increases the flexibility as well as the security and performance of
the platform. The flexibility and performance because each user
can have its own implementations of custom code on the node and
thus his agents can be more lightweight and less complex.
Security is also enhanced as the administrator will provide all new
encryption/compression/etc algorithms with code he has tested
and trusts. So agents don’t bring every time their own code which
in turn makes it less risky for the platform to be faced with
unintentional side effects (e.g. buffer overflow). Not to mention
that the administrator's implementations will be always updated
and platform specific optimized, providing therefore better overall
performance to the system.

The component database can be considered a general database
of active code, protocols, encryption algorithms, etc. It can also
be used for caching agent's code but its use is far more extended
than simple caching. Furthermore this database can help with
various matters that have to do with international law e.g. on
exporting encryption algorithms. US Law export regulations force

different policy on Java JCE APIs inside and outside USA.
Therefore for non-USA users alternatively other implementations
such as IAIK-JCE [10] could be provided. Also various
algorithms are patented and their use should be allowed only to
specific agents. These classes can be stored in the component
database and via the right policy to be accessed only by the
intended users.

Component database is of great significance to this approach
as it ensures the up to date status of various components and also
in parallel minimizes security risks for agents and for the
platform. Security is by nature overhead in the communication
and execution in order to protect the system. We accept that. Yet
there are novel general ways/techniques to minimize this overhead
(under certain conditions) and fortify the security on the node. In
the future more specialized techniques that take optimal advantage
of the underlying network resources could be used if this
approach is to leave the research domain and enter the commercial
one.

4.5 Resource Manager
A resource manager is available in order to handle the

resources assigned to the agency or place. We assume that
resources are assigned from the administrator (that is the person
that creates the place and this can be the agency administrator or
one of the previous n-1 place administrators who created the
nested place n) to a place n and are managed by the owner of the
newly created place. The resources and their management is
transparent to place users and to nested places that place n might
contain. The place resource manager can handle the resources that
are dedicated to a specific place. It can be contacted also directly
via the agents that reside in the associated place also in the case
that there is a need for more resources.

Note that the resources available to a certain place are
transparent to the agent and its users. That means that local
resources could be extended via CORBA in order to access
resources in other nodes. With this idea in mind one could
consider network-wide working space and resource consumption
(e.g. distributed disk space). This helps also with the Place
Oriented Virtual Private Network (PO-VPN) [13]. In a PO-VPN
scenario an enterprise can setup places spawned in a network
infrastructure and therefore create a VPN of places where its
agents can execute according to custom security policies and
services. The transparency of resources across multiple agencies
which host places that belong to a VPN or a 3rd party entity offers
new hardly scratched ground for further interesting research.

4.6 Cache Manager
The cache (handled by the cache manager) is another

essential part of the architecture and its usage is mainly focusing
on improvement of the overall performance. Security checks are
time and computing consuming processes. In our effort, not to
duplicate all the time the necessary security checks, we have a
cache. Security checks that have been done via the enforcement
engine are stored with a time limit in the cache. If the time limit
expires then the security checks are performed again, otherwise
the security check is considered valid and is used by the system.

The policy DB can be dynamically updated via the
enforcement engine any time. Thus the problem is faced that the
cache contains outdated information. We solve this problem by
deleting (each time the policy for an entity changes) the cached
security checks that are associated with this key/person partially
or completely. So next time that a security check is requested, it
will not exist in cache and it will be performed from the
beginning. This is a novel method to speed-up the performance of
our system. The implementation of this approach requires
modification of the JVM.

Place1

Agency1
Agency #n

Place1.1

Place1.1.1

Place
Resources

Place #n

Place
Resources

Place 1

Place
Reources

Place1.1.2

Place
Resources

Place #m

Place
Resources

Access Control Point

Yes
No
Ask

Place
Resources

Place 2

Place
Reources

Figure 3 - Agent authentication/authorization route

Proceedings of ISAS 2000 / SCI 2000 Conference 6

4.7 Audit Manager
Audit manager handles all audit events. Experience has shown

that 100% security is difficult to realize - if not impossible - due
to the multiple factors that interfere. Collecting data generated by
network activity provides a useful tool in analyzing the existent
security and also trace back (if possible) the originators of a
security breakout. Having a detailed audit can lead to
reconstruction of a sequence of events and better understanding of
past security failures. Audit data include any attempt to achieve
different security level or change entries in the system's databases
etc. Intrusion attempts can also be detected via audit e.g. when we
see repetitive failures in an attempt to use a component/service we
can adapt our policy so that we prevent any possible intrusions.
The more detailed the audit process is the better can various
activities be debugged and protected from repeated errors or false
configurations. Unfortunately not all activities can be monitored.
Furthermore these logs are usually plain text files which
introduces further security risks (acquirement of private info,
alteration etc). Thus the log files should be protected with a
computationally cheap method [9] which will make impossible for
the attacker to read and also impossible to undetectably modify or
destroy.

4.8 Enforcement Engine
The Enforcement Engine is used to enforce the policy on the

agency in general and on the places. It is also the front-end
environment via which users interact with the architecture. An
Enforcement Engine must satisfy three important rules. It must be
i) always invoked, ii) tamperproof iii) verifiable. We try to fulfill
the above requirements by implicitly checking access rights to all
systems resources, signing the components and loading the basic
parts of the architecture securely. If a user gives (via the policy
file or host's OS) write permission to everyone in his
CLASSPATH directories, then another malicious user could alter
the files of the enforcement engine or the policy to comfort his
own goals. The host/agency/place administrator is able to use a
GUI and edit the policy and credential data prior to system run.
Changes can also be made dynamically during system runtime via
agent interface. The enforcement engine we have heavily depends
on Java's security architecture.

5. SUMMARY AND CONCLUSIONS

A security architecture for agent based systems has been
presented. This defensive model of design is focused on designing
agent systems to be secure from the scratch. Adding security after
the design phase has been shown to be difficult, expensive and
inadequate. Security is not an explicitly called service and its
treatment as such imposes further security risks in the
infrastructure. We tried to keep the architecture transparent and
simple as it is easier to evolve and update it in order to cover
future requirements.

 We have showed that benefits such as simplicity, scalability,
flexibility, interoperability, performance and safety have been
addressed successfully. With the use of Java we can also
guarantee a high level of safeness. The components of the
architecture have been analyzed and explained.

Per identity/place security and customization as well as the
rapid service creation is the main driving force for next generation
mobile agent systems. Furthermore by combining modules in a
Lego-like way (supported by the component DB) we believe that
our approach tackles issues like survivability and interoperability.

In the future we intent to advance our approach. Our
architecture tries to identify and prevent possible malicious
agents. For the moment it can't handle collaborative attacks.
Taking into account the tools provided (e.g. audit log, encryption
tools, etc) one could implement stationary agents (guards) that
reside on a place and based on intelligent internal strategy react to
environment changes and try to track and eliminate collaborative
attacks. Those guards could also work in collaboration thus
providing a higher level of security to a number of hosts. As agent
technology evolves and becomes more sophisticated a co-
operative security infrastructure could be developed and
deployed.

We understand also that this approach has its limits and is
based also on 3rd party modules. Any security flow on Java is
directly a security flaw also in the implementation of our approach
since everything is based on Java. But with the evolvement of the
language and in parallel the development and deployment of new
algorithms and services we hope that the security architecture
presented here will be able to fulfil its goals not only now but also
in the future.

6. REFERENCES

[1] Cetus Links on Mobile Agents :
http://www.cetus-links.org/oo_mobile_agents.html

[2] F. Hohl, Protecting mobile agents with Blackbox security,
Proc. 1997 WS Mobile Agents and security, Univ. of
Maryland.

[3] International Telecommunication Union, ITU-T
Recommendation on X.509

[4] IAIK-SSL Implementation.
URL : http://jcewww.iaik.tu-graz.ac.at/IAIK_JCE/jce.htm

[5] IETF Transport Layer Security (TLS) group
http://www.consensus.com/ietf-tls/ietf-tls-home.html

[6] JASMIN URL : http://www.mrl.nyu.edu/meyer/jasmin/
[7] T. Sander and C. Tschudin. Protecting Mobile Agents

against malicious hosts. Lecture Notes in Computer Science
on Mobile Agent Security, November 1997.

[8] E. Gerck. "Overview of Certification Systems: X.509, CA,
PGP and SKIP", Meta-Certificate Group, Novware
Softex/Unicamp Brazil.

[9] B. Schneier and J. Kelsey, "Cryptographic Support for
Secure Logs on Untrusted Machines", The 7th USENIX
Security Symposium proceedings, USENIX Press, Jan 1998,
pp. 53-62

[10] IAIK-JCE Implementation.
URL : http://jcewww.iaik.tu-graz.ac.at/IAIK_JCE/jce.htm

[11] OMG Web Site : http://www.omg.org/
[12] FIPA Web Site: http://www.fipa.org/
[13] Stamatis Karnouskos, Ingo Busse, Stefan Covaci, "Place-

Oriented Virtual Private Networks", HICSS-33, January 4-7
2000, on the island of Maui, Hawaii.

[14] Lightweight Directory Access Protocol (LDAP v3), RFC
2251. URL: http://info.internet.isi.edu/in-
notes/rfc/files/rfc2251.txt

[15] Unified Modeling Language, Rational Software, URL :
http://www.rational.com/uml

[16] "Ten Risks of PKI: What You're Not Being Told About
Public Key Infrastructure", C. Ellison and B. Schneier,
Computer Security Journal, v 16, n 1, 2000, pp. 1-7.

[17] Java Security Flaws http://kimera.cs.washington.edu/flaws/
[18] MASIF - Mobile Agent System Interoperability Facility,

http://www.omg.org/docs/orbos/98-03-09.pdf

